Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Radiochimica Acta

International Journal for chemical aspects of nuclear science and technology

Editor-in-Chief: Qaim, Syed M.


IMPACT FACTOR 2018: 1.339

CiteScore 2018: 1.20

SCImago Journal Rank (SJR) 2018: 0.333
Source Normalized Impact per Paper (SNIP) 2018: 0.720

Online
ISSN
2193-3405
See all formats and pricing
More options …
Volume 107, Issue 9-11

Issues

Homogenous recycling of transuranium elements from irradiated fast reactor fuel by the EURO-GANEX solvent extraction process

Rikard Malmbeck / Daniel Magnusson
  • Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stéphane Bourg
  • French Alternative Energies and Atomic Energy Commission, Nuclear Energy Division, Research Department on Mining and Fuel Recycling Processes, CEA Marcoule, Bagnols sur Cèze, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michael Carrott / Andreas Geist
  • Corresponding author
  • Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), Karlsruhe, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xavier Hérès
  • French Alternative Energies and Atomic Energy Commission, Nuclear Energy Division, Research Department on Mining and Fuel Recycling Processes, CEA Marcoule, Bagnols sur Cèze, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Manuel Miguirditchian
  • French Alternative Energies and Atomic Energy Commission, Nuclear Energy Division, Research Department on Mining and Fuel Recycling Processes, CEA Marcoule, Bagnols sur Cèze, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Giuseppe Modolo
  • Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Nukleare Entsorgung und Reaktorsicherheit, Jülich, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Udo Müllich
  • Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christian Sorel
  • French Alternative Energies and Atomic Energy Commission, Nuclear Energy Division, Research Department on Mining and Fuel Recycling Processes, CEA Marcoule, Bagnols sur Cèze, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Robin Taylor / Andreas Wilden
  • Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Nukleare Entsorgung und Reaktorsicherheit, Jülich, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-05-27 | DOI: https://doi.org/10.1515/ract-2018-3089

Abstract

The EURO-GANEX process was developed for co-separating transuranium elements from irradiated nuclear fuels. A hot flow-sheet trial was performed in a counter-current centrifugal contactor setup, using a genuine high active feed solution. Irradiated mixed (carbide, nitride) U80Pu20 fast reactor fuel containing 20 % Pu was thermally treated to oxidise it to the oxide form which was then dissolved in HNO3. From this solution uranium was separated to >99.9 % in a primary solvent extraction cycle using 1.0 mol/L DEHiBA (N,N-di(2-ethylhexyl)isobutyramide in TPH (hydrogenated tetrapropene) as the organic phase. The raffinate solution from this process, containing 10 g/L Pu, was further processed in a second cycle of solvent extraction. In this EURO-GANEX flow-sheet, TRU and fission product lanthanides were firstly co-extracted into a solvent composed of 0.2 mol/L TODGA (N,N,N′,N′-tetra-n-octyl diglycolamide) and 0.5 mol/L DMDOHEMA (N,N′-dimethyl-N,N′-dioctyl-2-(2-hexyloxy-ethyl) malonamide) dissolved in Exxsol D80, separating them from most other fission and corrosion products. Subsequently, the TRU were selectively stripped from the collected loaded solvent using a solution containing 0.055 mol/L SO3-Ph-BTP (2,6-bis(5,6-di(3-sulphophenyl)-1,2,4-triazin-3-yl)pyridine tetrasodium salt) and 1 mol/L AHA (acetohydroxamic acid) in 0.5 mol/L HNO3; lanthanides were finally stripped using 0.01 mol/L HNO3. Approximately 99.9 % of the TRU and less than 0.1 % of the lanthanides were found in the product solution, which also contained the major fractions of Zr and Mo.

Keywords: Homogeneous recycling; TRU separation; solvent extraction; centrifugal contactor

References

  • 1.

    The Nuclear Fuel Report. World Nuclear Association (2017).Google Scholar

  • 2.

    Poinssot, C., Bourg, S., Ouvrier, N., Combernoux, N., Rostaing, C., Vargas-Gonzalez, M., Bruno, J.: Assessment of the environmental footprint of nuclear energy systems. Comparison between closed and open fuel cycles. Energy 69, 199 (2014).CrossrefGoogle Scholar

  • 3.

    Poinssot, C., Bourg, S., Boullis, B.: Improving the nuclear energy sustainability by decreasing its environmental footprint. Guidelines from life cycle assessment simulations. Progr. Nucl. Energy 92, 234 (2016).CrossrefGoogle Scholar

  • 4.

    Modolo, G., Geist, A., Miguirditchian, M.: Minor actinide separations in the reprocessing of spent nuclear fuels: recent advances in Europe. In: R. Taylor (Ed.), Reprocessing and Recycling of Spent Nuclear Fuel (2015), Woodhead Publishing, Cambridge, UK.Google Scholar

  • 5.

    Homogeneous versus heterogeneous recycling of transuranics in fast nuclear reactors. NEA No. 7077, OECD, Nuclear Energy Agency (NEA), Paris (2012).Google Scholar

  • 6.

    State-of-the-art report on the progress of nuclear fuel cycle chemistry. NEA No. 7267, OECD, Nuclear Energy Agency (NEA), Paris (2018).Google Scholar

  • 7.

    Aneheim, E., Ekberg, C., Fermvik, A., Foreman, M. R. S., Retegan, T., Skarnemark, G.: A TBP/BTBP-based GANEX separation process. Part 1: feasibility. Solvent Extr. Ion Exc. 28, 437 (2010).CrossrefGoogle Scholar

  • 8.

    Aneheim, E., Ekberg, C., Foreman, M. R. S.: A TBP/BTBP-based GANEX separation process – part 3: fission product handling. Solvent Extr. Ion Exc. 31, 237 (2013).CrossrefGoogle Scholar

  • 9.

    Halleröd, J., Ekberg, C., Löfström-Engdahl, E., Aneheim, E.: Development of the Chalmers grouped actinide extraction process. Nukleonika 60, 829 (2015).CrossrefGoogle Scholar

  • 10.

    Foreman, M. R. S., Hudson, M. J., Drew, M. G. B., Hill, C., Madic, C.: Complexes formed between the quadridentate, heterocyclic molecules 6,6′-bis-(5,6-dialkyl-1,2,4-triazin-3-yl)-2,2′-bipyridine (BTBP) and lanthanides(III): implications for the partitioning of actinides(III) and lanthanides(III). Dalton Trans. 1645 (2006).PubMedGoogle Scholar

  • 11.

    Geist, A., Hill, C., Modolo, G., Foreman, M. R. S. J., Weigl, M., Gompper, K., Hudson, M. J., Madic, C.: 6,6′-bis (5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-benzo[1,2,4]triazin-3-yl)[2,2′]bipyridine, an effective extracting agent for the separation of americium(III) and curium(III) from the lanthanides. Solvent Extr. Ion Exc. 24, 463 (2006).CrossrefGoogle Scholar

  • 12.

    Todd, T. A., Vienna, J. D., Bresee, J. C., Gray, K., Kung, S., Paviet, P.: The United States material recovery and waste form development program. In Proc. Internat. Conf. GLOBAL 2015 (Nuclear Fuel Cycle for a Low-carbon Future), Paris, France, 20–24 September 2015; pp 1664–1669.Google Scholar

  • 13.

    Runde, W. H., Mincher, B. J.: Higher oxidation states of americium: preparation, characterization and use for separations. Chem. Rev. 111, 5723 (2011).PubMedCrossrefGoogle Scholar

  • 14.

    Mincher, B. J., Martin, L. R., Schmitt, N. C.: Diamylamylphosphonate solvent extraction of Am(VI) from nuclear fuel raffinate simulant solution. Solvent Extr. Ion Exc. 30, 445 (2012).CrossrefGoogle Scholar

  • 15.

    Adnet, J.-M., Miguirditchian, M., Hill, C., Hérès, X., Lecomte, M., Masson, M., Brossard, P., Baron, P.: Development of new hydrometallurgical processes for actinide recovery: GANEX concept. In Proc. Internat. Conf. GLOBAL 2005 (Nuclear Energy Systems for Future Generation and Global Sustainability), Tsukuba, Japan, 9–13 October 2005.Google Scholar

  • 16.

    Miguirditchian, M., Chareyre, L., Hérès, X., Hill, C., Baron, P., Masson, M.: GANEX: adaptation of the DIAMEX-SANEX process for the group actinide separation. In Proc. Internat. Conf. GLOBAL 2007 (Advanced Nuclear Fuel Cycles and Systems), Boise, Idaho, USA, 9–13 September 2007.Google Scholar

  • 17.

    Miguirditchian, M., Sorel, C., Camès, B., Bisel, I., Baron, P., Espinoux, D., Calor, J.-N., Viallesoubranne, C., Lorrain, B., Masson, M.: HA demonstration in the Atalante facility of the GANEX 1st cycle for the selective extraction of uranium from HLW. In Proc. Internat. Conf. GLOBAL 2009 (The Nuclear Fuel Cycle: Sustainable Options & Industrial Perspectives), Paris, France, 6–11 September 2009.Google Scholar

  • 18.

    Berthon, L., Morel, J. M., Zorz, N., Nicol, C., Virelizier, H., Madic, C.: DIAMEX process for minor actinide partitioning: hydrolytic and radiolytic degradations of malonamide extractants. Sep. Sci. Technol. 36, 709 (2001).CrossrefGoogle Scholar

  • 19.

    Miguirditchian, M., Roussel, H., Chareyre, L., Baron, P., Espinoux, D., Calor, J.-N., Viallesoubranne, C., Lorrain, B., Masson, M.: HA demonstration in the Atalante facility of the GANEX 2nd cycle for the grouped TRU extraction. In Proc. Internat. Conf. GLOBAL 2009 (The Nuclear Fuel Cycle: Sustainable Options & Industrial Perspectives), Paris, France, 6–11 September 2009.Google Scholar

  • 20.

    Bourg, S., Hill, C., Caravaca, C., Rhodes, C., Ekberg, C., Taylor, R., Geist, A., Modolo, G., Cassayre, L., Malmbeck, R., Harrison, M., de Angelis, G., Espartero, A., Bouvet, S., Ouvrier, N.: ACSEPT – partitioning technologies and actinide science: towards pilot facilities in Europe. Nucl. Eng. Des. 241, 3427 (2011).CrossrefGoogle Scholar

  • 21.

    Sasaki, Y., Sugo, Y., Suzuki, S., Tachimori, S.: The novel extractants, diglycolamides, for the extraction of lanthanides and actinides in HNO3/n-dodecane system. Solvent Extr. Ion Exc. 19, 91 (2001).CrossrefGoogle Scholar

  • 22.

    Carrott, M., Geist, A., Hérès, X., Lange, S., Malmbeck, R., Miguirditchian, M., Modolo, G., Wilden, A., Taylor, R.: Distribution of plutonium, americium and interfering fission products between nitric acid and a mixed organic phase of TODGA and DMDOHEMA in kerosene, and implications for the design of the “EURO-GANEX” process. Hydrometallurgy 152, 139 (2015).CrossrefGoogle Scholar

  • 23.

    Carrott, M. J., Gregson, C. R., Taylor, R. J.: Neptunium extraction and stability in the GANEX solvent: 0.2 M TODGA/0.5 M DMDOHEMA/kerosene. Solvent Extr. Ion Exc. 31, 463 (2013).CrossrefGoogle Scholar

  • 24.

    Bell, K., Geist, A., McLachlan, F., Modolo, G., Taylor, R., Wilden, A.: Nitric acid extraction into TODGA. Proc. Chem. 7, 152 (2012).CrossrefGoogle Scholar

  • 25.

    Bell, K., Carpentier, C., Carrott, M., Geist, A., Gregson, C., Hérès, X., Magnusson, D., Malmbeck, R., McLachlan, F., Modolo, G., Müllich, U., Sypula, M., Taylor, R., Wilden, A.: Progress towards the development of a new GANEX process. Proc. Chem. 7, 392 (2012).CrossrefGoogle Scholar

  • 26.

    Brown, J., McLachlan, F., Sarsfield, M., Taylor, R., Modolo, G., Wilden, A.: Plutonium loading of prospective grouped actinide extraction (GANEX) solvent systems based on diglycolamide extractants. Solvent Extr. Ion Exc. 30, 127 (2012).CrossrefGoogle Scholar

  • 27.

    Cuillerdier, C., Musikas, C., Hoel, P., Nigond, L., Vitart, X.: Malonamides as new extractants for nuclear waste solutions. Sep. Sci. Technol. 26, 1229 (1991).CrossrefGoogle Scholar

  • 28.

    Sypula, M., Wilden, A., Schreinemachers, C., Malmbeck, R., Geist, A., Taylor, R., Modolo, G.: Use of polyaminocarboxylic acids as hydrophilic masking agents for fission products in actinide partitioning processes. Solvent Extr. Ion Exc. 30, 748 (2012).CrossrefGoogle Scholar

  • 29.

    Geist, A., Müllich, U., Magnusson, D., Kaden, P., Modolo, G., Wilden, A., Zevaco, T.: Actinide(III)/lanthanide(III) separation via selective aqueous complexation of actinides(III) using a hydrophilic 2,6-bis(1,2,4-triazin-3-yl)-pyridine in nitric acid. Solvent Extr. Ion Exc. 30, 433 (2012).CrossrefGoogle Scholar

  • 30.

    Carrott, M. J., Fox, O. D., Maher, C. J., Mason, C., Taylor, R. J., Sinkov, S. I., Choppin, G. R.: Solvent extraction behavior of plutonium (IV) ions in the presence of simple hydroxamic acids. Solvent Extr. Ion Exc. 25, 723 (2007).CrossrefGoogle Scholar

  • 31.

    Carrott, M., Bell, K., Brown, J., Geist, A., Gregson, C., Hérès, X., Maher, C., Malmbeck, R., Mason, C., Modolo, G., Müllich, U., Sarsfield, M., Wilden, A., Taylor, R.: Development of a new flowsheet for co-separating the transuranic actinides: the “EURO-GANEX” process. Solvent Extr. Ion Exc. 32, 447 (2014).CrossrefGoogle Scholar

  • 32.

    Carrott, M., Maher, C., Mason, C., Sarsfield, M., Taylor, R.: “TRU-SANEX”: a variation on the EURO-GANEX and i-SANEX processes for heterogeneous recycling of actinides Np-Cm. Sep. Sci. Technol. 51, 2198 (2016).CrossrefGoogle Scholar

  • 33.

    Peakall, K. A., Antill, J. E.: Oxidation of uranium dioxide in air at 350–1000 °C. J. Nucl. Mater. 2, 194 (1960).Google Scholar

  • 34.

    Bisson, J., Dinh, B., Huron, P., Huel, C.: PAREX, a numerical code in the service of La Hague plant operations. Proc. Chem. 21, 117 (2016).CrossrefGoogle Scholar

  • 35.

    Miguirditchian, M., Sorel, C., Camès, B., Bisel, I., Baron, P.: Extraction of uranium(VI) by N,N’-di-(2-ethylhexyl)isobutyramide (DEHIBA): from the batch experimental data to the countercurrent process. Proc. Internat. Solvent Extr. Conf. (ISEC 2008), Moyer, B. A., Ed. Tucson, Arizona, USA, 15–19 September 2008.Google Scholar

  • 36.

    Sorel, C., Montuir, M., Balaguer, C., Baron, P., Dinh, B., Hérès, X., Pacary, V., Roussel, H.: A powerful tool to model and simulate solvent extraction operations. Proc. Internat. Solvent Extr. Conf. (ISEC 2011), Santiago, Chile, 3–7 October 2011.Google Scholar

  • 37.

    Moeyaert, P., Abiad, L., Sorel, C., Dufrêche, J. F., Ruas, A., Moisy, P., Miguirditchian, M.: Density and activity of pertechnetic acid aqueous solutions at T=298.15 K. J. Chem. Thermodyn. 91, 94 (2015).CrossrefGoogle Scholar

  • 38.

    Moeyaert, P., Dumas, T., Guillaumont, D., Kvashnina, K., Sorel, C., Miguirditchian, M., Moisy, P., Dufrêche, J.-F.: Modeling and speciation study of uranium(VI) and technetium(VII) coextraction with DEHiBA. Inorg. Chem. 55, 6511 (2016).CrossrefPubMedGoogle Scholar

  • 39.

    Drake, V. A.: Extraction chemistry of neptunium. In: W. W. Schulz, L. L. Burger, J. D. Navratil, K. P. Bender (Eds.), Science and Technology of Tributyl Phosphate (1990), CRC Press, Boca Raton, Florida.Google Scholar

  • 40.

    Moulin, J. P.: On the kinetics of redox reaction of neptunium in nitric acid – oxidation of neptunium(IV) to neptunium(V) – oxidation of neptunium(V) to neptunium(VI) by nitric acid, catalyzed by nitrous acid. CEA-R-4912, Commissariat à l’Énergie Atomique, France (1978).Google Scholar

  • 41.

    Chen, H., Taylor, R., Jobson, M., Woodhead, D., Masters, A.: Development and validation of a flowsheet simulation model for neptunium extraction in an advanced PUREX process. Solvent Extr. Ion Exc. 34, 297 (2016).CrossrefGoogle Scholar

  • 42.

    Chen, H., Taylor, R. J., Jobson, M., Woodhead, D. A., Boxall, C., Masters, A. J., Edwards, S.: Simulation of neptunium extraction in an advanced PUREX process – model improvement. Solvent Extr. Ion Exc. 35, 1 (2017).CrossrefGoogle Scholar

  • 43.

    Moeyaert, P., Miguirditchian, M., Masson, M., Dinh, B., Hérès, X., De Sio, S., Sorel, C.: Experimental and modelling study of ruthenium extraction with tri-n-butylphosphate in the PUREX process. Chem. Eng. Sci. 158, 580 (2017).CrossrefGoogle Scholar

  • 44.

    Modolo, G., Asp, H., Vijgen, H., Malmbeck, R., Magnusson, D., Sorel, C.: Demonstration of a TODGA-based continuous counter-current extraction process for the partitioning of actinides from a simulated PUREX raffinate, part II: centrifugal contactor runs. Solvent Extr. Ion Exc. 26, 62 (2008).CrossrefGoogle Scholar

  • 45.

    Magnusson, D., Christiansen, B., Glatz, J. P., Malmbeck, R., Modolo, G., Serrano-Purroy, D., Sorel, C.: Demonstration of a TODGA based extraction process for the partitioning of minor actinides from a PUREX raffinate. Part III: centrifugal contactor run using genuine fuel solution. Solvent Extr. Ion Exc. 27, 26 (2009).CrossrefGoogle Scholar

  • 46.

    Serrano-Purroy, D., Baron, P., Christiansen, B., Malmbeck, R., Sorel, C., Glatz, J. P.: Recovery of minor actinides from HLLW using the DIAMEX process. Radiochim. Acta 93, 351 (2005).Google Scholar

  • 47.

    Geist, A., Gompper, K.: Miniature DIAMEX processes in a hollow fibre module micro-plant: process development and optimisation. Radiochim. Acta 96, 211 (2008).Google Scholar

  • 48.

    Malmbeck, R., Magnusson, D., Geist, A.: Modified diglycolamides for grouped actinide separation. J. Radioanal. Nucl. Chem. 314, 2531 (2017).CrossrefGoogle Scholar

  • 49.

    Madic, C., Hudson, M. J.: High-level liquid waste partitioning by means of completely incinerable extractants. EUR 18038, European Commission, Luxembourg (1998).Google Scholar

  • 50.

    Macerata, E., Mossini, E., Scaravaggi, S., Mariani, M., Mele, A., Panzeri, W., Boubals, N., Berthon, L., Charbonnel, M.-C., Sansone, F., Arduini, A., Casnati, A.: Hydrophilic clicked 2,6-bis-triazolyl-pyridines endowed with high actinide selectivity and radiochemical stability: toward a closed nuclear fuel cycle. J. Amer. Chem. Soc. 138, 7232 (2016).CrossrefGoogle Scholar

  • 51.

    Wagner, C., Mossini, E., Macerata, E., Mariani, M., Arduini, A., Casnati, A., Geist, A., Panak, P. J.: Time-resolved laser fluorescence spectroscopy study of the coordination chemistry of a hydrophilic CHON [1,2,3-triazol-4-yl]pyridine ligand with Cm(III) and Eu(III). Inorg. Chem. 56, 2135 (2017).CrossrefGoogle Scholar

  • 52.

    Traister, G. L., Schilt, A. A.: Water-soluble sulfonated chromogenic reagents of the ferroin type and determination of iron and copper in water, blood serum, and beer with the tetraammonium salt of 2,4-bis(5,6-diphenyl-1,2,4-triazin-3-yl)pyridinetetrasulfonic acid. Anal. Chem. 48, 1216 (1976).PubMedCrossrefGoogle Scholar

  • 53.

    Magnusson, D., Christiansen, B., Foreman, M. R. S., Geist, A., Glatz, J. P., Malmbeck, R., Modolo, G., Serrano-Purroy, D., Sorel, C.: Demonstration of a SANEX process in centrifugal contactors using the CyMe4-BTBP molecule on a genuine fuel solution. Solvent Extr. Ion Exc. 27, 97 (2009).CrossrefGoogle Scholar

About the article

Received: 2018-12-05

Accepted: 2019-04-25

Published Online: 2019-05-27

Published in Print: 2019-09-25


Citation Information: Radiochimica Acta, Volume 107, Issue 9-11, Pages 917–929, ISSN (Online) 2193-3405, ISSN (Print) 0033-8230, DOI: https://doi.org/10.1515/ract-2018-3089.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
P. Baron, S.M. Cornet, E.D. Collins, G. DeAngelis, G. Del Cul, Yu. Fedorov, J.P. Glatz, V. Ignatiev, T. Inoue, A. Khaperskaya, I.T. Kim, M. Kormilitsyn, T. Koyama, J.D. Law, H.S. Lee, K. Minato, Y. Morita, J. Uhlíř, D. Warin, and R.J. Taylor
Progress in Nuclear Energy, 2019, Volume 117, Page 103091
[2]
Thomas Dirks, Thomas Dumas, Pier Lorenzo Solari, and Marie-Christine Charbonnel
Industrial & Engineering Chemistry Research, 2019, Volume 58, Number 32, Page 14938

Comments (0)

Please log in or register to comment.
Log in