Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Radiochimica Acta

International Journal for chemical aspects of nuclear science and technology

Editor-in-Chief: Qaim, Syed M.


IMPACT FACTOR 2018: 1.339

CiteScore 2018: 1.20

SCImago Journal Rank (SJR) 2018: 0.333
Source Normalized Impact per Paper (SNIP) 2018: 0.720

Online
ISSN
2193-3405
See all formats and pricing
More options …
Volume 106, Issue 11

Issues

Measurement and covariance analysis of 59Co(n, 2n)58Co reaction cross sections at the effective neutron energies of 11.98 and 15.75 MeV

Santhi Sheela Yerraguntla / Haladhara Naik / Manjunatha Karantha / Srinivasan Ganesan / Suryanarayana Venkata Saraswatula / Sreekumaran Narayana Pillai Nair
Published Online: 2018-07-14 | DOI: https://doi.org/10.1515/ract-2018-2937

Abstract

The 59Co(n, 2n)58Co reaction cross sections relative to the cross sections of the 115In(n, n′)115mIn reaction have been measured at the effective neutron energies of 11.98 and 15.75 MeV by using activation and off-line γ-ray spectrometric technique. Neutron beam used in the present experiment was generated from the 7Li(p, n)7Be reaction with the proton energies of 14 and 18 MeV at the 14UD BARC-TIFR Pelletron facility, Mumbai. We also present the covariance information by taking into account the sources of error and the correlations between the attributes influencing the measurements. The 59Co(n, 2n)58Co reaction cross sections from the present work are then compared with the values from different evaluated nuclear data libraries. The micro-correlation technique suggested by Smith was modified to generate the covariance matrix for the measurements of reaction cross sections as the efficiencies of detector for the sample and monitor are correlated.

Keywords: 59Co(n, 2n)58Co cross section; neutron activation; off-line γ-ray spectrometry; EXFOR; IRDFF-1.05; evaluated data libraries; covariance analysis

References

  • 1.

    Ganesan, S.: Nuclear data requirements for accelerator driven sub-critical systems – a roadmap in the Indian context. Pramana 68(2), 257 (2007).CrossrefWeb of ScienceGoogle Scholar

  • 2.

    Qaim, S.: Radiochemical determination of nuclear data for theory and applications. J. Radioanal. Nucl. Chem. 284(3), 489 (2010).CrossrefWeb of ScienceGoogle Scholar

  • 3.

    Qaim, S.: Activation cross sections, isomeric cross-section ratios and systematics of (n, 2n) reactions at 14–15 MeV. Nucl. Phys. A 185(2), 614 (1972).CrossrefGoogle Scholar

  • 4.

    Sudar, S., Qaim, S.: Isomeric cross-section ratio for the formation of 58m,gCo in neutron, proton, deuteron, and alpha-particle induced reactions in the energy region up to 25 MeV. Phys. Rev. C 53(6), 2885 (1996).CrossrefGoogle Scholar

  • 5.

    Bostan, M., Qaim, S.: Excitation functions of threshold reactions on 45Sc and 55Mn induced by 6 to 13 MeV neutrons. Phys. Rev. C 49(1), 266 (1994).CrossrefGoogle Scholar

  • 6.

    Bormann, M., Seebeck, U., Voights, W., Woelfer, G.: Level densities of dome medium weight nuclei from evaporation spectra of the alpha particles from (n, alpha) reactions. Z. Naturforsch. A 21, 988 (1966).Google Scholar

  • 7.

    Dighe, P., Pansare, G., Sarkar, R., Bhoraskar, V.: Cross sections of (n, 2n) reactions induced by 14.7 MeV neutrons in 46Ti, 50Cr and 59Co. Indian J. Pure Appl. Phys. 29(10), 665 (1991).Google Scholar

  • 8.

    Garlea, I., Garlea, C., Dobrea, D., Roth, C., Rosu, H. N., Rapeanu, S.: Cross sections of some reactions induced by 14 MeV neutrons. Revue Roumaine de Physique 30(8), 673 (1985).Google Scholar

  • 9.

    Ghorai, S., Gaiser, J., Alford, W.: The (n, 2n) isomeric cross section ratios and the (n, 2n) and (n, α) excitation functions for 59Co. Ann. Nucl. Energy 7(1), 41 (1980).CrossrefGoogle Scholar

  • 10.

    Greenwood, L. R.: Recent research in neutron dosimetry and damage analysis for materials irradiations. In: Influence of Radiation on Material Properties: 13th International Symposium (Part II) (1987), ASTM International, Philadelphia, p. 743.Google Scholar

  • 11.

    Hasan, S., Pavlik, A., Winkler, G., Uhl, M., Kaba, M.: Precise measurement of cross sections for the reactions 59Co(n, 2n)58m+ gCo and 59Co (n, p)59Fe around 14 MeV. J. Phys. G: Nucl. Phys. 12(5), 397 (1986).CrossrefGoogle Scholar

  • 12.

    Iwasaki, S., Matsuyama, S., Ohkubo, T., Fukuda, H., Sakuma, M., Kitamura, M.: Measurement of activation cross-sections for several elements between 12 and 20 MeV. Vol. 1. p. 305. (No. CONF-940507) American Nuclear Society, Inc., La Grange Park, IL (United States), (1994).Google Scholar

  • 13.

    Kimura, I., Kobayashi, K.: Calibrated fission and fusion neutron fields at the Kyoto University Reactor. Nucl. Sci. Eng. 106(3), 332 (1990).CrossrefGoogle Scholar

  • 14.

    Majerle, M., Bém, P., Novák, J., Šimečková, E., Štefánik, M.: Au, Bi, Co and Nb cross-section measured by quasimonoenergetic neutrons from p+7Li reaction in the energy range of 18–36 MeV. Nucl. Phys. A 953, 139 (2016).CrossrefGoogle Scholar

  • 15.

    Mannhart, W., Schmidt, D.: Measurement of neutron activation cross sections in the energy range from 8 MeV to 15 MeV. In. Physikalisch-Technische Bundesanstalt (PTB-N-53), (2007).Google Scholar

  • 16.

    Meadows, J., Smith, D., Bretscher, M., Cox, S.: Measurement of 14.7 MeV neutron-activation cross sections for fusion. Ann. Nucl. Energy 14(9), 489 (1987).CrossrefGoogle Scholar

  • 17.

    Molla, N., Miah, R., Basunia, S., Hossain, S., Rahman, M.: Cross sections of (n, p), (n, α), and (n, 2n) processes on scandium, vanadium, cobalt, copper and zinc isotopes in the energy range 13.57–14.71 MeV. Vol. 2. p. 938. (No. CONF-940507) American Nuclear Society, Inc., La Grange Park, IL (United States), (1994).Google Scholar

  • 18.

    Osman, K. T., Habbani, F. I.: Measurement and study of (n, p) reaction cross-sections for Cr, Ti, Ni, Co, Zr and Mo isotopes using 14.7 MeV neutrons. International Atomic Energy Agency (IAEA) No. INDC (SUD)–001 (1996).Google Scholar

  • 19.

    Ryves, T., Kolkowski, P., Judge, S.: Cobalt cross sections for 14 MeV neutrons. Ann. Nucl. Energy 15(12), 561 (1988).CrossrefGoogle Scholar

  • 20.

    Semkova, V., Avrigeanu, V., Glodariu, T., Koning, A., Plompen, A., Smith, D., Sudar, S.: A systematic investigation of reaction cross sections and isomer ratios for neutrons up to 20 MeV on Ni-isotopes and 59Co by measurements with the activation technique and new model studies of the underlying reaction mechanisms. Nucl. Phys. A 730(3), 255 (2004).CrossrefGoogle Scholar

  • 21.

    Suita, J. C., da Silva, A. G., Auler, L. T., de Barros, S.: Neutron-induced reaction cross sections between 9 and 14 MeV. Nucl. Sci. Eng. 126(1), 101 (1997).CrossrefGoogle Scholar

  • 22.

    Uno, Y., Uwamino, Y., Soewarsono, T. S., Nakamura, T.: Measurement of the neutron activation cross sections of 12C, 30Si, 47Ti, 48Ti, 52Cr, 59Co, and 58Ni between 15 and 40 MeV. Nucl. Sci. Eng. 122(2), 247 (1996).CrossrefGoogle Scholar

  • 23.

    Ganesan, S.: Nuclear data covariances in the indian context–progress, challenges, excitement and perspectives. Nucl. Data Sheets 123, 21 (2015).CrossrefWeb of ScienceGoogle Scholar

  • 24.

    Chadwick, M., Herman, M., Obložinský, P., Dunn, M. E., Danon, Y., Kahler, A., Smith, D. L., Pritychenko, B., Arbanas, G., Arcilla, R., Brewer, R., Brown, D. A., Capote, R., Carlson, A. D., Cho, Y. S., Derrien, H., Guber, K., Hale, G. M., Hoblit, S., Holloway, S., Johnson, T. D., Kawano, T., Kiedrowski, B. C., Kim, H., Kunieda, S., Larson, N. M., Leal, L., Lestone, J. P., Little, R. C., McCutchan, E. A., MacFarlane, R. E., MacInnes, M., Mattoon, C. M., McKnight, R. D., Mughabghab, S. F., Nobre, G. P. A., Palmiotti, G., Palumbo, A., Pigni, M. T., Pronyaev, V. G., Sayer, R. O., Sonzogni, A. A., Summers, N. C., Talou, P., Thompson, I. J., Trkov, A., Vogt, R. L., van der Marck, S. C., Wallner, A., White, M. C., Wiarda, D., Young, P. G.: ENDF/B-VII.1 Nuclear data for science and technology: cross sections, covariances, fission product yields and decay data. Nucl. Data Sheets 112(12), 2887 (2011).Web of ScienceCrossrefGoogle Scholar

  • 25.

    Ge, Z., Zhao, Z., Xia, H., Zhuang, Y., Liu, T., Zhang, J., Wu, H.: The updated version of Chinese Evaluated Nuclear Data Library (CENDL-3.1). J. Korean Phys. Soc 59(2), 1052 (2011).Web of ScienceCrossrefGoogle Scholar

  • 26.

    Zabrodskaya, S. V., Ignatyuk, A. V., Koscheev, V. N., Manochin, V. N., Nikolaev M. N., Pronyaev, V. G. ROSFOND – Rossiyskaya Natsionalnaya Biblioteka Nejtronnykh Dannykh, VANT, Nuclear Constants 1–2, 3 (2007).Google Scholar

  • 27.

    Shibata, K., Iwamoto, O., Nakagawa, T., Iwamoto, N., Ichihara, A., Kunieda, S., Chiba, S., Furutaka, K., Otuka, N., Ohasawa, T., Murata, T., Matsunobu, H., Zukeran, A., Kamada, S., Katakura, J.-I.: JENDL-4.0: a new library for nuclear science and engineering. J. Nucl. Sci. Technol. 48(1), 1 (2011).CrossrefWeb of ScienceGoogle Scholar

  • 28.

    Koning, A., Bauge, E., Dean, C., Dupont, E., Fischer, U., Forrest, R., Jacqmin, R., Leeb, H., Kellett, M., Mills, R.: Status of the JEFF nuclear data library. J. Korean Phys. Soc 59(2), 1057 (2011).CrossrefWeb of ScienceGoogle Scholar

  • 29.

    Koning, A. J., Rochman, D., Kopecky, J., Sublet, J. C., Fleming, M., Bauge, E., Hilaire, S., Romain, P., Morillon, B., Duarte, H., Marck, S. C. V., Pomp, S., Sjostrand, H., Forrest, R., Henriksson, H., Cabellos, O., Goriely, S., Leppanen, J., Leeb, H., Lompen, A., Mills, R.: TENDL-2015: TALYS-based evaluated nuclear data library. Available at: https://tendl.web.psi.ch/tendl_2015/tendl2015.html (2015).

  • 30.

    Capote, R., Zolotarev, K. I., Pronyaev, V. G., Trkov, A.: Updating and extending the IRDF-2002 dosimetry library. J. ASTM Int. 9(4), 1 (2012).Google Scholar

  • 31.

    Ziegler, J. F., Ziegler, M. D., Biersack, J. P.: SRIM–The stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res. B 268(11–12), 1818 (2010). Available at: http://www.srim.org/.Crossref

  • 32.

    Badwar, S., Ghosh, R., Lawriniang, B. M., Vansola, V., Sheela, Y. S., Naik, H. Naik, Y., Suryanarayana, S. V., Jyrwa, B., Ganesan, S.: Measurement of formation cross-section of 99Mo from the 98Mo(n,γ) and 100Mo(n,2n) reactions. Appl. Radiat. Isot. 129, 117 (2017).CrossrefPubMedGoogle Scholar

  • 33.

    Yerraguntla, S. S., Naik, H., Karantha, M. P., Ganesan, S., Suryanarayana, S. V., Badwar, S.: Measurement of 59Co(n, γ)60Co reaction cross sections at the effective neutron energies of 11.98 and 15.75 MeV. J. Radioanal. Nucl. Chem. 314(1), 457 (2017).CrossrefGoogle Scholar

  • 34.

    Sonzogni, A.: NuDat 2.7β (2017), National Nuclear Data Center, Brookhaven National Laboratory. http://www.nndc.bnl.gov/.

  • 35.

    Smith, D. L., Plompen, A. J. M., Semkova, V.: Correction for low energy neutrons by spectral indexing, vol. 75. Organisation for Economic Co-Operation and Development-Nuclear Energy Agency (NEA/WPEC-19, ISBN 92-64-01070-X), Paris (France), (2005).Google Scholar

  • 36.

    Millsap, D., Landsberger, S.: Self-attenuation as a function of gamma ray energy in naturally occurring radioactive material in the oil and gas industry. Appl. Radiat. Isot. 97, 21 (2015).Web of ScienceCrossrefPubMedGoogle Scholar

  • 37.

    Nowotny, R.: XMuDat: Photon attenuation data on PC. In: IAEA Report IAEA-NDS, vol. 195 (1998).Google Scholar

  • 38.

    Santhi Sheela, Y., Naik, H., Manjunatha Prasad, K., Ganesan, S., Sreekumaran Nair, N., Suryanarayana, S. V.: The efficiency and error covariance matrix of HPGe detector at characteristic gamma energies of reaction products 58Co and 115mIn in the measurement of 59Co(n, 2n)58Co reaction cross section relative to 115In(n, n′)115mIn Internal Report No. MU/STATISTICS/DAE-BRNS/2017/2, March-2017, DOI: (2017).CrossrefGoogle Scholar

  • 39.

    Santhi Sheela, Y., Naik, H., Manjunatha Prasad, K., Ganesan, S., Sreekumaran Nair, N., Suryanarayana, S. V.: Covariance analysis of efficiency calibration of HPGe detector. Internal Report, No. MU/STATISTICS/DAE-BRNS/2017/1, 19-February-2017, DOI: 10.13140/RG.2.2.32025.21605 (2017).Google Scholar

  • 40.

    Smith, D.: On the relationship between micro and macro correlations in nuclear measurement uncertainties. Nucl. Instr. Methods Phys. Res. A 257(2), 365 (1987).CrossrefGoogle Scholar

  • 41.

    Koning, A., Rochman, D., van der Marck, S., Kopecky, J., Sublet, J., Pomp, S., Sjostrand, H., Forrest, R.: TALYS Evaluated Nuclear Data Library (TENDL-2015). Nuclear Research and Consultancy Group (NRG) Petten, The Netherlands (2015).Google Scholar

  • 42.

    Evaluated Nuclear Data File ENDF/B-VII.1. https://www-nds.iaea.org/exfor/endf.htm (2011).

  • 43.

    Otuka, N., Dupont, E., Semkova, V., Pritychenko, B., Blokhin, A. I., Aikawa, M., Babykina, S., Bossant, M., Chen, G., Dunaeva, S., Forrest, R. A., Fukahori, T., Furutachi, N., Ganesan, S., Ge, Z., Gritzay, O. O., Herman, M., Hlavac, S., Kato, K., Lalremruata, B., Lee, Y. O., Makinaga, A., Matsumoto, K., Mikhaylyukova, M., Pikulina, G., Pronyaev, V. G., Saxena, A., Schwerer, O., Simakov, S. P., Soppera, N., Suzuki, R., Takacs, S., Tao, X., Taova, S., Tarkanyi, F., Varlamov, V. V., Wang, J., Yang, S. C., Zerkin, V., Y, Z.: Towards a more complete and accurate experimental nuclear reaction data library (EXFOR): international collaboration between nuclear reaction data centres (NRDC). Nuclear Data Sheets 120, 272 (2014).CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2018-02-06

Accepted: 2018-05-30

Published Online: 2018-07-14

Published in Print: 2018-11-27


Citation Information: Radiochimica Acta, Volume 106, Issue 11, Pages 877–884, ISSN (Online) 2193-3405, ISSN (Print) 0033-8230, DOI: https://doi.org/10.1515/ract-2018-2937.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in