Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Radiochimica Acta

International Journal for chemical aspects of nuclear science and technology

Editor-in-Chief: Qaim, Syed M.


IMPACT FACTOR 2018: 1.339

CiteScore 2018: 1.20

SCImago Journal Rank (SJR) 2018: 0.333
Source Normalized Impact per Paper (SNIP) 2018: 0.720

Online
ISSN
2193-3405
See all formats and pricing
More options …
Volume 107, Issue 9-11

Issues

Relativity in the electronic structure of the heaviest elements and its influence on periodicities in properties

Valeria Pershina
Published Online: 2019-07-08 | DOI: https://doi.org/10.1515/ract-2018-3098

Abstract

Theoretical chemical studies demonstrated crucial importance of relativistic effects in the physics and chemistry of superheavy elements (SHEs). Performed, with many of them, in a close link to the experimental research, those investigations have shown that relativistic effects determine periodicities in physical and chemical properties of the elements in the chemical groups and rows of the Periodic Table beyond the 6th one. They could, however, also lead to some deviations from the established trends, so that the predictive power of the Periodic Table in this area may be lost. Results of those studies are overviewed here, with comparison to the recent experimental investigations.

Keywords: Heaviest elements; electronic structure; relativistic effects

References

  • 1.

    Mendellev, D. I.: Über die Beziehungen der Eigenschaften zu den Atomgewichten der Elemente. Z. Chem. 12, 405 (1869).Google Scholar

  • 2.

    Meyer, L.: Liebigs Ann. Chem. Suppl. 7, 354 (1870).Google Scholar

  • 3.

    Bohr, N.: Über die Anwendung der Quantentheorie auf den Atombau: I. Die Grundpostulate der Quantentheorie. Z. f. Physik: 13, 117 (1923).CrossrefGoogle Scholar

  • 4.

    Pauli, W.: Über den Einfluss der Geschwindigkeitsabhängigkeit der Elektronmasse auf den Zeemaneffiekt, Z. f. Physik: 31, 373 (1925).CrossrefGoogle Scholar

  • 5.

    Schrödinger, E.: Quantisierung als Eigenwertproblem. Ann. der Physik. 79(384), 361, 489 (1926).Google Scholar

  • 6.

    Madelung, E.: Mathematische Hilfsmittel des Physikers. Springer, Berlin (1936).Google Scholar

  • 7.

    Dirac, P. A. M.: The quantum theory of the electron. In: Proceedings of the Royal Society of London. Series A. 117(778), 610 (1928).CrossrefGoogle Scholar

  • 8.

    Swirles, B.: The relativistic self-consistent-field. Proc. Roy. Soc. London A 152, 625 (1935).CrossrefGoogle Scholar

  • 9.

    Grant, I. P.: Relativistic self-consistent fields. Proc. Roy. Soc. London 262, 555 (1961).CrossrefGoogle Scholar

  • 10.

    Grant, I. P.: Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation, Springer (2007).Google Scholar

  • 11.

    Waber, J. T., Cromer, D. T., Liberman, D.: SCF Dirac-slater calculations of the translawrencium elements. J. Chem. Phys. 51, 664 (1969).CrossrefGoogle Scholar

  • 12.

    Fricke, B., Greiner, W., Waber, J. T.: The continuation of the periodic table up to Z=172. The chemistry of superheavy elements. Theor. Chim. Acta 21, 235 (1971).CrossrefGoogle Scholar

  • 13.

    Desclaux, J. P.: Relativistic Dirac-Fock expectation values for atoms with Z=1 to Z=120. At. Data Nucl. Data Tables 12, 311 (1973).CrossrefGoogle Scholar

  • 14.

    Fricke, B.: Superheavy elements. A prediction of their chemical and physical properties. Struct. Bond. 21, 89 (1975).CrossrefGoogle Scholar

  • 15.

    Seaborg, G. T.: The chemical and radioactive properties of the heavy elements. Chem. Eng. News 23, 2190 (1945).CrossrefGoogle Scholar

  • 16.

    Seaborg, G. T.: Elements beyond 100, present status and future prospects. Ann. Rev. Nucl. Sci. 18, 53 (1968).CrossrefGoogle Scholar

  • 17.

    Goldanskii, V. I., Polikanov, S. M.: The Transuranium Elements. Springer (1973).Google Scholar

  • 18.

    Keller, Jr., O. L., Seaborg, G. T.: Chemistry of the transactinide elements. Ann. Rev. Nucl. Sci. 27, 139 (1977).CrossrefGoogle Scholar

  • 19.

    Seaborg, G. T., Keller, O.L., Jr: Future elements. In: Katz, J. J. Seaborg, G. T., Morss (Eds.), The Chemistry of the Actinide Elements, 2nd Ed., Vol. 2, Chapman and Hall, London (1986), p. 1629.Google Scholar

  • 20.

    Seaborg, G. T.: Evolution of the modern periodic table. J. Chem. Soc. Dalton Trans. 3899 (1996).Google Scholar

  • 21.

    Hoffman, D. C., Lee D. M. and Pershina, V.: Transactinide elements and future elements. In: L. R. Morss, N. M. Edelstein, J. Fuger (Eds.), The Chemistry of the Actinide and Transactinide Elements, 3rd Ed., Springer, Dordrecht (2006), p. 1652.Google Scholar

  • 22.

    Schädel, M., Shaughnessy, D. (Eds.): The Chemistry of the Superheavy Elements. Springer (2014).Google Scholar

  • 23.

    Schädel, M.: Chemistry of superheavy elements. Radiochim. Acta 100, 579 (2012).CrossrefGoogle Scholar

  • 24.

    Kratz, J. V.: The impact of the properties of the heaviest elements on the chemical and physical sciences. Radiochim. Acta 100, 569 (2012).CrossrefGoogle Scholar

  • 25.

    Schädel, M.: Chemistry of the superheavy elements. Phil. Trans. R. Soc. A 373, 20140191 (2015).CrossrefGoogle Scholar

  • 26.

    Türler A., Pershina, V.: Advances in the production and chemistry of the heaviest elements. Chem. Rev. 113, 1237 (2013).PubMedCrossrefGoogle Scholar

  • 27.

    Pitzer, K. S.: Relativistic effects on chemical properties. Acc. Chem. Res. 12, 271 (1979).CrossrefGoogle Scholar

  • 28.

    Pyykkö, P., Desclaux, J.-P.: Relativity and the periodic system of elements. Acc. Chem. Res. 12, 276 (1979).CrossrefGoogle Scholar

  • 29.

    Pyykkö, P.: Relativistic effects in structural chemistry. Chem. Rev. 88, 563 (1988).CrossrefGoogle Scholar

  • 30.

    Hess, B. A. (Ed.): Relativistic Effects in Heavy-Element Chemistry and Physics. John Wiley & Sons, Ltd, West Sussex (2003).Google Scholar

  • 31.

    Kaldor, U., Wilson, S. (Eds.): Theoretical Chemistry and Physics of Heavy and Superheavy Elements. Kluwer, Dordrecht (2003).Google Scholar

  • 32.

    Schwerdtfeger, P. (Ed.): Relativistic Electronic Structure Theory, Parts I and II. Elsevier, Amsterdam (2002).Google Scholar

  • 33.

    Pyykkö, P.: Relativistic effects in chemistry: more common that you thought. Annu. Rev. Phys. Chem. 63, 3 (2012).Google Scholar

  • 34.

    Pyykkö, P.: The physics behind chemistry and the periodic table. Chem. Rev. 112, 371 (2012).CrossrefPubMedGoogle Scholar

  • 35.

    Pershina, V.: Electronic structure and properties of the transactinides and their compounds. Chem. Rev. 96, 1977 (1996).PubMedCrossrefGoogle Scholar

  • 36.

    Schwerdtfeger, P., Seth, M.: Relativistic effects on the superheavy elements. In: Encyclopedia on Calculational Chemistry, Vol. 4, Wiley, New York (1998), p. 2480.Google Scholar

  • 37.

    Pershina, V.: Electronic structure and chemistry of the heaviest elements. In: M. Barysz, Y. Ishikawa (Eds.), Relativistic Methods for Chemists, Springer, Dordrecht (2010), p. 279.Google Scholar

  • 38.

    Pershina, V.: Relativistic electronic structure studies on the heaviest elements. Radiochim. Acta 99, 459 (2011).CrossrefGoogle Scholar

  • 39.

    Pershina, V.: Theoretical chemistry of the heaviest elements. In: M. Schädel, D. Shaughnessy (Eds.), The Chemistry of the Superheavy Elements, Chapter 3, Springer, p. 135 (2014).Google Scholar

  • 40.

    Pershina, V.: Electronic structure and properties of superheavy elements. Nucl. Phys. A 944, 578 (2015).CrossrefGoogle Scholar

  • 41.

    Pershina, V.: Theoretical chemistry of superheavy elements: support for experiment. EPJ Web of Conferences (Nobel Symposium NS160 – Chemistry and Physics of Heavy and Superheavy Elements) 131, 07002 (2016).Google Scholar

  • 42.

    Pershina, V.: Relativistic quantum chemistry for chemical identification of the superheavy elements. In: W. Liu (Ed.), Handbook of Relativistic Quantum Chemistry, Springer (2017), p. 857.Google Scholar

  • 43.

    Pyykkö, P., Tokman, M., Labzowsky, L.N.: Estimated valence-level Lamb shifts for group 1 and group 11 metal atoms. Phys. Rev. A 57, R689 (1998).CrossrefGoogle Scholar

  • 44.

    Labzowsky, L. N., Goidenko, I.: QED theory of atoms. In: P. Schwerdtfeger (Ed.), Relativistic Electronic Structure Theory, Parts I, Elsevier, Amsterdam (2002), p. 401.Google Scholar

  • 45.

    Barysz, M., Ishikawa, Y. (Eds.): Relativistic Methods for Chemists. Springer, Dordrecht (2010).Google Scholar

  • 46.

    Liu, W. (Ed.): Handbook of Relativistic Quantum Chemistry. Springer (2017).Google Scholar

  • 47.

    Eliav, E., Kaldor, U.: Four-component electronic structure methods. In: M. Barysz, Y. Ishikawa (Eds.), Relativistic Methods for Chemists, Springer, Dordrecht (2010), p. 279.Google Scholar

  • 48.

    Eliav, E., Fritzsche, S., Kaldor, U.: Electronic structure theory of the superheavy elements. Nucl. Phys. A 944, 518 (2015).CrossrefGoogle Scholar

  • 49.

    Visscher, L.: Post Dirac-Fock –methods – electron correlation. In: P. Schwerdtfeger (Ed.), Relativistic Electronic Structure Theory, Part I, Elsevier, Amsterdam (2002), p. 291.Google Scholar

  • 50.

    Saue, T.: Post Dirac-Fock-methods – properties. In: P. Schwerdtfeger (Ed.), Relativistic Electronic Structure Theory, Parts I, Elsevier, Amsterdam (2002), p. 332.Google Scholar

  • 51.

    Thierfelder, C., Schwerdtfeger, P.: Quantum electrodynamic corrections for the valence shell in heavy many-electron atoms Phys. Rev. A 82, 062503 (2010).CrossrefGoogle Scholar

  • 52.

    Schwerdtfeger, P., Pasteka, L. F., Punnett, A., Bowman, P. O.: Relativistic and quantum electrodynamic effects in superheavy elements. Nucl. Phys. A 944, 551 (2015).CrossrefGoogle Scholar

  • 53.

    Barysz, M.: Two-component relativistic theories. In: M. Barysz, Y. Ishikawa (Eds.), Relativistic Methods for Chemists, Springer, Dordrecht (2010), p. 165.Google Scholar

  • 54.

    DIRAC package. Dirac, a relativistic ab initio electronic structure program, Release DIRAC08.0 (2008), written by Jensen, H. J. Aa., Saue, T. and Visscher, L. (http://dirac.chem.sdu.dk).

  • 55.

    Dolg, M.: Relativistic effective core potentials. In: P. Schwerdtfeger (Ed.), Relativistic Electronic Structure Theory, Parts I, Elsevier, Amsterdam (2002), p. 793.Google Scholar

  • 56.

    Cao, X., Dolg, M.: Relativistic pseudopotentials. In: M. Barysz, Y. Ishikawa (Eds.), Relativistic Methods for Chemists, Springer, Dordrecht (2010), p. 215.Google Scholar

  • 57.

    Seijo, L., Barandiaran, Z.: Relativistic ab initio model potentials calculations for molecules and embedded clusters. In: P. Schwerdtfeger (Ed.), Relativistic Electronic Structure Theory, Part I, Elsevier, Amsterdam (2002), p. 417.Google Scholar

  • 58.

    Lee, Y. L., Ermler, W. C., Pitzer, R. M.: Ab initio effective core potentials including rel-ativistic effects. I. Formalism and applications to the Xe and Au atoms. J. Chem. Phys. 67, 5861 (1977).CrossrefGoogle Scholar

  • 59.

    Kohn, W., Becke, A. D., Parr, R. G.: Density functional theory of electronic structure. J. Phys. Chem. 100, 12974 (1996).CrossrefGoogle Scholar

  • 60.

    Engel, E.: Relativistic density functional theory: foundations and basic formalizm. In: P. Schwerdtfeger (Ed.), Relativistic Electronic Structure Theory, Parts I, Elsevier, Amsterdam (2002), p. 523.Google Scholar

  • 61.

    Anton, J., Fricke, B., Engel, E.: Noncollinear and collinear relativistic density-functional program for electric and magnetic properties of molecules. Phys. Rev. A 69, 012505 (2004).CrossrefGoogle Scholar

  • 62.

    ADF, Theoretical Chemistry, Vrije Universiteit Amsterdam, The Netherlands (www.scm.com).

  • 63.

    Zvara, I. The Inorganic Radiochemistry of Heavy Elements. Springer, Dordrecht (2008).Google Scholar

  • 64.

    Gäggeler, H. W., Türler, A.: Gas-phase chemistry. In: M. Schädel, D. Shaughnessy (Eds.), The Chemistry of the Superheavy Elements, Springer, (2014), p. 237.Google Scholar

  • 65.

    Türler, A., Gregorich, K.: Experimental techniques. In: M. Schädel (Ed.), The Chemistry of Superheavy Elements, Kluwer Academic Publishers, Dordrecht (2003), p. 117.Google Scholar

  • 66.

    Türler, A., Eichler, R., Yakushev, A.: Chemical studies of elements with Z ≥ 104 in gas phase. Nucl. Phys. A 944, 640 (2015).CrossrefGoogle Scholar

  • 67.

    Türler, A.: Advances in chemical investigations of the heaviest elements. EPJ Web on Conferences, 131, 07001 (2016).CrossrefGoogle Scholar

  • 68.

    Kratz, J. V., Nagame, Y.: Liquid-phase chemistry of superheavy elements. In: M. Schädel, D. Shaughnessy (Eds.), The Chemistry of the Superheavy Elements, Springer, (2014), p. 309.Google Scholar

  • 69.

    Nagame, Y., Kratz, J. V., Schädel, M.: Chemical studies of elements with Z ≥ 104 in liquid phase. Nucl. Phys. A 944, 614 (2015).CrossrefGoogle Scholar

  • 70.

    Nagame, Y.: Chemical properties of rutherfordium (Rf) anddubnium (Db) in the aqueous phase. EPJ Web of Conferences, 131, 07007 (2016).CrossrefGoogle Scholar

  • 71.

    Desclaux, J. P., Fricke, B.: Relativistic prediction of the ground state of atomic lawrencium. J. Phys. 41, 943 (1980).CrossrefGoogle Scholar

  • 72.

    Eliav, E., Kaldor, U., Ishikawa, Y.: Transition energies of ytterbium, lutetium, lawrencium by relativistic coupled-cluster method. Phys. Rev. A 52, 291 (1995).CrossrefPubMedGoogle Scholar

  • 73.

    Glebov, V. A., Kasztura, L., Nefedov, V. S., Zhuikov, B. L.: Is element 104 (kurchatovium) a p-element? II. Relativistic calculations of the electronic atomic structure. Radiochim. Acta 46, 117 (1989).Google Scholar

  • 74.

    Johnson, E., Fricke, B., Keller, Jr., O. L., Nestor, Jr., C. W., Ticker, T. C.: Ionization potentials and radii of atoms and ions of element 104 (unnilquadium) and of hafnium (2+) derived from multiconfiguration Dirac-Fock calculations. J. Chem. Phys. 93, 8041 (1990).CrossrefGoogle Scholar

  • 75.

    Eliav, E., Kaldor, U., Ishikawa, Y.: Ground state electron configuration of Rutherfordium: role of dynamic correlation. Phys. Rev. Lett. 74, 1079 (1995).PubMedCrossrefGoogle Scholar

  • 76.

    Jerabek, P., Schuetrumpf, B., Schwerdtfeger, P., Nazarewicz, W.: Electron and nucleon localization functions of oganesson: approaching the thomas-fermi limit. Phys. Rev. Lett. 120, 053001 (2018).CrossrefPubMedGoogle Scholar

  • 77.

    Nefedov, V. I., Trzhaskovskaya, M. B., Yarzhemcky, V. G.: Electronic configurations and the Periodic Table for superheavy elements. Doklady Phys. Chem. 408, 149 (2006).CrossrefGoogle Scholar

  • 78.

    Umemoto, K., Saito, S.: Electronic Configuration of superheavy elements. J. Phys. Soc. Jap. 65, 3175 (1996).CrossrefGoogle Scholar

  • 79.

    Indelicato, P., Bieron, J., Jönnson, P.: Are MCDF calculations 101% correct in the superheavy element range? Theor. Chem. Acc. 129, 495 (2011).CrossrefGoogle Scholar

  • 80.

    Pyykkö, P.: A suggested periodic table up to Z≤172, based on Dirac-Fock calculations on atoms and ions. Phys. Chem. Chem. Phys. 13, 161 (2011).CrossrefGoogle Scholar

  • 81.

    Reinhardt, J., Greiner, W.: Quantum electrodynamics of strong fields. Rep. Prog. Phys. 40, 219 (1977).CrossrefGoogle Scholar

  • 82.

    Greiner, W., Zagrebaev, V. I.: The extension of the Periodic System: superheavy – superneutronic. Russ. Chem. Rev. 78, 1089 (2009).CrossrefGoogle Scholar

  • 83.

    Johnson, E., Pershina, V., Fricke, B.: Ionization potentials of seaborgium. J. Phys. Chem. 103, 8458 (1999).CrossrefGoogle Scholar

  • 84.

    Johnson, E., Fricke, B., Jacob, T., Dong, C. Z., Fritzsche, S., Pershina, V.: Ionization potentials and radii of neutral and ionized species of elements 107 (bohrium) and 108 (hassium) from extended multiconfiguration Dirac-Fock calculations. J. Phys. Chem. 116, 1862 (2002).CrossrefGoogle Scholar

  • 85.

    Eliav, E., Kaldor, U., Ishikawa, Y.: Transition energies in mercury and eka-mercury (elemenr 112) by the relativistic coupled-cluster method. Phys. Rev. A 52, 2765 (1995).CrossrefGoogle Scholar

  • 86.

    Eliav, E., Kaldor, U., Ishikawa, Y., Pyykkö, P.:. Element 118: the first rare gas with an electron affinity. Phys. Rev. Lett. 77, 5350 (1996).CrossrefPubMedGoogle Scholar

  • 87.

    Goidenko, I., Labsowsky, L., Eliav, E., Kaldor, U., Pyykkö, P.: QED corrections to the binding energy of the eka-radon (Z=118) negative ion. Phys. Rev. A 67, 020102(R) (2003).CrossrefGoogle Scholar

  • 88.

    Pyykkö, P., Riedel, S., Patzsche, M.: Triple-bond covalent radii. Chem. Eur. J. 11, 3511 (2005).CrossrefGoogle Scholar

  • 89.

    Pyykkö, P., Atsumi, M.: Molecular single-bond covalent radii for elements 1–118. Chem. Eur. J. 15, 186 (2009).CrossrefGoogle Scholar

  • 90.

    Pershina, V., Borschevsky, A., Eliav, E., Kaldor, U.: Prediction of the adsorption behavior of elements 112 and 114 on inert surfaces from ab initio Dirac-Coulomb atomic calculations. J. Chem. Phys. 128, 024707 (2008).CrossrefPubMedGoogle Scholar

  • 91.

    Thierfelder, C., Assadollahzadeh, B., Schwerdtfeger, P., Schäfer, S., Schäfer, R.: Relativistic and electron correlation effects in static dipole polarizabilities for the group-14 elements from carbon to element Z=114: Theory and experiment. Phys. Rev. A 78, 052506 (2008).CrossrefGoogle Scholar

  • 92.

    Schwerdtfeger, P.: Atomic static dipole polarizabilities. In: G. Maroulis (Ed.), Computational Aspects of Electric Polarizability Calculations: Atoms, Molecules and Clusters, IOS Press, Amsterdam (2006), p. 1. Updated static dipole polarizabilities are available as pdf file from the CTCP website at Massey University: http://ctcp.massey.ac.nz/dipole-polarizabilities.

  • 93.

    Borschevsky, A., Pershina, V., Eliav, E., Kaldor, U.: Electron affinity of element 114, with comparison to Sn and Pb. Chem. Phys. Lett. 480, 49 (2009).CrossrefGoogle Scholar

  • 94.

    Borschevsky, A., Pershina, V., Eliav, E., Kaldor, U.: Ab initio studies of atomic properties and experimental behaviour of element 119 and its lighter homologs. J Chem. Phys. 138, 124302 (2013).PubMedCrossrefGoogle Scholar

  • 95.

    Borschevsky, A., Pershina, V., Eliav, E., Kaldor, U.: Ab initio predictions of Atomic Properties of Element 120 and its lighter group-2 Homologs. Phys. Rev. A, 87, 022502 (2013).CrossrefGoogle Scholar

  • 96.

    Lim, I. S., Schwerdtfeger, P., Metz, B., Stoll, H.: Relativistic coupled-cluster static dipole polarizabilities of the alkali metals from Li to element 119. J. Chem. Phys. 122, 194103 (2005).Google Scholar

  • 97.

    Anton, J., Hirata, M., Fricke, B., Pershina, V.: Improved density functional calculations including magnetic effects for RfCl4 and its homologs. Chem. Phys. Lett. 380, 95 (2003).CrossrefGoogle Scholar

  • 98.

    Lee, Y. S.: Two-component relativistic effective core potential calculations for molecules. In: P. Schwerdtfeger (Ed.), Relativistic Electronic Structure Theory, Part II, Elsevier, Amsterdam (2002), p. 352.Google Scholar

  • 99.

    Pershina, V., Borschevsky, A., Ilias, M.: Theoretical predictions of properties and volatility of chlorides and oxychlorides of group-4 elements. I. Electronic structure and properties of MCl4 and MOCl2 (M=Ti, Zr, Hf, and Rf). J. Chem. Phys. 141, 064314 (2014).PubMedCrossrefGoogle Scholar

  • 100.

    Pershina V, Borschevsky A, Ilias M. and Türler, A.: Theoretical predictions of properties and volatility of chlorides and oxychlorides of group-4 elements. II. Adsorption of tetrachlorides and oxydichlorides of Zr, Hf, and Rf on neutral and modified surfaces. J. Chem. Phys. 141, 064315 (2014).PubMedCrossrefGoogle Scholar

  • 101.

    Pershina V., Anton, J.: Theoretical predictions of properties and gas-phase chromatography behaviour of bromides of group-5 elements Nb, Ta and element 105, Db. J. Chem. Phys. 136, 034308 (2012).PubMedCrossrefGoogle Scholar

  • 102.

    Schädel, M., Brüchle, W., Dressler, R., Eichler, B., Gäggeler, H. W., Günther, R., Gregorich, K. E., Hoffman, D. C., Hübener, S., Jost, D. T., Kratz, J. V., Paulus, W., Schumann, D., Timokhin, S., Trautmann, N., Türler, A., Wirth, G., Yakushev, A. B.: Chemical properties of element 106 (seaborgium). Nature (Letters) 388, 55 (1997).Google Scholar

  • 103.

    Türler, A., Brüchle, W., Dressler, R., Eichler, B., Eichler, R., Gäggeler, H. W., Gärtner, M., Glatz, J.-P., Gregorich, K. E., Hübener, S., Jost, D., Lebedev, T. Ya., Pershina, V., Schädel, M., Taut, S., Timokhin, N., Trautmann, N., Vahle, A., Yakushev, A. B.: First measurements of a thermochemical property of a seaborgium compound. Angew. Chem. Int. Ed. 38, 2212 (1999).CrossrefGoogle Scholar

  • 104.

    Eichler, R., Brüchle, W., Dressler, R., Düllmann, Ch. E., Ei-chler, B., Gäggeler, H. W., Gregorich, K. E., Hoffman, D. C., Hübener, S., Jost, D. T., Kirbach, U. W., Laue, C. A., La-vanchy, V. M., Nitsche, H., Patin, J. B., Piguet, D., Schädel, M., Shaughnessy, D. A., Strellis, D. A., Taut, S., Tobler, L., Tsyganov, Y. S., Türler, A., Vahle, A., Wilk, P. A., Yakushev, A. B.: Chemical characterization of bohrium (element 107). Nature 407, 63 (2000).CrossrefPubMedGoogle Scholar

  • 105.

    Pershina, V., Bastug, T., Fricke, B.: Relativistic effects on the electronic structure and volatility of group-8 tetroxides MO4, where M=Ru, Os, and element 108, Hs. J. Chem. Phys., 122, 124301 (2005).PubMedCrossrefGoogle Scholar

  • 106.

    Pershina, V.: Predictions of adsorption behaviour of the heaviest elements in a comparative study from the electronic structure calculations. Radiochim. Acta 93, 125 (2005).Google Scholar

  • 107.

    Düllmann, Ch. E., Brüchle, W., Dressler, R., Eberhardt, K., Eichler, B., Eichler, R., Gäggeler, H. W., Ginter, T. N., Glaus, F., Gregorich, K., Hoffman, D. C., Jäger, E., Jost, D. T., Kirbach, U. W., Lee, D. E., Nitsche, H., Patin, J. B., Pershina, V., Piguet, D., Qin, Z., Schädel, M., Schausten, B., Schimpf, E., Schött, H.J., Soverna, S., Sudowe, R., Thörle, P., Timokhin, S. N., Trautmann, N., Türler, A., Vahle, A., Wirth, G., Yakushev, A. B., Zielinski, P. M.: Chemical investigation of hassium (element 108). Nature 418, 859 (2002).PubMedCrossrefGoogle Scholar

  • 108.

    Pershina, V., Anton, J., Jacob, T.: Fully-relativistic DFT calculations of the electronic structures of MO4 (M=Ru, Os, and element 108, Hs) and prediction of physisorption. Phys. Rev. A 78, 032518 (2008).CrossrefGoogle Scholar

  • 109.

    von Zweidorf, A., Angert, R., Brüchle, W., Bürger, S., Eberhartdt, K., Eichler, R., Hummrich, H., Jäger, E., Kling, H.-O., Kratz, J. V., Kuczewski, B., Langrock, G., Mendel, M., Rieth, U., Schädel, M., Schausten, B., Schimpf, E., Thörle, P., Trautmann, N., Tsukada, K., Wiehl, N., Wirth, G.: Evidence for the formation of sodium hassate(VIII). Radiochim. Acta 92, 855 (2004).Google Scholar

  • 110.

    Pershina, V.: Theoretical investigations of the reactivity of MO4 and the electronic structure of Na2[MO4(OH)2], where M=Ru, Os, and Hs (element 108). Radiochim. Acta 93, 373 (2005).Google Scholar

  • 111.

    Even, J., Yakushev, A., Düllmann, Ch. E., Haba, H., Asai, M., Sato, T. K., Brand, H., Di Nitto, A., Eichler, R., Fan, F. L., Hartmann, W., Huang, M., Jäger, E., Kaji, D., Kanaya, J., Kaneya, Y., Khuyagbaatar, J., Kindler, B., Kratz, J. V., Krier, J., Kudou, Y., Kurz, N., Lommel, B., Miyashita, S., Moritomo, K., Morita, K., Murakami, M., Nagame, Y., Nitsche, H., Ooe, K., Qin, Z., Schädel, M., Steiner, J., Sumita, T., Takeyama, M., Tanaka, K., Toyoshima, A., Tsukada, K., Türler, A., Usoltsev, I., Wakabayashi, Y., Wang, Y., Wiehl, N., Yamaki, S.: Synthesis and detection of a seborgium carbonyl complex. Science 345, 1491 (2014).CrossrefPubMedGoogle Scholar

  • 112.

    Pershina, V., Anton, J.: Theoretical predictions of properties and gas-phase chromatography behaviour of carbonyl complexes of group-6 elements Cr, Mo, W, and element 106, Sg. J. Chem. Phys. 138, 174301 (2013).PubMedCrossrefGoogle Scholar

  • 113.

    Usoltsev, I., Eichler, R., Wang, Y., Even, J., Yakushev, A., Haba, H., Asai, M., Brand, H., Di Nitto, A., Dullmann, C. E., Fangli, F., Hartmann, W., Huang, M., Jager, E., Kaji, D., Kanaya, J., Kaneya, Y., Khuyagbaatar, J., Kindler, B., Kratz, J. V., Krier, J., Kudou, Y., Kurz, N., Lommel, B., Miyashita, S., Morimoto, K., Morita, K., Murakami, M., Nagame, Y., Nitsche, H., Ooe, K., Sato, T. K., Schadel, M., Steiner, J., Steinegger, P., Sumita, T., Takeyama, M., Tanaka, K., Toyoshima, A., Tsukada, K., Turler, A., Wakabayashi, Y., Wiehl, N., Yamaki, S., Qin, Z.: Decomposition studies of group 6 hexacarbonyl complexes. Part 1: Production and decomposition of Mo(CO)6 and W(CO)6. Radiochim. Acta 104, 141 (2016).Google Scholar

  • 114.

    Usoltsev, I., Eichler, R., Türler, A.: Decomposition studies of group 6 hexacarbonyl complexes. Part 2: Modelling of the decomposition process. Radiochim. Acta 104, 531 (2016).Google Scholar

  • 115.

    Nash, C. S., Bursten, B. E.: Prediction of the bond lengths, vibrational frequencies, and bond dissociation energy of octahedral seaborgium hexacarbonyl, Sg(CO)6. J. Am. Chem. Soc. 121, 10830 (1999).CrossrefGoogle Scholar

  • 116.

    Iliaš, M., Pershina, V.: Hexacarbonyls of Mo, W, and Sg: metal−CO bonding revisited. Inorg. Chem. 56, 1638 (2017).PubMedCrossrefGoogle Scholar

  • 117.

    Frenking, G., Frohlich, N.: The nature of the bonding in transition-metal compounds. Chem. Rev. 100, 717 (2000).CrossrefPubMedGoogle Scholar

  • 118.

    Pershina, V., Iliaš, M.: Carbonyl compounds of Tc, Re and Bh: electronic structure, bonding and volatility. J. Chem. Phys. 149, 204306 (2018).CrossrefPubMedGoogle Scholar

  • 119.

    Pershina, V., Iliaš, M.: Penta- and tetracarbonyls of Ru, Os, and Hs: electronic structure, bonding, and volatility. J. Chem. Phys. 146, 184306 (2017).CrossrefGoogle Scholar

  • 120.

    Wang, Y., Qin, Z., Fan, F. L., Fan, F. Y., Cao, S.W., Wu, X. L., Zhang, X., Bai, J., Yin, X. J., Tian, L. L., Zhao, L., Tian, Z., Li, W., Tan, C. M., Guo, J. S., Gäggeler, H. W.: Gas-phase chemistry of Mo, Ru, W, and Os metal carbonyl complexes. Radiochim. Acta 102, 69 (2014).Google Scholar

  • 121.

    Wang, Y., Qin, Z., Fan, F.-L., Haba, H., Komori, Y., Cao, S.-W., Wu X.-L., Tan, C.-M.: Gas-phase chemistry of technetium carbonyl complexes. Phys. Chem. Chem. Phys. 17, 13228 (2015).PubMedCrossrefGoogle Scholar

  • 122.

    Even, J., Yakushev, A., Düllmann, Ch. E., Dvorak, J., Eichler, R., Gothe, O., Hartmann, W., Hild, D., Jäger, E., Khuyagbaatar, J., Kindler, B., Kratz, J. V., Krier, J., Lommel, B., Niewisch, L., Nitsche, H., Pysmenetska, I., Schädel, M., Schausten, B., Türler, A., Wiehl, N., Wittwer, D.: In-situ formation, thermal decomposition, and adsorption studies of transition metal carbonyl complexes with short-lived radioisotopes. Radiochim. Acta 102, 1093 (2014).Google Scholar

  • 123.

    Seth, M., Schwerdtfeger, P., Dolg, M., Faegri, K., Hess, B. A., Kaldor, U.: Large relativistic effects in molecular properties of the hydride of superheavy element 111. Chem. Phys. Lett. 250, 461 (1996).CrossrefGoogle Scholar

  • 124.

    Pitzer, K. S.: Are elements 112, 114, and 118 relatively inert gases? J. Chem. Phys. 63, 1032 (1975).CrossrefGoogle Scholar

  • 125.

    Eichler, B.: Das Flüchtigkeitsverhalten von Transactiniden im Bereich um Z=114 (Voraussage). Kernenergie 10, 307 (1976).Google Scholar

  • 126.

    Anton, J., Fricke, B., Schwerdtfeger, P.: Non-collinear and collinear four-component relativistic molecular density functional calculations. Chem. Phys. 311, 97 (2005).CrossrefGoogle Scholar

  • 127.

    Borschevsky, A., Pershina, V., Eliav, E., Kaldor, U.: Relativistic couple cluster study of diatomic compounds of Hg, Cn, and Fl. J. Chem. Phys. 141, 0843018 (2014).Google Scholar

  • 128.

    Gaston, N., Opahle, I., Gäggeler, H. W., Schwerdtfeger, P.: Is Eka-Mercury (element 112) a group 12 metal? Angew. Chem. Int. Ed. 46, 1663 (2007).CrossrefGoogle Scholar

  • 129.

    Gaston, N., Paulus, B., Rosciszewski, K., Schwerdtfeger, P., Stoll, H.: Lattice structure of mercury: influence of electronic correlation. Phys. Rev. B 74, 094102 (2006).CrossrefGoogle Scholar

  • 130.

    Zaoui, A., Fernat, M.: Unusual competition of structural phases and semi-conducting behaviour of bands in superheavy Copernicium. Sol. St. Comm. 152, 530 (2012).CrossrefGoogle Scholar

  • 131.

    Atta-Fynn, R., Ray, A. K. Density functional theory Studies of condensed Phases of 6d super heavy elements. Sol. St. Comm. 201, 88 (2015).CrossrefGoogle Scholar

  • 132.

    Gyanchandani, J., Sikka, S. K.: Super heavy element Copernicium: Cohesive and electronic properties revisited. Phys. Lett. A 376, 620 (2012).Google Scholar

  • 133.

    Steenbergen, K. G., Mewes, J.-M., Pašteka, L. F., Gäggeler, H. W., Kresse, G., Pahl, E., Schwerdtfeger, P.: The cohesive energy of superheavy element copernicium from accurate relativistic coupled-cluster theory. Phys. Chem. Chem. Phys. 19, 32286 (2017).CrossrefPubMedGoogle Scholar

  • 134.

    Eichler, R., Aksenov, N. V., Belozerov, A. V., Bozhikov, G. A., Chepigin, V. I., Dmitriev, S. N., Dressler, R., Gäggeler, H. W., Gorshkov, V. A., Haenssler, F., Itkis, M. G., Laube, A., Lebedev, V. Ya., Malyshev, O. N., Oganessian, Yu. Ts., Petrushkin, O. V., Piguet, D., Rasmussen, P., Shishkin, S. V., Shutov, S. V., Svirikhin, A. I., Tereshatov, E. E., Vostokin, G. K., Wegrzecki, M., Yeremin, A. V.: Chemical characterization of element 112. Nat. Lett. 447, 72 (2007).CrossrefGoogle Scholar

  • 135.

    Eichler, R., Aksenov, N. V., Belozerov, A. V., Bozhikov, G. A., Chepigin, V. I., Dmitriev, S. N., Dressler, R., Gäggeler, H. W., Gorshkov, A. V., Itkis, M. G., Haenssler, F., Laube, A., Lebedev, V. Ya., Malyshev, O. N., Oganessian, Y. Ts., Petrushkin, O. V., Piguet, D., Popeko, A. G., Rasmussen, P., Shishkin, S. V., Serov, A. A., Shutov, A. V., Svirikhin, A. I., Tereshatov, E. E., Vostokin, G. K., Wegrzecki, M., Yeremin, A. V.: Thermochemical and physical properties of element 112. Angew. Chem. Int Ed. 47, 3262 (2008).CrossrefGoogle Scholar

  • 136.

    Ionova, G. V., Pershina, V., Zuraeva, I. T., Suraeva, N. I.: Estimation of Trends in thermodynamic properties along the Transactinide Series: enthalpy of sublimation. Radiochem. 37, 282 (1995).Google Scholar

  • 137.

    Pershina, V., Bastug, T.: Relativistic effects on experimentally studied gas-phase properties of the heaviest elements. Chem. Phys. 311, 139 (2005).CrossrefGoogle Scholar

  • 138.

    Pershina, V., Anton, J., Jacob, T.: Theoretical predictions of adsorption behavior of elements 112 and 114 and their homologs Hg and Pb. J. Chem. Phys. 131, 084713 (2009).PubMedCrossrefGoogle Scholar

  • 139.

    Rykova, E. A., Zaitsevskii, A., Mosyagin, N. S.: Relativistic effective core potential calculations of Hg and eka-Hg (E112) interactions with gold: spin-orbit density functional theory modelling of Hg-Aun and E112-Aun systems. J. Chem. Phys. 125, 241102 (2006).CrossrefGoogle Scholar

  • 140.

    Rampino, S., Storchi, L., Belpassi, L.: Gold-superheavy-element interaction in diatomic and cluster adducts: a combined four-component Dirac-Kohn-Sham/charge displacement study. J. Chem. Phys. 143, 024307 (2015).CrossrefGoogle Scholar

  • 141.

    Pershina, V.: Reactivity of Superheavy Elements Cn, Nh, and Fl and Their Lighter Homologues Hg, Tl, and Pb, Respectively, with a Gold Surface from Periodic DFT Calculations. Inorg. Chem. 57, 3948 (2018).CrossrefPubMedGoogle Scholar

  • 142.

    Pershina, V.: A relativistic periodic DFT study on interaction of superheavy elements 112 (Cn) and 114 (Fl) and their homologs Hg and Pb, respectively, with a quartz surface. Phys. Chem. Chem. Phys. 18, 17750 (2016).CrossrefGoogle Scholar

  • 143.

    Choi, Y., Han, Y. K., Lee, Y. S.: The convergence of spin–orbit configuration interaction calculations for TlH and 113H. J. Chem. Phys. 115, 3448 (2001).CrossrefGoogle Scholar

  • 144.

    Pershina, V., Borschevsky, A., Anton, J., Jacob, T.: Theoretical predictions of trends in spectroscopic properties of gold containing dimers of the 6p and 7p elements and their adsorption on gold. J. Chem. Phys. 133, 104304 (2010).CrossrefGoogle Scholar

  • 145.

    Pershina, V., Borschevsky, A., Anton, J., Jacob, T.: Theoretical predictions of trends in spectroscopic properties of homonuclear dimers and volatility of the 7p elements. J. Chem. Phys. 132, 194314 (2010).CrossrefPubMedGoogle Scholar

  • 146.

    Fox-Beyer, B. S., van Wüllen, C.: Theoretical modelling of the adsorption of thallium and element 113 atoms on gold using two-component density functional methods with effective core potentials. Chem. Phys. 395, 95 (2012).CrossrefGoogle Scholar

  • 147.

    Rusakov, A. A., Demidov, Y. A., Zaitsevskii, A.: Estimating the adsorption energy of element 113 on a gold surface. Cent. Eur. J. Phys. 11, 1537 (2013).Google Scholar

  • 148.

    Pershina, V., Anton, J., Jacob, T.: Electronic structures and properties of MAu and MOH, where M=Tl and element 113. Chem. Phys. Lett. 480, 157 (2009).CrossrefGoogle Scholar

  • 149.

    Pershina, V., Iliaš, M.: Electronic structure and properties of MAu and MOH, where M=Tl and Nh: New data. Chem. Phys. Lett. 694, 107 (2018).CrossrefGoogle Scholar

  • 150.

    Pershina, V.: A theoretical study on the adsorption behavior of element 113 and its homolog Tl on a quartz surface: relativistic periodic DFT calculations. J. Phys. Chem. C 120, 20232 (2016).CrossrefGoogle Scholar

  • 151.

    Dmitriev, S. N., Aksenov, N. V., Albin, Y. V., Bozhikov, G. A., Chelnokov, M. L., Chepygin, V. I., Eichler, R., Isaev, A. V., Katrasev, D. E., Lebedev, V. Ya., Malyshev, O. N., Petrushkin, O. V., Porobanuk, L. S., Ryabinin, M. A., Sabel’nikov, A. V., Sokol, E. A., Svirikhin, A. V., Starodub, G. Ya., Usoltsev, I., Vostokin, G. K., Yeremin, A. V.: Pioneering experiments on the chemical properties of element 113. Mendellev Commun. 24, 253 (2014).CrossrefGoogle Scholar

  • 152.

    Serov, A. R., Eichler, R., Dressler, R., Piguet, D., Türler, A., Vögele, A., Wittwer, D., Gäggeler, H. W.: Adsorption interaction of carrier-free thallium species with gold and quartz surfaces. Radiochim. Acta 101, 421 (2013).CrossrefGoogle Scholar

  • 153.

    Aksenov, N. V., Steinegger, P., Abdullin, F. Sh., Albin, Y. V., Bozhikov, G. A., Chepigin, V. I., Eichler, R., Lebedev, V. Ya., Madumarov, A. Sh., Malyshev, O. N., Petrushkin, O. V., Polyakov, A. N., Popov, Y. A., Sabel’nikov, A. V., Sagaidak, R. N., Shirokovsky, I. V., Shumeiko, M. V., Starodub, G. Ya., Tsyganov, Y. S., Utyonkov, V. K., Voinov, A. A., Vostokin, G. K., Yeremin, A. V., Dmitriev, S. N.: On the volatility of nihonium (Nh, Z=113). Eur. Phys. J. A 53, 158 (5) (2017).CrossrefGoogle Scholar

  • 154.

    Faegri, K., Saue, T.: Diatomic molecules between very heavy elements of group 13 and group 17: a study of relativistic effects on bonding. J. Chem. Phys. 115, 2456 (2001).CrossrefGoogle Scholar

  • 155.

    Seth, M., Schwerdtfeger, P., Faegri, K.: The chemistry of superheavy elements. III. Theoretical studies on element 113 compounds. J. Chem. Phys. 111, 6422 (1999).CrossrefGoogle Scholar

  • 156.

    Liu, W., van Wüllen, Ch., Han, Y. K., Choi, Y. J., Lee, Y. S.: Spectroscopic constants of Pb and Eka-lead compounds: comparison of different approaches. Adv. Quant. Chem. 39, 325 (2001).CrossrefGoogle Scholar

  • 157.

    Pershina, V., Anton, J., Fricke, B.: Intermetallic compounds of the heaviest elements and their homologs: The electronic structure and bonding of MM′, where M=Ge, Sn, Pb, and element 114, and M′=Ni, Pd, Pt, Cu, Ag, Au, Sn, Pb, and element 114. J. Chem. Phys. 12, 134310(7) (2007).Google Scholar

  • 158.

    Hermann, A., Furthmüller, J., Gäggeler, H.W., Schwerdtfeger, P.: Spin-orbit effects in structural and electronic properties for the solid state of the group-14 elements from carbon to superheavy element 114. Phys. Rev. B 82, 155116 (2010).CrossrefGoogle Scholar

  • 159.

    Zaitsevskii, A., van Wüllen, C., Rykova, E. A.: Two-component relativistic density functional modeling of the adsorption of element 114 (eka-led) on gold. Phys. Chem. Chem. Phys. 12, 4152 (2010).CrossrefGoogle Scholar

  • 160.

    Eichler, R., Aksenov, N. V., Albin, Yu. V., Belozerov, A. V., Bozhikov, G. A., Chepigin, V. I., Dmitriev, S. N., Dressler, R., Gäggeler, H. W., Gorshkov, V. A., Henderson, R. A., Johnsen, A. M., Kenneally, J. M., Lebedev, V. Ya., Malyshev, O. N., Moody, K. J., Oganessian, Yu. Ts., Petrushkin, O. V., Piguet, D., Popeko, A. G., Rasmussen, P., Serov, A., Shaughnessy, D. A., Shishkin, S. V., Shutov, A. V., Stoyer, M. A., Svirikhin, A. I., Tereshatov, E. E., Vostokin, G. K., Wegrzecki, M., Wittwer P. A., Yeremin, A. V.: Indication for a volatile element 114. Radiochim. Acta 98, 133 (2010).Google Scholar

  • 161.

    Yakushev, A., Gates, J. M., Türler, A., Schädel, M., Düllmann, C. E., Ackermann, D., Andersson, L.-L., Block, M., Brüchle, W., Dvorak, J., Eberhardt, K., Essel, H. G., Even, J., Forsberg, U., Gorshkov, A., Graeger, R., Gregorich, K. E., Hartmann, W., Herzberg, R.-D., Heßberger, F. P., Hild, D., Hübner, A., Jäger, E., Khuyagbaatar, J., Kindler, B., Kratz, J. V., Krier, J., Kurz, N., Lommel, B., Niewisch, L. J., Nitsche, H., Omtvedt, J. P., Parr, E., Qin, Z., Rudolph, D., Runke, J., Schausten, B., Schimpf, E., Semchenkov, A., Steiner, J., Thörle-Pospiech, P., Uusitalo, J., Wegrzecki, M., Wiehl. N.: Superheavy element Flerovium (Element 114) is a volatile metal. Inorg. Chem. 53 (3), 1624 (2014).CrossrefPubMedGoogle Scholar

  • 162.

    Yakushev, A.: private communication, GSI, Darmstadt (2018).Google Scholar

  • 163.

    Seth, M., Faegri, K., Schwerdtfeger, P.: The stability of the oxidation state +4 in Group 14 compounds from carbon to element 114. Angew. Chem. Int. Ed. Engl. 37, 2493 (1998).PubMedCrossrefGoogle Scholar

  • 164.

    Schwerdtfeger, P., Seth, M.: Relativistic quantum chemistry of the superheavy elements. Closed-shell element 114 as a case study. J. Nucl. Radiochem. Sci. 3, 133 (2002).CrossrefGoogle Scholar

  • 165.

    Nash, C. S., Bursten, B. E.: Spin-orbit effects on the electronic structure of heavy and superheavy hydrogen halides: prediction of an anomalously strong bond in H[117]. J. Phys. Chem. A 103, 632 (1999).CrossrefGoogle Scholar

  • 166.

    Schwerdtfeger, P.: Relativistic effects in molecular structure of s- and p-block elements. In: A. Domenicano, I. Hargittai (Eds.), Strength from Weakness: Structural Consequences of Weak Interactions in Molecules, Supermolecules, and Crystals, NATO Science Series, Kluwer, Dordrecht (2002), p. 169.Google Scholar

  • 167.

    Nash, C. S.: Atomic and molecular properties of elements 112, 114 and 118. J. Phys. Chem. A 109, 3493 (2005).PubMedCrossrefGoogle Scholar

  • 168.

    Pershina, V., to be published.Google Scholar

  • 169.

    Schwerdtfeger, P.: Toward an accurate description of solid-state properties of superheavy elements. A case study for the element Og (Z=118). EPJ Web of Conferences 131, 07004 (2016).CrossrefGoogle Scholar

  • 170.

    Nash, C. S., Bursten, B. E.: Spin-orbit coupling versus the VSEPR method: on the possibility of a nonplanar structure for the super-heavy noble gas tetrafluoride (118)F4. Angew. Chem. Int. Ed. 38, 151 (1999).CrossrefGoogle Scholar

  • 171.

    Han, Y.-K., Bae, C., Son, S.-K., Lee, Y. S.: Spin–orbit effects on the transactinide p-block element monohydrides MH (M=element 113–118). J. Chem. Phys. 112, 2684 (2000).CrossrefGoogle Scholar

  • 172.

    Pershina, V., Borschevsky, A., Anton, J.: Fully relativistic study of intermetallic dimers of group-1 elements K through element 119 and prediction of their adsorption on noble metal surfaces. Chem. Phys. 395, 87 (2012).CrossrefGoogle Scholar

  • 173.

    Pershina, V., Borschevsky, A., Anton, J.: Theoretical predictions of properties of group-2 elements including element 120 and their adsorption on noble metal surfaces. J. Chem. Phys. 136, 134317 (2012); See also Erratum: ibid 139, 239901 (2013).Google Scholar

  • 174.

    Demidov, Y., Zaitsevskii, A., Eichler, R.: First principles based modelling of the adsorption of atoms of element 120 on a gold surface. Phys. Chem. Chem. Phys. 16, 2268 (2014).CrossrefGoogle Scholar

  • 175.

    Pyykkö, P.: Predicting new, simple inorganic species by quantum-chemical calculations: some successes. Phys. Chem. Chem. Phys. 14, 14734 (2012).CrossrefPubMedGoogle Scholar

  • 176.

    Ionova, G. V., Pershina, V., Johnson, E., Fricke, B., Schädel, M.: Redox reactions for group-5 elements, including element 105, in aqueous solutions. J. Phys. Chem. 96, 11096 (1992).CrossrefGoogle Scholar

  • 177.

    Pershina, V., Fricke, B.: Electronic structure and properties of the group 4, 5, and 6 highest chlorides including elements 104, 105, and 106. J. Phys. Chem. 98, 6468 (1994).CrossrefGoogle Scholar

  • 178.

    Pershina, V., Johnson, E., Fricke, B.: Theoretical estimates of redox potentials for group 6 elements, including element 106, seaborgium, in acid solutions. J. Phys. Chem. A 103, 8463 (1999).CrossrefGoogle Scholar

  • 179.

    Johnson, E., Fricke, B.: Prediction of some thermodynamic properties of selected compounds of element 104. J. Phys. Chem. 95, 7082 (1991).CrossrefGoogle Scholar

  • 180.

    Pershina, V., Fricke, B.: Electronic structure and chemistry of the heaviest elements. In: W. Greiner, R. K. Gupta (Eds.), Heavy Elements and Related New Phenomena, World Scientific, Singapore (1999), p. 194.Google Scholar

  • 181.

    Pershina, V.: Predictions of redox potentials of Sg in acid solutions as a function of pH. Radiochim. Acta 101, 749 (2013).Google Scholar

  • 182.

    Schädel, M., Brüchle, W., Jäger, E., Schausten, B., Wirth, G., Paulus, W., Günther, R., Eberhardt, K., Kratz, J. V., Seibert, A., Strub, E., Thörle, P., Trautmann, N., Waldek, W., Zauner, S., Schumann, D., Kirbach, U., Kubica, B., Misiak, R., Nagame, Y., Gregorich, K. E.: Aqueous chemistry of seaborgium (Z=106). Radiochim. Acta 83, 163 (1998).Google Scholar

  • 183.

    Pershina, V., Trubert, D., Le Naour, C., Kratz, J. V.: Theoretical predictions of hydrolysis and complex formation of group-4 elements Zr, Hf and Rf in HF and HCl solutions. Radiochim. Acta 90, 869 (2002).Google Scholar

  • 184.

    Pershina, V., Polakova, D., Omtvedt, J. P.: Theoretical predictions of complex formation of group-4 elements Zr, Hf, and Rf in H2SO4 solutions. Radiochim. Acta 94, 407 (2006).Google Scholar

  • 185.

    Pershina, V.: Solution Chemistry of Element 105. Part I: Hydrolysis of Group 5 Cations: Nb, Ta, Ha and Pa. Radiochim. Acta 80, 65 (1998).Google Scholar

  • 186.

    Pershina, V.: Solution chemistry of element 105. Part II: hydrolysis and complex formation of Nb, Ta, Ha and Pa in HCl solutions. Radiochim. Acta 80, 75 (1998).Google Scholar

  • 187.

    Pershina, V., Kratz, J. V.: Solution chemistry of element 106: theoretical predictions of hydrolysis of group 6 cations Mo, W, and Sg. Inorg. Chem. 40, 776 (2001).PubMedCrossrefGoogle Scholar

  • 188.

    Pershina, V.: Theoretical treatment of the complexation of element 106, Sg, in HF solutions. Radiochim. Acta 92, 455 (2004).Google Scholar

About the article

Received: 2018-12-20

Accepted: 2019-02-01

Published Online: 2019-07-08

Published in Print: 2019-09-25


Citation Information: Radiochimica Acta, Volume 107, Issue 9-11, Pages 833–863, ISSN (Online) 2193-3405, ISSN (Print) 0033-8230, DOI: https://doi.org/10.1515/ract-2018-3098.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in