Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Radiochimica Acta

International Journal for chemical aspects of nuclear science and technology

Editor-in-Chief: Qaim, Syed M.

12 Issues per year

IMPACT FACTOR 2017: 1.202

CiteScore 2017: 1.22

SCImago Journal Rank (SJR) 2017: 0.409
Source Normalized Impact per Paper (SNIP) 2017: 0.869

See all formats and pricing
More options …
Volume 105, Issue 5


Hafnium(IV) complexation with oxalate at variable temperatures

Mitchell T. Friend / Nathalie A. Wall
Published Online: 2016-11-09 | DOI: https://doi.org/10.1515/ract-2016-2686


Appropriate management of fission products in the reprocessing of spent nuclear fuel (SNF) is crucial in developing advanced reprocessing schemes. The addition of aqueous phase complexing agents can prevent the co-extraction of these fission products. A solvent extraction technique was used to study the complexation of Hf(IV) – an analog to fission product Zr(IV) – with oxalate at 15, 25, and 35°C in 1 M HClO4 utilizing a 175+181Hf radiotracer. The mechanism of the solvent extraction system of 10−5 M Hf(IV) in 1 M HClO4 to thenoyltrifluoroacetone (TTA) in toluene demonstrated a 4th-power dependence in both TTA and H+, with Hf(TTA)4 the only extractable species. The equilibrium constant for the extraction of Hf(TTA)4 was determined to be log Kex=7.67±0.07 (25±1°C, 1 M HClO4). The addition of oxalate to the aqueous phase decreased the distribution ratio, indicating aqueous Hf(IV)-oxalate complex formation. Polynomial fits to the distribution data identified the formation of Hf(ox)2+ and Hf(ox)2 (aq) and their stability constants were measured at 15, 25, and 35°C in 1 M HClO4. van’t Hoff analysis was used to calculate ΔrG, ΔrH, and ΔrS for these species. Stability constants were observed to increase at higher temperature, an indication that Hf(IV)-oxalate complexation is endothermic and driven by entropy.

This article offers supplementary material which is provided at the end of the article.

Keywords: Hafnium(IV); oxalate; complexation; stability constants; solvent extraction; van’t Hoff


  • 1.

    Mathur, J. N., Murali, M. S., Nash, K. L.: Actinide partitioning – A review. Solvent Extr. Ion Exc. 19(3), 357 (2001).Google Scholar

  • 2.

    Nilsson, M., Nash, K. L.: Review article: a review of the development and operational characteristics of the TALSPEAK process. Solvent Extr. Ion Exc. 25, 665 (2007).Google Scholar

  • 3.

    Sypula, M., Wilden, A., Schreinemachers, C., Malmbeck, R., Geist, A., Taylor, R., Modolo, G.: Use of polyaminocarboxylic acids as hydrophilic masking agents for fission products in actinide partitioning processes. Solvent Extr. Ion Exc. 30(7), 748 (2012).Google Scholar

  • 4.

    Gelis, A. V., Lumetta, G. J.: Actinide lanthanide separation process – ALSEP. Ind. Eng. Chem. Res. 53(4), 1624 (2014).Google Scholar

  • 5.

    Choppin, G. R., Liljenzin, O.-J., Rydberg, J., Ekberg, C.: Radiochemistry and Nuclear Chemistry. 4th ed., Academic Press, Oxford, UK (2013).Google Scholar

  • 6.

    McKibben, J. M.: Chemistry of the PUREX Process. Radiochim. Acta 36(1–2), 3 (1984).Google Scholar

  • 7.

    Choppin, G. R., Erten, H. N., Xia, Y.-X.: Variation of stability constants of thorium citrate complexes with ionic strength. Radiochim. Acta 74, 123 (1996).Google Scholar

  • 8.

    Connick, R. E., McVey, W. H.: The aqueous chemistry of zirconium. J. Am. Chem. Soc. 71(9), 3182 (1949).Google Scholar

  • 9.

    Connick, R. E., Reas, W. H.: The hydrolysis and polymerization of zirconium in perchloric acid solution. J. Am. Chem. Soc. 73(3), 1171 (1951).Google Scholar

  • 10.

    Zielen, A. J., Connick, R. E.: The hydrolytic polymerization of zirconium in perchloric acid solutions. J. Am. Chem. Soc. 78(22), 5785 (1956).Google Scholar

  • 11.

    Baes, C. F., Mesmer, R. E.: In The Hydrolysis of Cations. John Wiley & Sons Inc., New York, p. 152–168, 174–191 (1976).Google Scholar

  • 12.

    Bagawade, S. V., Ramakrishna, V. V., Patil, S. K.: Oxalate complexing of tetravalent actinides. J. Inorg. Nucl. Chem. 38(9), 1669 (1976).Google Scholar

  • 13.

    Ramanujam, A., Ramakrishna, V. V., Patil, S. K.: Thermodynamic studies on the oxalate complexing of tetravalent actinides by solvent extraction. Radiochem. Radioa. Lett. 31(3), 119 (1977).Google Scholar

  • 14.

    Borkowski, M., Moore, R. C., Bronikowski, M. G., Chen, J., Pokrovsky, O. S., Xia, Y., Choppin, G. R.: Thermodynamic modeling of actinide complexation with oxalate at high ionic strength. J. Radioanal. Nucl. Chem. 248(2), 467 (2001).Google Scholar

  • 15.

    Xia, Y., Hess, N. J., Felmy, A. R.: Stability constants of technetium(IV) oxalate complexes as a function of ionic strength. Radiochim. Acta 94, 137 (2006).Google Scholar

  • 16.

    Thakur, P., Pathak, P. N., Choppin, G. R.: Complexation thermodynamics and the formation of the binary and the ternary complexes of tetravalent plutonium with carboxylate and aminocarboxylate ligands in aqueous solution of high ionic strength. Inorg. Chim. Acta 362(1), 179 (2009).Google Scholar

  • 17.

    Shannon, R. D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32, 751 (1976).Google Scholar

  • 18.

    Smith, R. M., Martell, A., Motekaitis, R.: NIST Critically Selected Stability Constants of Metal Complexes Database, 8.0; NIST Standard Reference Database 46, National Institute of Standards and Technology (2004).

  • 19.

    Pettit, L. D., Powell, H. K. J.: IUPAC Stability Constants Database, 5.86; Academic Software: Timble, Otley, UK (2005).Google Scholar

  • 20.

    Marov, I. N., Ryabchikov, D. I.: Complex formation of zirconium(IV) and hafnium(IV) with chloride, nitrate, and oxalate ions. Zh. Neorg. Khimii 7, 1036 (1962).Google Scholar

  • 21.

    Navratil, O., Smola, J.: Hafnium(IV)-Extraktion XI. Stabilat con Hafnium(IV)-oxalatkomplexen. Collect. Czech. Chem. Commun. 36(4), 1659 (1971).Google Scholar

  • 22.

    Rydberg, J.: Hydrophilic actinide complexation studied by solvent extraction radiotracer technique. Rev. Inorg. Chem. 19(4), 245 (1999).Google Scholar

  • 23.

    Poskanzer, A. M., Foreman B. M.: A summary of TTA extraction coefficients. J. Inorg. Nucl. Chem. 16(3–4), 323 (1961).Google Scholar

  • 24.

    Gans, P., Sabatini, A., Vacca, A.: HySS2009, 4.0.21; Protonic Software: 2 Templegate Avenue, Leeds LS15 0HD, England (2009).

  • 25.

    Hummel, W., Anderegg, G., Puigdomenech, I., Rao, L., Tochiyama, O.: Chemical Thermodynamics. In Chemical Thermodynamics of Compounds and Complexes of U, Np, Pu, Am, Tc, Se, Ni, and Zr with Selected Organic Ligands, OECD Nuclear Energy Agency (ed.), Data Bank, Elsevier, New York Vol. 9 (2005).Google Scholar

  • 26.

    OriginPro 2015, Sr2 b9.2.272 (Academic); OriginLab Corporation: One Roundhouse Plaza, Suite 303, Northampton, MA 01060, USA (2015).

  • 27.

    Halperin, J., Oliver, J. H.: Sulfate complexation of Np(V) in aqueous solution. Radiochim. Acta 33(1), 29 (1983).Google Scholar

  • 28.

    Xia, Y., Friese, J. I., Moore, D. A., Rao, L.: Stability constants of Np(V) complexes with fluoride and sulfate at variable temperatures. J. Radioanal. Nucl. Chem. 268(3), 445 (2006).Google Scholar

  • 29.

    Babko, A. K., Dubovenko, L. I.: Zirconium oxalate complexes. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 3, 226 (1960).Google Scholar

About the article

Received: 2016-08-24

Accepted: 2016-10-06

Published Online: 2016-11-09

Published in Print: 2017-05-01

Citation Information: Radiochimica Acta, Volume 105, Issue 5, Pages 379–388, ISSN (Online) 2193-3405, ISSN (Print) 0033-8230, DOI: https://doi.org/10.1515/ract-2016-2686.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in