Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Radiochimica Acta

International Journal for chemical aspects of nuclear science and technology

Editor-in-Chief: Qaim, Syed M.


IMPACT FACTOR 2018: 1.339

CiteScore 2018: 1.20

SCImago Journal Rank (SJR) 2018: 0.333
Source Normalized Impact per Paper (SNIP) 2018: 0.720

Online
ISSN
2193-3405
See all formats and pricing
More options …
Volume 107, Issue 8

Issues

Molybdenum and lanthanum as alternate burn-up monitors – development of chromatographic and mass spectrometric methods for determination of atom percent fission

Suranjan Bera
  • Materials Chemistry and Metal Fuel Cycle Group, Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603 102, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Krishnamurthy Sujatha
  • Materials Chemistry and Metal Fuel Cycle Group, Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603 102, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nagarajan Sivaraman
  • Corresponding author
  • Materials Chemistry and Metal Fuel Cycle Group, Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603 102, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tiruppatur Subramaniam Lakshmi Narasimhan
  • Resource Management Group, Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603 102, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-03-08 | DOI: https://doi.org/10.1515/ract-2018-3017

Abstract

A rapid high performance liquid chromatography (HPLC) and thermal ionisation mass spectrometric (TIMS) methods have been developed for the separation and estimation of fission product elements molybdenum and lanthanum for the burn-up measurements on the dissolver solution of Indian pressurised heavy water reactor (PHWR) spent fuel. Reverse phase chromatography method was developed to separate molybdenum from dissolver solution using mandelic acid as mobile phase and a dynamic ion exchange chromatography technique was used for the separation of lanthanum as well as neodymium from a dissolver solution. Sample loading methods which resulted in enhanced ionisation efficiency have been developed for the TIMS analysis of HPLC separated molybdenum and lanthanum fractions. Ascorbic acid mixed with silicic acid in HCl medium was used for loading the molybdenum on to a rhenium filament to obtain stable and intense ion beam. A novel sample loading method for lanthanum in which a mixture of graphite + boric acid (H3BO3) + silica gel was employed to achieve enhanced and steady ion beam formation of LaO+. Concentrations of species of interest were determined employing suitable spikes by isotope dilution mass spectrometry (IDMS) method. The developed methods were adopted for PHWR dissolver solution to establish molybdenum and lanthanum as alternate burn-up monitors. The burn-up data obtained were compared with the well established method of neodymium as fission product monitor. This is a first study of its kind where the data obtained by using molybdenum and lanthanum as fission product monitors were compared with that obtained by Nd-148 method.

Keywords: Molybdenum (Mo); lanthanum (La); high performance liquid chromatography (HPLC); thermal ionisation mass spectrometry (TIMS); burn-up

References

  • 1.

    Cuninghame, I. G.: The mass-yield curve for fission of natural uranium by 14-MeV neutrons. J. Inorg. Nucl. Chem. 5, 1 (1957).CrossrefGoogle Scholar

  • 2.

    Moller, P., Madland, D. G., Sierk, A. J., Iwamoto, A.: Nuclear fission modes and fragment mass asymmetries in a five-dimensional deformation space. Int. J. Sci. Nat. 409, 785 (2001).Google Scholar

  • 3.

    Bishop, W. N.: Nuclear Regulatory Commission, Washington D.C., Vol. 1, Report NUREG /CP 004, 469 (1977).Google Scholar

  • 4.

    Rein, J. E., Rider, B. F.: Burn-up Determination of Nuclear Fuels, AEC Research and Development Report. TID-17385, TID-4500 (18th Ed.), (1963).Google Scholar

  • 5.

    Maeck, W. J., Larsen, R. P., Rein, J. E.: Burnup determination for fast reactor fuels: A review and status of the nuclear data and analytical chemistry methodology requirements. U.S. Atomic Energy Commission, TID-26209, 87 (1973).Google Scholar

  • 6.

    Rein, J. E.: Analytical methods in the nuclear fuel cycle. IAEA –SM-149, IAEA, Vienna, (1972).Google Scholar

  • 7.

    Cassidy, R. M.: The separation and determination of metal species by modern liquid chromatography. In: J. F. Lawrence (Ed.), Trace Analysis (1981), Vol. 1, Academic Press, New York, p. 121.Google Scholar

  • 8.

    Maeck, W. J., Emel, W. A., Delmore, J. E., Duce, F. A., Dickerson, L. L., Keller, J. H., Tromp, R. L.: Report No. EY-76-C-07-1540 (1976).Google Scholar

  • 9.

    Fudge, A. J., Wood, A. J., Banham, M. F.: Report TID-7629, 152 (1961).Google Scholar

  • 10.

    Datta, A., Sivaraman, N., Srinivasan, T. G., Vasudeva Rao, P. R.: Single stage coupled column HPLC technique for the separation and determination of lanthanides in uranium matrix-application to burn-up measurement on nuclear reactor fuel. Nucl. Technol. 182, 84 (2013).CrossrefGoogle Scholar

  • 11.

    De Regge, P., Boden, R.: Determination of neodymium isotopes as burn-up indicator of highly irradiated (U, Pu)O2 LMFBR fuel. J. Radioanal. Chem. 35, 173 (1977).CrossrefGoogle Scholar

  • 12.

    ASTM Standards, E321-96: Standard Test Method for Atom Percent Fission in Uranium and Plutonium Fuel (Neodymium-148 Method). PA 19428-2959, United States (2005).Google Scholar

  • 13.

    Magill. J., Pfennig, G., Dreher, R., Sóti, Z.: Karlsruhe Nuclide Chart, 8th Ed. (2012).Google Scholar

  • 14.

    Crouch, E. A. C.: Atomic Data and Nuclear Data Tables: Fission Product Yields from Neutron Induced Fission, Vol. 19, Academic Press, New York and London (1977).Google Scholar

  • 15.

    Murthy, V. R.: Elemental and isotopic abundances of molybdenum in some meteorites. Geochim. Cosmochim. Acta 27, 1171 (1963).CrossrefGoogle Scholar

  • 16.

    Wetherill, G. W.: Isotopic composition and concentration of molybdenum in iron meteorites. J. Geophys. Res. 69, 4403 (1964).CrossrefGoogle Scholar

  • 17.

    Moore, L. J., Machlan, L. A., Shields, W. R., Garner, E. L.: Internal normalization techniques for high accuracy isotope dilution analyses-application to molybdenum and nickel in standard reference materials. Anal. Chem. 46, 1082 (1974).CrossrefGoogle Scholar

  • 18.

    Qi-Lu, Masuda, A.: High accuracy measurement of isotope ratios of molybdenum in some terrestrial molybdenites. J. Am. Soc. Mass Spectrom. 3, 10 (1992).CrossrefPubMedGoogle Scholar

  • 19.

    Qi-Lu, Masuda, A.: The isotopic composition and atomic weight of molybdenum. Int. J. Mass Spectrom Ion Processes 130, 65 (1994).CrossrefGoogle Scholar

  • 20.

    Kawashima, A., Takahashi, K., Masuda, A.: Positive thermal ionization mass spectrometry of molybdenum. Int. J. Mass Spectrom. Ion Processes 115, 115 (1993).Google Scholar

  • 21.

    Wieser, M. E., De Laeter, J. R.: Thermal ionization mass spectrometry of molybdenum isotopes. Int. J. Mass Spectrom 197, 253 (2000).CrossrefGoogle Scholar

  • 22.

    Forsyth, R. S.: Some studies on the burn-up of nuclear fuel. Chem. Comm. AB Atomenergi Report No. II, 1 (1970).Google Scholar

  • 23.

    Inghram, M. G., Hayden, R. J., Hess, D. C.: The isotopic constitution of lanthanum and cerium. Phys. Rev. 72, 967 (1947).CrossrefGoogle Scholar

  • 24.

    White, F. A., Collins, T. L., Rourke, F. M.: Search for possible naturally occurring isotopes of low abundance. Phys. Rev. 101, 1786 (1956).CrossrefGoogle Scholar

  • 25.

    Elliot, N. L., Green, L. W., Recoskie, B. M., Cassidy, R. M.: Mass spectrometric determination of lanthanum in nuclear fuels. Anal. Chem. 58, 1178 (1986).CrossrefGoogle Scholar

  • 26.

    Makishima, A., Shimizu, H., Masuda, A.: Precise measurement of cerium and lanthanum isotope ratios. Mass Spectroscopy. 35, 64 (1987).CrossrefGoogle Scholar

  • 27.

    Cassidy, R. M., Elchuk, S., Green, L. W., Knight, C. H., Miller, F. C., Recoskie, B. M.: Liquid chromatographic determination of the number of fission in uranium/aluminium nuclear fuels. J. Radioanal. Nucl. Chem. 139, 55 (1990).CrossrefGoogle Scholar

  • 28.

    Shen, J. J.-S., Lee, T., Chang, C. T.: Detecting small isotopic shifts in two-isotope elements using thermal ionization mass spectrometry. Anal. Chem. 64, 2216 (1992).CrossrefGoogle Scholar

  • 29.

    Shen, J. J.-S., Lee, T., Chang, C. T.: Lanthanum isotopic composition of meteoritic and terrestrial matter. Geochim. Cosmochim. Acta 58, 1499 (1994).CrossrefGoogle Scholar

  • 30.

    De Laeter, J. R., Bukilic, N.: The isotopic composition and atomic weight of lanthanum. Int. J. Mass Spect. 244, 91 (2005).CrossrefGoogle Scholar

  • 31.

    Datta, A., Sivaraman, N., Srinivasan, T. G., Vasudeva Rao, P. R.: Rapid separation of lanthanides and actinides on small particle based reverse phase supports. Radiochim. Acta 98, 277 (2010).Web of ScienceGoogle Scholar

  • 32.

    Datta, A., Sujatha, K., Kumar, R., Sivaraman, N., Srinivasan, T. G., Vasudeva Rao, P. R.: High performance separation and supercritical extraction of lanthanides and actinides. Energy Procedia 8, 425 (2011).Google Scholar

  • 33.

    Bera, S., Balasubramanian, R., Datta, A., Sajimol, R., Nalini, S., Lakshmi Narasimhan, T. S., Antony, M. P., Sivaraman, N., Nagarajan K., Vasudeva Rao, P. R.: Burn-up measurements on dissolver solution of mixed oxide fuel using HPLC-mass spectrometric method. Int. J. Anal. Mass Spectrom. Chromatogr. 1, 55 (2013).CrossrefGoogle Scholar

  • 34.

    Audi, G., Wapstra, A. H., Thibault, C.: The AME2003 atomic mass evaluation (II). Tables, graphs and references. Nucl. Phys. A 729, 337 (2003).CrossrefGoogle Scholar

  • 35.

    Spivack, A. J., Edmond, J. M.: Determination of boron isotope ratios by thermal ionization mass spectrometry of the dicesium metaborate cation. Anal Chem. 58, 31 (1986).CrossrefGoogle Scholar

  • 36.

    Vogl, J., Pritzkow, W.: Isotope dilution mass spectrometry – a primary method of measurement and its role for RM certification. J. Metrology Soc. India 25, 135 (2010).Web of ScienceGoogle Scholar

About the article

Received: 2018-06-29

Accepted: 2019-02-12

Published Online: 2019-03-08

Published in Print: 2019-07-26


Citation Information: Radiochimica Acta, Volume 107, Issue 8, Pages 685–694, ISSN (Online) 2193-3405, ISSN (Print) 0033-8230, DOI: https://doi.org/10.1515/ract-2018-3017.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in