Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Radiochimica Acta

International Journal for chemical aspects of nuclear science and technology

Editor-in-Chief: Qaim, Syed M.

12 Issues per year


IMPACT FACTOR 2017: 1.202

CiteScore 2017: 1.22

SCImago Journal Rank (SJR) 2017: 0.409
Source Normalized Impact per Paper (SNIP) 2017: 0.869

Online
ISSN
2193-3405
See all formats and pricing
More options …
Volume 105, Issue 3

Issues

Formation, stability and structural characterization of ternary MgUO2(CO3)32− and Mg2UO2(CO3)3(aq) complexes

Jun-Yeop Lee
  • Department of Nuclear and Quantum Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea (Republic of)
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marika Vespa
  • Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology, Postfach 3640, 76021 Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xavier Gaona
  • Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology, Postfach 3640, 76021 Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kathy Dardenne
  • Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology, Postfach 3640, 76021 Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jörg Rothe
  • Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology, Postfach 3640, 76021 Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thomas Rabung
  • Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology, Postfach 3640, 76021 Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marcus Altmaier
  • Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology, Postfach 3640, 76021 Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jong-Il Yun
  • Corresponding author
  • Department of Nuclear and Quantum Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea (Republic of)
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-11-09 | DOI: https://doi.org/10.1515/ract-2016-2643

Abstract

The formation of ternary Mg-UO2-CO3 complexes under weakly alkaline pH conditions was investigated by time-resolved laser fluorescence spectroscopy (TRLFS) and extended X-ray absorption fine structure (EXAFS) and compared to Ca-UO2-CO3 complexes. The presence of two different Mg-UO2-CO3 complexes was identified by means of two distinct fluorescence lifetimes of 17±2 ns and 51±2 ns derived from the multi-exponential decay of the fluorescence signal. Slope analysis in terms of fluorescence intensity coupled with fluorescence intensity factor as a function of log [Mg(II)] was conducted for the identification of the Mg-UO2-CO3 complexes forming. For the first time, the formation of both MgUO2(CO3)32− and Mg2UO2(CO3)3(aq) species was confirmed and the corresponding equilibrium constants were determined as log β0113=25.8±0.3 and log β0213=27.1±0.6, respectively. Complementarily, fundamental structural information for both Ca-UO2-CO3 and Mg-UO2-CO3 complexes was gained by extended EXAFS revealing very similar structures between these two species, except for the clearly shorter U-Mg distance (3.83 Å) compared with U-Ca distance (4.15 Å). These results confirmed the inner-sphere character of the Ca/Mg-UO2-CO3 complexes. The formation constants determined for MgUO2(CO3)32− and Mg2UO2(CO3)3(aq) species indicate that ternary Mg-UO2-CO3 complexes contribute to the relevant uranium species in carbonate saturated solutions under neutral to weakly alkaline pH conditions in the presence of Mg(II) ions, which will induce notable influences on the U(VI) chemical species under seawater conditions.

Keywords: Uranium; carbonate; ternary complex; chemical thermodynamic data; time-resolved laser fluorescence spectroscopy; extended X-ray absorption fine structure

References

  • 1.

    Kim, J. I., Grambow, B.: Geochemical assessment of actinide isolation in a german salt repository environment. Eng. Geol. 52, 221 (1999).Google Scholar

  • 2.

    Geipel, G., Amayri, S., Bernhard, G.: Mixed complexes of alkaline earth uranyl carbonates: a laser-induced time-resolved fluorescence spectroscopic study. Spectrochim. Acta Part A 71, 53 (2008).Google Scholar

  • 3.

    Millero, F. J., Feistel, R., Wright, D. G., McDougall, T. J.: The composition of standard seawater and the definition of the reference-composition salinity scale. Deep Sea Res. Part I 55, 50 (2008).Google Scholar

  • 4.

    Choi, B.-Y., Kim, G.-Y., Koh, Y.-K., Shin, S.-H., Yoo, S.-W., Kim, D.-H.: Geochemical characteristics of a LILW repository I. Groundwater. J. Korean Radioact. Waste Soc. 6, 297 (2008).Google Scholar

  • 5.

    Bernhard, G., Geipel, G., Brendler, V., Nitsche, H.: Speciation of uranium in seepage waters of a mine tailing pile studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS). Radiochim. Acta 74, 87 (1996).Google Scholar

  • 6.

    Kalmykov, S. N., Choppin, G. R.: Mixed Ca2+/UO22+/CO32− complex formation at different ionic strengths. Radiochim. Acta 88, 603 (2000).Google Scholar

  • 7.

    Bernhard, G., Geipel, G., Reich, T., Brendler, V., Amayri, S., Nitsche, H.: Uranyl(VI) carbonate complex formation: validation of the Ca2UO2(CO3)3(aq.) species. Radiochim. Acta 89, 511 (2001).Google Scholar

  • 8.

    Lee, J.-Y., Yun, J.-I.: Formation of ternary CaUO2(CO3)32− and Ca2UO2(CO3)3(aq) complexes under neutral to weakly alkaline conditions. Dalton Trans. 42, 9862 (2013).Google Scholar

  • 9.

    Dong, W., Brooks, S. C.: Determination of the formation constants of ternary complexes of uranyl and carbonate with alkaline earth metals (Mg2+, Ca2+, Sr2+, and Ba2+) using anion exchange method. Environ. Sci. Technol. 40, 4689 (2006).Google Scholar

  • 10.

    Endrizzi, F., Rao, L.: Chemical speciation of uranium(VI) in marine environments: complexation of calcium and magnesium ions with [(UO2)(CO3)3](4−) and the effect on the extraction of uranium from seawater. Chem. Eur. J. 20, 14499 (2014).Google Scholar

  • 11.

    Kelly, S. D., Kemner, K. M., Brooks, S. C., Fredrickson, J. K., Carroll, S. L., Kennedy, D. W., Zachara, J. M., Plymale, A. E., Fendorf, S.: Ca-UO2-CO3 complexation – implications for bioremediation of U(VI). Phys. Scr. T115, 915 (2005).Google Scholar

  • 12.

    Tamada, M., Seko, N., Kasai, N., Shimizu, T.: Cost estimation of uranium recovery from seawater with system of braid type adsorbent. Transactions At. Energy Soc. Jpn. 5, 358 (2006).Google Scholar

  • 13.

    Kerisit, S., Liu, C.: Molecular simulation of the diffusion of uranyl carbonate species in aqueous solution. Geochim. Cosmochim. Acta 74, 4937 (2010).Google Scholar

  • 14.

    Hänchen, M., Prigiobbe, V., Baciocchi, R., Mazzotti, M.: Precipitation in the Mg-carbonate system – effects of temperature and CO2 pressure. Chem. Eng. Sci. 63, 1012 (2008).Google Scholar

  • 15.

    Brendebach, B., Dardenne, K., Denecke, M. A., Rothe, J., Vitova, T.: New developments at the INE-beamline for actinide research at ANKA. Nucl. Instrum. Methods Phys. Res. Sect. A 582, 80 (2007).Google Scholar

  • 16.

    Newville, M.: IFFEFFIT: Interactive XAFS analysis and FEFF fitting. J. Synchrotron Radiat. 8, 322 (2001).Google Scholar

  • 17.

    Ravel, B., Newville, M.: ATHENA and ARTEMIS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537 (2005).Google Scholar

  • 18.

    Ankundinov, A. L., Bouldin, C. E., Rehr, J. J., Sims, J., Hung, H.: Parallel calculation of electron multiple scattering using lanczos algorithms. Phys. Rev. B Condens. Matter Mater. Phys. 65, 104107 (2002).Google Scholar

  • 19.

    Kelly, S. D., Kemner, K. M., Brooks, S. C.: X-ray absorption spectroscopy identifies calcium-uranyl-carbonate complexes at environmental concentrations. Geochim. Cosmochim. Acta 71, 821 (2007).Google Scholar

  • 20.

    Guillaumont, R., Fanghänel, T., Neck, V., Fuger, J., Palmer, D. A., Grenthe, I. and Rand, M. H.: Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium. Elsevier, OECD-NEA, Amsterdam (2003).Google Scholar

  • 21.

    Stumm, W., Morgan, J. J.: Aquatic Chemistry, 3rd ed., John Wiley & Sons, New York (1996).Google Scholar

  • 22.

    Ciavatta, L.: The specific interaction theory in evaluating ionic equilibria. Ann. Chim. (Rome, Italy) 70, 551 (1980).Google Scholar

  • 23.

    Grenthe, I., Wanner, H. and Östhols, E.: Guidelines for the Extrapolation to Zero Ionic Strength. OECD-NEA, Paris (2000).Google Scholar

  • 24.

    Altmaier, M., Neck, V., Fanghänel, T.: Solubility of Zr(IV), Th(IV) and Pu(IV) hydrous oxides in CaCl2 solutions and the formation of ternary Ca-M(IV)-OH complexes. Radiochim. Acta 96, 541 (2008).Google Scholar

  • 25.

    Moulin, C., Laszak, I., Moulin, V., Tondre, C.: Time-resolved laser-induced fluorescence as a unique tool for low-level uranium speciation. Appl. Spectrosc. 52, 528 (1998).Google Scholar

  • 26.

    Demtröder, W.: Laser Spectroscopy, 2nd ed., Springer, New York (1998).Google Scholar

  • 27.

    Götz, C., Geipel, G., Bernhard, G.: The Influence of the temperature on the carbonate complexation of uranium(VI): a spectroscopic study. J. Radioanal. Nucl. Chem. 287, 961 (2011).Google Scholar

  • 28.

    Mereiter, K.: The crystal structure of Liebigite, Ca2UO2(CO3)3~11H2O. Mineral. Petrol. 30, 277 (1982).Google Scholar

  • 29.

    Hudson, E. A., Allen, P. G., Terminello, L. J.: Polarized X-ray-absorption spectroscopy of the uranyl ion: comparison of experiment and theory. Phys. Rev. B Condens. Matter 54, 156 (1996).Google Scholar

  • 30.

    Shannon, R. D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalocogenides. Acta Crystall. A 32, 751 (1976).Google Scholar

  • 31.

    Finch, R. J., Cooper, M. A., Hawthorne, F. C., Ewing, R. C.: Refinement of the crystal structure of Rutherfordine. Can. Mineral. 37, 929 (1999).Google Scholar

  • 32.

    Eliet, V., Bidoglio, G., Omenetto, N., Parma, L., Grenthe, I.: Characterisation of hydroxide complexes of uranium(VI) by time-resolved fluorescence spectroscopy. J. Chem. Soc. Faraday Trans. 91, 2275 (1995).Google Scholar

  • 33.

    Anton, H. and Busby, R. C.: Contemporary Linear Algebra. Wiley, New York (2003).Google Scholar

  • 34.

    Jung, E. C., Cho, H.-R., Baik, M. H., Kim, H., Cha, W.: Time-resolved laser fluorescence spectroscopy of UO2(CO3)34− Dalton Trans. 44, 18831 (2015).Web of ScienceGoogle Scholar

About the article

aPresent address: Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology, Postfach 3640, 76021 Karlsruhe, Germany


Received: 2016-06-09

Accepted: 2016-10-04

Published Online: 2016-11-09

Published in Print: 2017-03-01


Citation Information: Radiochimica Acta, Volume 105, Issue 3, Pages 171–185, ISSN (Online) 2193-3405, ISSN (Print) 0033-8230, DOI: https://doi.org/10.1515/ract-2016-2643.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Richard T. Wilkin, Tony R. Lee, Douglas G. Beak, Robert Anderson, and Betsy Burns
Applied Geochemistry, 2017
[2]
Jun Liu, Changsong Zhao, Guoyuan Yuan, Yang Dong, Jijun Yang, Feize Li, Jiali Liao, Yuanyou Yang, and Ning Liu
Hydrometallurgy, 2017

Comments (0)

Please log in or register to comment.
Log in