Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Radiochimica Acta

International Journal for chemical aspects of nuclear science and technology

Editor-in-Chief: Qaim, Syed M.


IMPACT FACTOR 2018: 1.339

CiteScore 2018: 1.20

SCImago Journal Rank (SJR) 2018: 0.333
Source Normalized Impact per Paper (SNIP) 2018: 0.720

Online
ISSN
2193-3405
See all formats and pricing
More options …
Volume 107, Issue 8

Issues

Removal of Cs-137 and Sr-90 from reactor actual liquid waste samples using a new synthesized bionanocomposite-based carboxymethylcellulose

Amr M. Emara
  • Nuclear Chemistry Department, Hot Laboratories Center, Atomic Energy Authority, P.O. No. 13759, Cairo, Egypt
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fatma H. El-Sweify
  • Corresponding author
  • Nuclear Chemistry Department, Hot Laboratories Center, Atomic Energy Authority, P.O. No. 13759, Cairo, Egypt
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shereen F. Abo-Zahra
  • Nuclear Chemistry Department, Hot Laboratories Center, Atomic Energy Authority, P.O. No. 13759, Cairo, Egypt
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ahmed I. Hashim / Tharwat E. Siyam
  • Nuclear Chemistry Department, Hot Laboratories Center, Atomic Energy Authority, P.O. No. 13759, Cairo, Egypt
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-02-21 | DOI: https://doi.org/10.1515/ract-2018-3005

Abstract

A new biosorbent containing vinylsulphonic acid and 2-acryloamido-2-methyl-1-propanesulphonic acid in the presence of magnetic nanoparticles, iron (III) oxide, grafted to carboxymethylcellulose sodium salt P(VSA/AMPSO3H/MNPs)-g-CMC bionanocomposite material (BNC) has been synthesized by γ radiation induced grafting copolymerization technique. The effect of comonomer, crosslinker, CMC concentration and the absorbed dose (kGy) on the grafting efficiency and swelling degree was studied. The BNC has been successfully synthesized and the structure of the prepared BNC was confirmed by Fourier transform infrared (FTIR), thermal analysis (TGA and DTA), X-ray powder diffraction (XRD), high-resolution 1H NMR spectroscopy and scanning electron microscopy (SEM) micrograph. Batch studies relevant to adsorption of Cs-137 and Sr-90 from the reactor actual liquid waste samples by the BNC were performed as a function of contact time, solution pH, metal ion concentration, and temperature in simulation studies using the γ emitting isotopes Cs-134 and Sr-85 as representatives of Cs-137 and Sr-90, respectively. Those studies were used to find out the best conditions for isolation of Cs-137 and Sr-90 from reactor actual liquid waste. The isotherms and kinetics were analyzed using different models at 25 °C. The maximum capacity of BNC was found to be 297 and 330 mg g−1 for Cs(I) and Sr(II) metal ions, respectively.

Keywords: Bionanocomposites; template copolymerization; γ emitters; reactor actual liquid waste

References

  • 1.

    Ahmadizadegan, H.: Surface modification of TiO2 nanoparticles with biodegradable nanocellolose and synthesis of novel polyimide/cellulose/TiO2 membrane. J. Colloid Interface Sci. 491, 390 (2017).PubMedCrossrefWeb of ScienceGoogle Scholar

  • 2.

    Arfat, Y. A., Ahmed, J., Hiremath, N., Auras, R., Joseph, A.: Thermo-mechanical, rheological, structural and antimicrobial properties of bionanocomposite films based on fish skin gelatin and silver-copper nanoparticles. Food Hydrocoll. 62, 191 (2017).CrossrefGoogle Scholar

  • 3.

    Khorasani, A. C., Shojaosadati, S. A.: Starch- and carboxymethylcellulose-coated bacterial nanocellulose-pectin bionanocomposite as novel protective prebiotic matrices. Food Hydrocoll. 63, 273 (2017).CrossrefGoogle Scholar

  • 4.

    Nath, B. K., Chaliha, C., Kalita, E., Kalita, M. C.: Synthesis and characterization of ZnO:CeO2:nanocellulose:PANI bionanocomposite. A bimodal agent for arsenic adsorption and antibacterial action. Carbohydr. Polym. 148, 397 (2016).Google Scholar

  • 5.

    Dervisevic, M., Custiuc, E., Çevik, E., Durmus, Z., Şenel, M., Durmus, A.: Electrochemical biosensor based on REGO/Fe3O4 bionanocomposite interface for xanthine detection in fish sample. Food Control 57, 402 (2015).Web of ScienceCrossrefGoogle Scholar

  • 6.

    Yu, H. R., Hu, J. Q., Liu, Z., Ju, X. J., Xie, R., Wang, W., Chu, L. Y.: Ion-recognizable hydrogels for efficient removal of cesium ions from aqueous environment. J. Hazard. Mater. 323, 632 (2017).Web of SciencePubMedCrossrefGoogle Scholar

  • 7.

    Lee, K. Y., Kim, K. W., Park, M., Kim, J., Oh, M., Lee, E. H., Chung, D. Y., Moon, J. K.: Novel application of nanozeolite for radioactive cesium removal from high-salt wastewater. Water Res. 95, 134 (2016).PubMedWeb of ScienceCrossrefGoogle Scholar

  • 8.

    Seelmann-Eggebert, W., Pfennig, G., Münzel, H.: Chart of the nuclides. Gesellschaft fűr kernforschung m.b.H., Karlsruhe, Germany. Gersbach u. Sohn Verlag, 8, Munchen (1991).Google Scholar

  • 9.

    El-Sweify, F. H., Karmeldin, A., El-monem, D. A., Adel, N., Hegazy, W. S.: Isolation and recovery of Cs-137 from reactor actual liquid waste samples for various purposes using ion exchangers of different kinds. Arab J. Nucl. Sci. Appl. 46, 62 (2013).Google Scholar

  • 10.

    Mclain, D. R., Tsai, Y., Graczyk, D. G., Canaday, J. L., Steeb, J. L.: An alternative separation procedure for 90-Sr age dating using DGA resin. J. Radioanal. Nucl. Chem. 317, 1439 (2018).CrossrefWeb of ScienceGoogle Scholar

  • 11.

    Yadav, M., Sand, A., Mishra, M. M., Tripathy, J., Pandey, V. S., Behari, K.: Synthesis, characterization and applications of graft copolymer (k-carrageenan-g-vinylsulfonic acid). Int. J. Biol. Macromol. 50, 826 (2012).CrossrefPubMedWeb of ScienceGoogle Scholar

  • 12.

    Borai, E. H., Hamed, M. G., El-kamash, A. M., Siyam, T., El-sayed, G. O.: Template polymerization synthesis of hydrogel and silica composite for sorption of some rare earth elements. J. Colloid Interface Sci. 456, 228 (2015).Web of ScienceCrossrefPubMedGoogle Scholar

  • 13.

    Soleimani, F., Sadeghi, M., Shahsavari, H.: Graft copolymerization of Gelatin-g-poly (acrylic acid-co-acrylamide) and calculation of grafting parameters. Indian J. Sci. Technol. 5, 2041 (2012).Google Scholar

  • 14.

    Yan, H., Zhang, W., Kan, X., Dong, L., Jiang, Z., Li, H., Yang, H., Cheng, R.: Sorption of methylene blue by carboxymethyl cellulose and reuse process in a secondary sorption. Colloids Surfaces A Physicochem. Eng. Asp. 380, 143 (2011).CrossrefWeb of ScienceGoogle Scholar

  • 15.

    Habibi, N.: Preparation of biocompatible magnetite-carboxymethyl cellulose nanocomposite: characterization of nanocomposite by FTIR, XRD, FESEM and TEM. Spectrochim. Acta A Mol. Biomol. Spectrosc. 131, 55 (2014).CrossrefPubMedGoogle Scholar

  • 16.

    Gao, Y., Yuan, Y., Ma, D., Li, L., Li, Y., Xu, W., Tao, W.: Removal of aqueous uranyl ions by magnetic functionalized carboxymethylcellulose and adsorption property investigation. J. Nucl. Mater. 453, 82 (2014).Web of ScienceCrossrefGoogle Scholar

  • 17.

    Thomas, S., Soloman, P. A., Rejini, V. O.: Preparation of chitosan-CMC blends and studies on thermal properties. Procedia Technol. 24, 721 (2016).CrossrefGoogle Scholar

  • 18.

    Kiro, A., Bajpai, J., Bajpai, A. K.: Designing of silk and ZnO based antibacterial and noncytotoxic bionanocomposite films and study of their mechanical and UV absorption behavior. J. Mech. Behav. Biomed. Mater. 65, 281 (2017).CrossrefPubMedWeb of ScienceGoogle Scholar

  • 19.

    Yadollahi, M., Namazi, H., Barkhordari, S.: Preparation and properties of carboxymethyl cellulose/layered double hydroxide bionanocomposite films. Carbohydr. Polym. 108, 83 (2014).Web of SciencePubMedCrossrefGoogle Scholar

  • 20.

    Gholami, M., Vardini, M. T., Mahdavinia, G. R.: Investigation of the effect of magnetic particles on the Crystal Violet adsorption onto a novel nanocomposite based on κ-carrageenan-g-poly(methacrylic acid). Carbohydr. Polym. 136, 772 (2016).PubMedWeb of ScienceCrossrefGoogle Scholar

  • 21.

    Kim, Y., Kon, Y., Kim, S., Harbottle, D., Lee, J. W.: Nanostructured potassium copper hexacyanoferrate-cellulose hydrogel for selective and rapid cesium adsorption. Chem. Eng. J. 313, 1042 (2016).Web of ScienceGoogle Scholar

  • 22.

    Yadollahi, M., Gholamali, I., Namazi, H., Aghazadeh, M.: Synthesis and characterization of antibacterial carboxymethylcellulose/CuO bio-nanocomposite hydrogels. Int. J. Biol. Macromol. 73, 109 (2015).CrossrefWeb of SciencePubMedGoogle Scholar

  • 23.

    Duman, O., Tunc, S., Polat, T. G., Bozo, B. K.: Synthesis of magnetic oxidized multiwalled carbon application in cationic Methylene Blue dye adsorption. Carbohydr. Polym. 147, 79 (2016).PubMedCrossrefGoogle Scholar

  • 24.

    Mobtaker, H. G., Yousefi, T., Pakzad, S. M.: Cesium removal from nuclear waste using a magnetical CuHCNPAN nano composite. J. Nucl. Mater. 482, 306 (2016).Web of ScienceCrossrefGoogle Scholar

  • 25.

    Sakamoto, S., Kawase, Y.: Adsorption capacities of poly-γ-glutamic acid and its sodium salt for cesium removal from radioactive wastewaters. J. Environ. Radioact. 165, 151 (2016).CrossrefWeb of SciencePubMedGoogle Scholar

  • 26.

    Chu, F., Ekström, L., Firestone, R.: The Lund/LBNL nuclear data search, http://nucleardata.nuclear.lu.se/toi/. version 2.0 (1999).

  • 27.

    Long, J., Li, H., Jiang, D., Luo, D., Chen, Y., Xia, J., Chen, D.: Biosorption of strontium(II) from aqueous solutions by Bacillus cereus isolated from strontium hyperaccumulator Andropogon gayanus. Process Safe. Environ. Prot. 111, 23 (2017).CrossrefGoogle Scholar

  • 28.

    Zhang, H., Zhao, X., Wei, J., Li, F.: Removal of cesium from low-level radioactive wastewaters using magnetic potassium titanium hexacyanoferrate. Chem. Eng. J. 275, 262 (2015).CrossrefWeb of ScienceGoogle Scholar

  • 29.

    Zhang, L., Wei, J., Zhao, X., Li, F., Jiang, F., Zhang, M., Cheng, X.: Competitive adsorption of strontium and cobalt onto tin antimonate. Chem. Eng. J. 285, 679 (2016).CrossrefWeb of ScienceGoogle Scholar

  • 30.

    Zhang, L., Wei, J., Zhao, X., Li, F., Jiang, F.: Adsorption characteristics of strontium on synthesized antimony silicate. Chem. Eng. J. 277, 378 (2015).Web of ScienceCrossrefGoogle Scholar

  • 31.

    Borai, E. H., Breky, M. M. E., Sayed, M. S., Abo-aly, M. M.: Synthesis, characterization and application of titanium oxide nanocomposites for removal of radioactive cesium, cobalt and europium ions. J. Colloid Interface Sci. 450, 17 (2015).Web of ScienceCrossrefPubMedGoogle Scholar

  • 32.

    Metwally, S. S., Ahmed, I. M., Rizk, H. E.: Modification of hydroxyapatite for removal of cesium and strontium ions from aqueous solution. J. Alloys Compd. 709, 438 (2017).CrossrefWeb of ScienceGoogle Scholar

  • 33.

    Jang, J., Mirana, W., Divine, S. D., Nawaz, M., Shahzad, A., Woo, S. H., Lee, D. S.: Rice straw-based biochar beads for the removal of radioactive strontium from aqueous solution. Sci. Total Environ. 615, 698 (2018).Web of SciencePubMedCrossrefGoogle Scholar

  • 34.

    Tranter, T. J., Herbst, R. S., Todd, T. A., Olson, A. L., Eldredge, H. B.: Evaluation of ammonium molybdophosphate-polyacrylonitrile (AMP-PAN) as a cesium selective sorbent for the removal of 137Cs from acidic nuclear waste solutions. Adv. Environ. Res. 6, 107 (2002).CrossrefGoogle Scholar

About the article

Received: 2018-06-21

Accepted: 2019-01-21

Published Online: 2019-02-21

Published in Print: 2019-07-26


Citation Information: Radiochimica Acta, Volume 107, Issue 8, Pages 695–711, ISSN (Online) 2193-3405, ISSN (Print) 0033-8230, DOI: https://doi.org/10.1515/ract-2018-3005.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in