Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Radiochimica Acta

International Journal for chemical aspects of nuclear science and technology

Editor-in-Chief: Qaim, Syed M.


IMPACT FACTOR 2018: 1.339

CiteScore 2018: 1.20

SCImago Journal Rank (SJR) 2018: 0.333
Source Normalized Impact per Paper (SNIP) 2018: 0.720

Online
ISSN
2193-3405
See all formats and pricing
More options …
Volume 107, Issue 8

Issues

Radiation stability of phosphine oxide functionalized pillar[5]arenes

Junshan Geng
  • Key Laboratory for Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ying Wang
  • Key Laboratory for Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yimin Cai
  • Key Laboratory for Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bin Yang
  • Key Laboratory for Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lihua Yuan
  • Key Laboratory for Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wen Feng
  • Corresponding author
  • Key Laboratory for Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-02-28 | DOI: https://doi.org/10.1515/ract-2018-3092

Abstract

The radiation stability of three phosphine oxide functionalized pillar[5]arenes (POP5A) was studied by an electron accelerator with dose up to 5 MGy in air at room temperature. The structures of both irradiated and unirradiated pillar[5]arenes samples were comparatively characterized by Micro-FTIR, NMR, UV-vis, ESI-HRMS and HPLC techniques. The results revealed different degrees of radiation damage at different doses for POP5A, and the degradation products are mainly composed of organic species containing hydroxyl groups and carbonyl groups. The possible radiolytic degradation pathway was proposed. In addition, extraction of uranyl ion with irradiated POP5A samples was examined. The distribution ratio of uranyl ion was found to increase at low radiation dose and decrease until 3000 kGy. This is the first time that the irradiation stability of pillar[5]arenes derivative extractants has been studied in detail and it provides reliable data support for further application of pillar[5]arenes extractants in practical applications.

This article offers supplementary material which is provided at the end of the article.

Keywords: Pillar[5]arenes; phosphine oxide; extraction; radiolytic degradation

References

  • 1.

    Ludwig, R.: Calixarenes in analytical and separation chemistry. Fresenius. J. Anal. Chem. 367, 103 (2000).PubMedCrossrefGoogle Scholar

  • 2.

    Ogoshi, T., Kanai, S., Fujinami, S. H., Yamagishi, T., Nakamoto, Y.: para-Bridged symmetrical pillar[5]arenes: their Lewis acid catalyzed synthesis and host-guest property. J. Am. Chem. Soc. 130, 5022 (2008).Web of ScienceCrossrefPubMedGoogle Scholar

  • 3.

    Assaf, K., Nau, W. M.: Cucurbiturils: from synthesis to high-affinity binding and catalysis. Chem. Soc. Rev. 44, 394 (2015).CrossrefWeb of SciencePubMedGoogle Scholar

  • 4.

    Hiratani, K., Kasuga, K., Goto, M., Uzawa, H.: Tandem claisen rearrangement: a novel, one-step synthesis of calixarene analogues from macrocyclic polyethers. J. Am. Chem. Soc. 119, 12677 (1997).CrossrefGoogle Scholar

  • 5.

    Sun, Q. J., Wang, H. Q., Yang, C. H., Li, Y. F.: Synthesis and electroluminescence of novel copolymers containing crown ether spacers. J. Mater. Chem. 13, 800 (2003).CrossrefGoogle Scholar

  • 6.

    Ogoshi, T.: Synthesis of novel pillar-shaped cavitands “Pillar[5]arenes” and their application for supramolecular materials. J. Inclusion. Phenom. Macrocyclic Chem. 72, 247 (2012).CrossrefWeb of ScienceGoogle Scholar

  • 7.

    Kakuta, T., Yamagishi, T., Ogoshi, T.: Stimuli-responsive supramolecular assemblies constructed from pillar[n]arenes. Acc. Chem. Res. 51, 1656 (2018).CrossrefGoogle Scholar

  • 8.

    Arnaud-Neu, F.: Speciation in solution: interaction between calixarene derivatives and lanthanides(III). Radiochim. Acta 91, 659 (2003).Google Scholar

  • 9.

    Peters, C., Braekers, D., Kroupa, J., Kasyan, O., Miroshnichenko, S., Rudzevich, V., Böhmer, V., Desreux, J. F.: CMPO-calix[4]arenes and the influence of structural modifications on the Eu(III), Am(III), Cm(III) separation. Radiochim. Acta 96, (2008).Web of ScienceGoogle Scholar

  • 10.

    Zhang, L., Du, J., Yuan, L., Zhang, D., Dan, G., Yang, Y., Feng, W.: Synthesis of novel calixcrown derivatives with selective complexation towards cesium ions. Chin. Chem. Lett. 22, 284 (2011).CrossrefWeb of ScienceGoogle Scholar

  • 11.

    Chu, H., He, L., Jiang, Q., Fang, Y., Jia, Y., Yuan, X., Zou, S., Li, X., Feng, W., Yang, Y., Liu, N., Luo, S., Yang, Y., Yang, L., Yuan, L.: CMPO-calix[4]arenes with spacer containing intramolecular hydrogen bonding: Effect of local rigidification on solvent extraction toward f-block elements. J. Hazard. Mater. 264, 211 (2014).CrossrefPubMedWeb of ScienceGoogle Scholar

  • 12.

    Jia, Y. M., Fang, Y. Y., Li, Y., He, L. T., Fan, W. H., Feng, W., Yang, Y. Y., Liao, J. L., Liu, N., Yuan, L. H.: Pillar[5]arenes bearing phosphine oxide pendents as Hg2+ selective receptors. Talanta 125, 322 (2014).Web of ScienceCrossrefGoogle Scholar

  • 13.

    Bai, B., Fang, Y. Y., Gan, Q., Yang, Y. Y., Yuan, L. H., Feng, W.: Phosphorous-based pillar[5]arenes for uranyl extraction. Chin. J. Chem. 33, 361 (2015).CrossrefWeb of ScienceGoogle Scholar

  • 14.

    Fang, Y. Y., Yuan, X. Y., Wu, L., Peng, Z. Y., Feng, W., Liu, N., Xu, D. G., Li, S. J., Sengupta, A., Mohapatra, P. K., Yuan, L. H.: Ditopic CMPO-pillar[5]arenes as unique receptors for efficient separation of americium(III) and europium(III). Chem. Commun. 51, 4263 (2015).CrossrefWeb of ScienceGoogle Scholar

  • 15.

    Wu, L., Fang, Y. Y., Jia, Y. M., Yang, Y. Y., Liao, J. L., Liu, N., Yang, X. S., Feng, W., Ming, J. L., Yuan, L. H.: Pillar [5] arene-based diglycolamides for highly efficient separation of americium (III) and europium (III). Dalton Trans. 43, 3835 (2014).PubMedWeb of ScienceCrossrefGoogle Scholar

  • 16.

    Sengupta, A., Fang, Y. Y., Yuan, X. Y., Yuan, L. H.: Probing of the local environment and calculation of J. O. parameters for Eu3+ CMPO functionalized pillararene complexes by time resolved fluorescence spectroscopy. J. Lumin. 166, 187 (2015).CrossrefWeb of ScienceGoogle Scholar

  • 17.

    Fang, Y. Y., Wu, L., Liao, J. L., Chen, L., Yang, Y. Y., Liu, N., He, L. T., Zou, S. L., Feng, W., Yuan, L. H.: Pillar[5] arene-based phosphine oxides: novel ionophores for solvent extraction separation of f-block elements from acidic media. RSC Adv. 3, 12376 (2013).Web of ScienceCrossrefGoogle Scholar

  • 18.

    Sengupta, A., Mohapatra, P. K., Fang, Y. Y., Yuan, X. Y., Feng, W., Yuan, L. H.: Extraction of actinide ions using three CMPO-functionalized pillar[5]arenes in a room temperature ionic liquid. Sep. Purif. Technol. 195, 231 (2018).Web of ScienceGoogle Scholar

  • 19.

    Chen, L. X., Wang, Y., Yuan, X. Y., Ren, Y., Liu, N., Yuan, L. H., Feng, W.: Highly selective extraction of uranium from nitric acid medium with phosphine oxide functionalized pillar[5]arenes in room temperature ionic liquid. Sep. Purif. Techol. 192, 152 (2018).CrossrefGoogle Scholar

  • 20.

    Sengupta, A., Yuan, Y. X., Feng, W., Gupta, N. K., Yuan, L. H.: Highly efficient extraction of tetra- and hexavalent plutonium using DGA functionalized pillar[5]arene in RTIL: Understanding speciation, thermodynamics and radiolytic stability. Sep. Purif. Techol. 52, 2767 (2017).Google Scholar

  • 21.

    Mincher, B. J., Modolo, G., Mezyk, S. P.: Review article: the effects of radiation chemistry on solvent extraction: 1. Conditions in acidic solution and a review of TBP radiolysis. Solvent Extr. Ion. Exc. 27, 1 (2009).CrossrefWeb of ScienceGoogle Scholar

  • 22.

    Zhang, X. R., Yuan, L. Y., Chai, Z. F., Shi, W. Q.: A new solvent system containing N,N′-diethyl-N,N′-ditolyl-2,9-diamide-1,10-phenanthroline in 1-(trifluoromethyl)-3-nitrobenzene for highly selective UO22+ extraction. Sep. Purif. Techol. 168, 232 (2016).CrossrefGoogle Scholar

  • 23.

    Nakahara, M., Sano, Y.: Uranium, plutonium and neptunium co-recovery with high nitric acid concentration in extraction section by simplified solvent extraction process. Radiochim. Acta 97, 727 (2009).Web of ScienceGoogle Scholar

  • 24.

    Rao, A., Kumar, P., Ramakumar, K. L.: Supercritical carbon dioxide extraction of uranium from acidic medium employing crown ethers. Radiochim. Acta 98, 403 (2010).Web of ScienceGoogle Scholar

  • 25.

    Fermvik, A., Aneheim, E., Grüner, B., Hájková, Z., Kvíčalová, M., Ekberg, C.: Radiolysis of C5-BTBP in cyclohexanone irradiated in the absence and presence of an aqueous phase. Radiochim. Acta 100, 273 (2012).CrossrefWeb of ScienceGoogle Scholar

  • 26.

    Pitchaiah, K. C., Sujatha, K., Brahmmananda Rao, C. V. S., Subramaniam, S., Sivaraman, N., Vasudeva Rao, P. R.: Supercritical fluid extraction of uranium and thorium from nitric acid medium using organophosphorous compounds. Radiochim. Acta 103, 245 (2015).Web of ScienceGoogle Scholar

  • 27.

    Abou Taleb, M. F., Abd El-Mohdy, H. L., Abd El-Rehim, H. A.: Radiation preparation of PVA/CMC copolymers and their application in removal of dyes. J. Hazard. Mater. 168, 68 (2009).Web of ScienceCrossrefPubMedGoogle Scholar

  • 28.

    Singh, B., Pal, L.: Radiation crosslinking polymerization of sterculia polysaccharide-PVA-PVP for making hydrogel wound dressings. Int. J. Biol. Macromol. 48, 501 (2011).PubMedCrossrefWeb of ScienceGoogle Scholar

  • 29.

    Lmp, C., Lc, B., Lkg, S., Df, P., Ab, L.: Influence of ionizing radiation on the mechanical properties of BisGMA/TEGDMA based experimental resin. Radiat. Phys. Chem. 115, 30 (2015).CrossrefWeb of ScienceGoogle Scholar

  • 30.

    Guo, D. S., Liu, Y.: Calixarene-based supramolecular polymerization in solution. Chem. Soc. Rev. 41, 5907 (2012).PubMedCrossrefGoogle Scholar

  • 31.

    Zheng, D. D., Fu, D. Y., Wu, Y. Q., Sun, Y. L., Tan, L. L., Zhou, T., Ma, S. Q., Zha, X., Yang, Y. W.: Efficient inhibition of human papillomavirus 16 L1 pentamer formation by a carboxylatopillarene and a p-sulfonatocalixarene. Chem. Commun. 50, 3201 (2014).Web of ScienceCrossrefGoogle Scholar

  • 32.

    Yuan, L. Y., Peng, J., Xu, L., Zhai, M. L., Li, J. Q., Wei, G. S.: Influence of gamma-radiation on the ionic liquid [C4mim][PF6] during extraction of strontium ions. Dalton Trans. 45, 6358 (2008).Google Scholar

  • 33.

    Ao, Y. Y., Peng, J., Zhang, Y. W., Yuan, L. Y., Yu, C. H., Li, J. Q., Zhai, M. L.: The radiolytic behavior and mechanism of calixarene crown ether under γ-irradiation. Chinese Sci. Bull. 58, 1663 (2013).Web of ScienceCrossrefGoogle Scholar

  • 34.

    Pretsch, E., Buhlmann, P., Badertscher, M.: Structure Determination of Organic Compounds. Springer (2000), p. 269.Google Scholar

About the article

Received: 2018-12-16

Accepted: 2019-01-25

Published Online: 2019-02-28

Published in Print: 2019-07-26


Funding Source: National Natural Science Foundation of China

Award identifier / Grant number: 21471105 and 21876121

Funding Source: Open Project of Key Laboratory for Radiation Physics and Technology of Ministry of Education

Award identifier / Grant number: 2018SCURPT11

We are grateful to the National Natural Science Foundation of China (Funder Id: http://dx.doi.org/10.13039/501100001809, 21471105 and 21876121), and Open Project of Key Laboratory for Radiation Physics and Technology of Ministry of Education (2018SCURPT11). The Comprehen-sive Training Platform of the Specialized Laboratory, Col-lege of Chemistry, Sichuan University, is acknowledged for HRESI-MS and NMR analysis.


Citation Information: Radiochimica Acta, Volume 107, Issue 8, Pages 713–724, ISSN (Online) 2193-3405, ISSN (Print) 0033-8230, DOI: https://doi.org/10.1515/ract-2018-3092.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Xiangyang Yuan, Yinmin Cai, Lixi Chen, Shihang Lu, Xin Xiao, Lihua Yuan, and Wen Feng
Separation and Purification Technology, 2019, Page 115843
[2]
Lixi Chen, Yimin Cai, Wen Feng, and Lihua Yuan
Chemical Communications, 2019, Volume 55, Number 55, Page 7883

Comments (0)

Please log in or register to comment.
Log in