Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Radiochimica Acta

International Journal for chemical aspects of nuclear science and technology

Editor-in-Chief: Qaim, Syed M.

IMPACT FACTOR 2018: 1.339

CiteScore 2018: 1.20

SCImago Journal Rank (SJR) 2018: 0.333
Source Normalized Impact per Paper (SNIP) 2018: 0.720

See all formats and pricing
More options …
Ahead of print


An investigation of the effects of level density models and alpha optical model potentials on the cross-section calculations for the production of the radionuclides 62Cu, 67Ga, 86Y and 89Zr via some alpha induced reactions

Mert Şekerci
Published Online: 2019-11-19 | DOI: https://doi.org/10.1515/ract-2019-3169


Theoretical studies via nuclear reaction models have an undeniable importance and impact in terms of better understanding of reaction processes and their nature. In this study, by considering the importance of these models and the medical radionuclides, the effects of six level density models and eight alpha optical model potentials on the cross-section calculations for the production of the radionuclides 62Cu, 67Ga, 86Y and 89Zr via 59Co(α,n)62Cu, 60Ni(α,np)62Cu, 65Cu(α,2n)67Ga, 64Zn(α,p)67Ga, 85Rb(α,3n)86Y, 86Sr(α,n)89Zr, 87Sr(α,2n)89Zr and 88Sr(α,3n)89Zr reactions were investigated. Calculations for each reaction route were performed by using the TALYS v1.9 code. The most consistent model with the literature data taken from the Experimental Nuclear Reaction Database (EXFOR), was identified by using the reduced chi-squared statistics in addition to an eyeball estimation. Also, the effects of combinational use of selected models and potentials were investigated by comparing the calculational results with the experimental data.

Keywords: TALYS; level density model; alpha optical model potential; production cross-section; EXFOR


  • 1.

    Stöcklin, G., Qaim, S. M., Rösch, F.: The impact of radioactivity on medicine. Radiochim. Acta 70–71, 249 (1995).Google Scholar

  • 2.

    Qaim, S. M.: Nuclear data for production and medical application of radionuclides: present status and future needs. Nucl. Med. Biol. 44, 31 (2017).PubMedCrossrefGoogle Scholar

  • 3.

    Aydin, A., Pekdoğan, H., Tel, E., Kaplan, A.: Nuclear model calculations on the production of 125,123Xe and 133,131,129,128Ba radioisotopes. Phys. Atom. Nucl. 75, 310 (2012).CrossrefGoogle Scholar

  • 4.

    Tel, E., Aydin, A., Kara, A., Kaplan, A.: Investigation of ground state features of some medical radionuclides. Kerntechnik 77, 50 (2012).Google Scholar

  • 5.

    Kaplan, A.: Investigation of neutron-production cross-sections of the structural fusion material 181Ta for (α,xn) reactions up to 150 MeV energy. J. Fusion Energy 32, 382 (2012).Google Scholar

  • 6.

    Kaplan, A., Özdoğan, H., Aydın, A., Tel, E.: Photo-neutron cross-section calculations of several structural fusion materials. J. Fusion Energy 32, 344 (2012).Google Scholar

  • 7.

    Kaplan, A., Özdoğan, H., Aydin, A., Tel, E.: Photo-neutron cross-section calculations of 142,143,144,145,146,150Nd rare-earth isotopes for (γ, n) reaction. Phys. Atom. Nucl. 77, 1371 (2014).CrossrefGoogle Scholar

  • 8.

    Sarpün, İ. H., Aydın, A., Kaplan, A., Koca, H., Tel, E.: Comparison of fission barrier and level density models for (α,f) reaction of some heavy nuclei. Ann. Nucl. Energy 70, 175 (2014).CrossrefGoogle Scholar

  • 9.

    Aydin, A., Pekdogan, H., Kaplan, A., Sarpün, İ. H., Tel, E., Demir, B.: comparison of level density models for the 60,61,62,64Ni(p,n) reactions of structural fusion material nickel from threshold to 30 MeV. J. Fusion Energy 34, 1105 (2015).CrossrefGoogle Scholar

  • 10.

    Artun, O.: Calculation of productions of PET radioisotopes via phenomenological level density models. Radiat. Phys. Chem. 149, 73 (2018).CrossrefGoogle Scholar

  • 11.

    Özdoğan, H.: Theoretical calculations of production cross-sections for the 201Pb, 111In, 18F and 11C radioisotopes at proton induced reactions. Appl. Radiat. Isotopes 143, 1 (2019).CrossrefGoogle Scholar

  • 12.

    Özdoğan, H., Şekerci, M., Kaplan, A.: Investigation of gamma strength functions and level density models effects on photon induced reaction cross-section calculations for the fusion structural materials 46,50Ti, 51V, 58Ni and 63Cu. Appl. Radiat. Isotopes 143, 6 (2019).CrossrefGoogle Scholar

  • 13.

    Artun, O.: Calculation of productions of medical 201Pb, 198Au, 186Re, 111Ag, 103Pd, 90Y, 89Sr, 77Kr, 77As, 67Cu, 64Cu, 47Sc and 32P nuclei used in cancer therapy via phenomenological and microscopic level density models. Appl. Radiat. Isotopes 144, 64 (2019).CrossrefGoogle Scholar

  • 14.

    Aslam, M., Sudár, S., Hussain, M., Malik, A. A., Shah, H. A., Qaim, S. M.: Charged particle induced reaction cross-section data for production of the emerging medically important positron emitter 64Cu: A comprehensive evaluation. Radiochim. Acta 97, 669 (2009).Google Scholar

  • 15.

    Aslam, M. N., Sudár, S., Hussain, M., Malik, A. A., Qaim, S. M.: Evaluation of excitation functions of 3He- and α-particle induced reactions on antimony isotopes with special relevance to the production of iodine-124. Appl. Radiat. Isotopes 69, 94 (2011).CrossrefGoogle Scholar

  • 16.

    Aslam, M. N., Qaim, S. M.: Nuclear model analysis of excitation functions of proton, deuteron and α-particle induced reactions on nickel isotopes for production of the medically interesting copper-61. Appl. Radiat. Isotopes 89, 65 (2014).CrossrefGoogle Scholar

  • 17.

    Sudár, S., Qaim, S. M.: Cross-sections for the formation of 195Hgm,g, 197Hgm,g and 196Aum,g in α and 3He-particle induced reactions on Pt: effect of level density parameters on the calculated isomeric cross-section ratio. Phys. Rev. C 73, 034613 (2006).CrossrefGoogle Scholar

  • 18.

    Qaim, S. M., Spahn, I., Scholten, B., Neumaier, B.: Uses of alpha particles, especially in nuclear reaction studies and medical radionuclide production. Radiochim. Acta 104, 601 (2016).CrossrefGoogle Scholar

  • 19.

    Koning, A., Hilaire, S., Goriely, S.: TALYS–1.9 A nuclear reaction program, User Manual, Release date: December 21, 2017, (2017) (https://tendl.web.psi.ch/tendl_2019/talys.html).

  • 20.

    Otuka, N., Dupont, E., Semkova, V., Pritychenko, B., Blokhin, A. I., Aikawa, M., Babykina, S., Bossant, M., Chen, G., Dunaeva, S., Forrest, R. A., Fukahori, T., Furutachi, N., Ganesan, S., Ge, Z., Gritzay, O. O., Herman, M., Hlavač, S., Katō, K., Lalremruata, B., Lee, Y. O., Makinaga, A., Matsumoto, K., Mikhaylyukova, M., Pikulina, G., Pronyaev, V. G., Saxena, A., Schwerer, O., Simakov, S. P., Soppera, N., Suzuki, R., Takács, S., Tao, X., Taova, S., Tárkányi, F., Varlamov, V. V., Wang, J., Yang, S. C., Zerkin, V., Zhuang, Y.: Towards a more complete and accurate Experimental Nuclear Reaction Data Library (EXFOR): international collaboration between Nuclear Reaction Data Centres (NRDC). Nucl. Data Sheets 120, 272 (2014).CrossrefGoogle Scholar

  • 21.

    Barlow, R. J.: Statistics: A Guide to the Use of Statistical Methods in the Physical Sciences. Wiley VCH (1993), p. 222.Google Scholar

  • 22.

    Sudár, S., Qaim, S. M.: Mass number and excitation energy dependence of the Θeffrig parameter of the spin cut-off factor in the formation of an isomeric pair. Nucl. Phys. A 979, 113 (2018).CrossrefGoogle Scholar

  • 23.

    Lacy, J. L., Guerrero, L., Chiu, R., Sun, L., Hall, L., Stone, C. K.: PET Imaging with 62Cu-ETS in a human clinical trial at the University of Wisconsin-Madison. In: 2007 IEEE Nuclear Science Symposium Conference Record. IEEE (2007).Google Scholar

  • 24.

    Zhang, T., Das, S. K., Fels, D. R., Hansen, K. S., Wong, T. Z., Dewhirst, M. W., Vlahovic, G.: PET with 62Cu-ATSM and 62Cu-PTSM is a useful imaging tool for hypoxia and perfusion in pulmonary lesions. Am. J. Roentgenol. 201, W698 (2013).CrossrefGoogle Scholar

  • 25.

    Szelecsényi, F., Suzuki, K., Kovács, Z., Takei, M., Okada, K.: Production possibility of radioisotopes by alpha induced reactions on cobalt for PET studies. Nucl. Instrum. Methods Phys. Res. Sect. B 187, 153 (2002).CrossrefGoogle Scholar

  • 26.

    Szelecsényi, F., Kovács, Z., van der Walt, T. N., Steyn, G. F., Suzuki, K., Okada, K.: Investigation of the natZn(p,x)62Zn nuclear process up to 70 MeV: A new 62Zn/62Cu generator. Appl. Radiat. Isotopes 58, 377 (2003).CrossrefGoogle Scholar

  • 27.

    Fukumura, T., Okada, K., Suzuki, H., Nakao, R., Mukai, K., Szelecsényi, F., Kovács, Z., Suzuki, K.: An improved 62Zn/62Cu generator based on a cation exchanger and its fully remote-controlled preparation for clinical use. Nucl. Med. Biol. 33, 821 (2006).PubMedCrossrefGoogle Scholar

  • 28.

    Hayes, R. L.: The medical use of gallium radionuclides: a brief history with some comments. Semin. Nucl. Med. 8, 183 (1978).PubMedCrossrefGoogle Scholar

  • 29.

    Bhattacharyya, S., Dixit, M.: Metallic radionuclides in the development of diagnostic and therapeutic radiopharmaceuticals. Dalton Trans. 40, 6112 (2011).PubMedCrossrefGoogle Scholar

  • 30.

    Blessing, G., Qaim, S. M.: An improved internal Cu3As-alloy cyclotron target for the production of 75Br and 77Br and separation of the by-product 67Ga from the matrix activity. Int. J. Appl. Radiat. Isotopes 35, 927 (1984).CrossrefGoogle Scholar

  • 31.

    Szelecsényi, F., Boothe, T. E., Tavano, E., Plitnikas, M. E., Tárkányi, F.: Compilation of cross-sections/thick target yields for 66Ga, 67Ga and 68Ga production using Zn targets up to 30 MeV proton energy. Appl. Radiat. Isotopes 45, 473 (1994).CrossrefGoogle Scholar

  • 32.

    Hermanne, A., Szelecsényi, F., Sonck, M., Takács, S., Tárkányi, F., Van den Winkel, P.: New cross-section data on 68Zn(p,2n)67Ga and natZn(p,xn)67Ga nuclear reactions for the development of a reference data base. J. Radioanal. Nucl. Chem. 240, 623 (1999).CrossrefGoogle Scholar

  • 33.

    Szelecsényi, F., Steyn, G. F., Kovács, Z., van der Walt, T. N., Suzuki, K., Okada, K., Mukai, K.: New cross-section data for the 66Zn(p,n)66Ga, 68Zn(p,3n)66Ga, natZn(p,x)66Ga, 68Zn(p,2n)67Ga and natZn(p,x)67Ga nuclear reactions up to 100 MeV. Nucl. Instrum. Methods Phys. Res. Sect. B 234, 375 (2005).CrossrefGoogle Scholar

  • 34.

    Shehata, M. M., Scholten, B., Spahn, I., Coenen, H. H., Qaim, S. M.: Radiochemical separation of 76,77Br and 66,67Ga from irradiated ZnSe targets using anion-exchange chromatography. Radiochim. Acta 100, 785 (2012).CrossrefGoogle Scholar

  • 35.

    Aslam, M. N., Amjed, N., Qaim, S. M.: Evaluation of excitation functions of the 68,67,66Zn(p,xn)68,67,66Ga and 67Zn(p,α)64Cu reactions: validation of evaluated data through comparison with experimental excitation functions of the natZn(p,x)66,67Ga and natZn(p,x)64Cu processes. Appl. Radiat. Isotopes 96, 102 (2015).CrossrefGoogle Scholar

  • 36.

    Rösch, F., Qaim, S. M., Stöcklin, G.: Production of the positron emitting radioisotope 86Y for nuclear medical application. Appl. Radiat. Isotopes 44, 677 (1993).CrossrefGoogle Scholar

  • 37.

    Rösch, F., Qaim, S. M., Stöcklin, G.: Nuclear data relevant to the production of the positron emitting radioisotope 86Y via the 86Sr(p,n)- and natRb(3He,xn)-processes. Radiochim. Acta 61, 1 (1993).CrossrefGoogle Scholar

  • 38.

    Kettern, K., Linse, K.-H., Spellerberg, S., Coenen, H. H., Qaim, S. M.: Radiochemical studies relevant to the production of 86Y and 88Y at a small-sized cyclotron. Radiochim. Acta 90, 845 (2002).Google Scholar

  • 39.

    Kandil, S. A., Scholten, B., Hassan, K. F., Hanafi, H. A., Qaim, S. M.: A comparative study on the separation of radioyttrium from Sr- and Rb-targets via ion-exchange and solvent extraction techniques, with special reference to the production of no-carrier-added 86Y, 87Y and 88Y using a cyclotron. J. Radioanal. Nucl. Chem. 279, 823 (2009).CrossrefGoogle Scholar

  • 40.

    Nayak, T. K., Brechbiel, M. W.: 86Y based PET radiopharmaceuticals: radiochemistry and biological applications. Med. Chem. 7, 380 (2011).CrossrefPubMedGoogle Scholar

  • 41.

    Huang, J., Cui, L., Wang, F., Liu, Z.: PET tracers based on 86Y. Curr. Radiopharm. 4, 122 (2011).CrossrefPubMedGoogle Scholar

  • 42.

    Zaneb, H., Hussain, M., Amjed, N., Qaim, S. M.: Nuclear model analysis of excitation functions of proton induced reactions on 86Sr, 88Sr and natZr: evaluation of production routes of 86Y. Appl. Radiat. Isotopes 104, 232 (2015).CrossrefGoogle Scholar

  • 43.

    Herzog, H., Rösch, F., Stöcklin, G., Lueders, C., Qaim, S. M., Feinendegen, L. E.: Measurement of pharmacokinetics of yttrium-86 radiopharmaceuticals with PET and radiation dose calculation of analogous yttrium-90 radiotherapeutics. J. Nucl. Med. 34, 2222 (1993).PubMedGoogle Scholar

  • 44.

    Rösch, F., Herzog, H., Qaim, S.: The beginning and development of the theranostic approach in nuclear medicine, as exemplified by the radionuclide pair 86Y and 90Y. Pharmaceuticals 10, 56 (2017).CrossrefGoogle Scholar

  • 45.

    Kandil, S. A., Scholten, B., Saleh, Z. A., Youssef, A. M., Qaim, S. M., Coenen, H. H.: A comparative study on the separation of radiozirconium via ion-exchange and solvent extraction techniques, with particular reference to the production of 88Zr and 89Zr in proton induced reactions on yttrium. J. Radioanal. Nucl. Chem. 274, 45 (2007).CrossrefGoogle Scholar

  • 46.

    Kandil, S. A., Spahn, I., Scholten, B., Saleh, Z. A., Saad, S. M. M., Coenen, H. H., Qaim, S. M.: Excitation functions of (α,xn) reactions on natRb and natSr from threshold up to 26 MeV: possibility of production of 87Y, 88Y and 89Zr. Appl. Radiat. Isotopes 65, 561 (2007).CrossrefGoogle Scholar

  • 47.

    Deri, M. A., Zeglis, B. M., Francesconi, L. C., Lewis, J. S.: PET imaging with 89Zr: From radiochemistry to the clinic. Nucl. Med. Biol. 40, 3 (2013).CrossrefGoogle Scholar

  • 48.

    Bucurescu, D., von Egidy, T.: Nuclear level density predictions. EPJ Web Conf. 93, 6003 (2015).CrossrefGoogle Scholar

  • 49.

    Lilley, J.: Nuclear Physics: Principles and Applications. John Wiley and Sons Ltd., London (2001), p. 412.Google Scholar

  • 50.

    Gilbert, A., Cameron, A. G. W.: A composite nuclear-level density formula with shell corrections. Can. J. Phys. 43, 1446 (1965).CrossrefGoogle Scholar

  • 51.

    Ignatyuk, A. V., Istekov, K. K., Smirenkin, G. N.: Role of the collective effects in a systematics of nuclear level density. Yad. Fiz. 29, 875 (1979).Google Scholar

  • 52.

    Baba, H.: A shell-model nuclear level density. Nucl. Phys. A 159, 625 (1970).CrossrefGoogle Scholar

  • 53.

    Dilg, W., Schantl, W., Vonach, H., Uhl, M.: Level density parameters for the back-shifted Fermi gas model in the mass range 40<A<250. Nucl. Phys. A 217, 269 (1973).CrossrefGoogle Scholar

  • 54.

    Ignatyuk, A. V., Smirenkin, G. N., Tishin, A. S.: Phenomenological description of energy dependence of the level density parameter. Yad. Fiz. 21, 485 (1975).Google Scholar

  • 55.

    Koning, A. J., Hilaire, S., Goriely, S.: Global and local level density models. Nucl. Phys. A 810, 13 (2008).CrossrefGoogle Scholar

  • 56.

    Goriely, S., Hilaire, S., Koning, A. J.: Improved microscopic nuclear level densities within the Hartree-Fock-Bogoliubov plus combinatorial method. Phys. Rev. C 78, 064307 (2008).CrossrefGoogle Scholar

  • 57.

    Hilaire, S., Goriely, S.: Global microscopic nuclear level densities within the HFB plus combinatorial method for practical applications. Nucl. Phys. A 779, 63 (2006).CrossrefGoogle Scholar

  • 58.

    Hilaire, S., Girod, M., Goriely, S., Koning, A. J.: Temperature-dependent combinatorial level densities with the D1M Gogny force. Phys. Rev. C 86, 064317 (2012).CrossrefGoogle Scholar

  • 59.

    Fermi, E.: Zur Quantelung des idealen einatomigen Gases. Z. Phys. 36, 902 (1926).CrossrefGoogle Scholar

  • 60.

    Koning, A. J., Delaroche, J. P.: Local and global nucleon optical models from 1 keV to 200 MeV. Nucl. Phys. A 713, 231 (2003).CrossrefGoogle Scholar

  • 61.

    McFadden, L., Satchler, G. R.: Optical-model analysis of the scattering of 24.7 MeV alpha particles. Nucl. Phys. 84, 177 (1966).CrossrefGoogle Scholar

  • 62.

    Demetriou, P., Grama, C., Goriely, S.: Improved global α-optical model potentials at low energies. Nucl. Phys. A 707, 253 (2002).CrossrefGoogle Scholar

  • 63.

    Avrigeanu, V., Avrigeanu, M., Mănăilescu, C.: Further explorations of the α-particle optical model potential at low energies for the mass range A≈45–209. Phys. Rev. C 90, 044612 (2014).CrossrefGoogle Scholar

  • 64.

    Özdoğan, H.: 181Ta(α,xn) Reaksiyonu Tesir Kesitlerinin İncelenmesi. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 13, 54 (2018).CrossrefGoogle Scholar

  • 65.

    Nolte, M., Machner, H., Bojowald, J.: Global optical potential for α particles with energies above 80 MeV. Phys. Rev. C 36, 1312 (1987).CrossrefGoogle Scholar

  • 66.

    Avrigeanu, V., Hodgson, P. E., Avrigeanu, M.: Global optical potentials for emitted alpha particles. Phys. Rev. C 49, 2136 (1994).CrossrefGoogle Scholar

  • 67.

    D’Auria, J. M., Fluss, M. J., Kowalski, L., Miller, J. M.: Reaction cross-section for low-energy alpha particles on 59Co. Phys. Rev. 168, 1224 (1968).CrossrefGoogle Scholar

  • 68.

    Zhukova, O. A., Kanashevich, V. I., Laptev, S. V., Chursin, G. P.: Nuclear reactions produced by α particles on 59Co nuclei. Yad. Fiz. 16, 242 (1972).Google Scholar

  • 69.

    Skulski, W., Fornal, B., Broda, R., Jastrzebski, J., Koczoń, P., Kownacki, J., Opacka, M., Pawłat, T., Pieńkowski, L., Płóciennik, W., Sieniawski, J., Singh, P. P., Styczeń, J., Wrzesiński, J.: Mass and charge release by the evaporation of particles from compound nuclei around mass 60. Z. Phys. A 342, 61 (1992).CrossrefGoogle Scholar

  • 70.

    Silva, O. R. J.: Prog: U. C., Lawrence Rad. Lab. (Berkeley and Livermore), No.8678, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America (1959).Google Scholar

  • 71.

    Tanaka, S.: Reactions of Nickel with Alpha-Particles. J. Phys. Soc. Japan 15, 2159 (1960).CrossrefGoogle Scholar

  • 72.

    Bryant, E. A., Cochran, D. R. F., Knight, J. D.: Excitation functions of reactions of 7- to 24-MeV 3He ions with 63Cu and 65Cu. Phys. Rev. 130, 1512 (1963).CrossrefGoogle Scholar

  • 73.

    Graf, H. P., Münzel, H.: Excitation functions for α-particle reactions with molybdenum isotopes. J. Inorg. Nucl. Chem. 36, 3647 (1974).CrossrefGoogle Scholar

  • 74.

    Mohan Rao, A. V., Mukherjee, S., Rama Rao, J.: Alpha particle induced reactions on copper and tantalum. Pramana 36, 115 (1991).CrossrefGoogle Scholar

  • 75.

    Levkovski, V. N.: Act.Cs. by Protons and Alphas, Cross-Sections of Medium Mass Nuclide Activation (A=40–100) by Medium Energy Protons and Alpha-Particles (E=10–50 MeV). Inter-Vesi, Moscow (1991).Google Scholar

  • 76.

    Singh, N. L., Patel, B. J., Somayajulu, D. R. S., Chintalapudi, S. N.: Analysis of the excitation functions of (α, xnyp) reactions on natural copper. Pramana 42, 349 (1994).CrossrefGoogle Scholar

  • 77.

    Mukherjee, S., Kumar, B. B., Singh, N. L.: Excitation functions of alpha particle induced reactions on aluminium and copper. Pramana 49, 253 (1997).CrossrefGoogle Scholar

  • 78.

    Porile, N. T.: Excitation functions for alpha-induced reactions on zinc-64. Phys. Rev. 116, 1620 (1959).CrossrefGoogle Scholar

  • 79.

    Ruddy, F. H., Pate, B. D.: Formation and decay of the compound nucleus 68Ge. Nucl. Phys. A 127, 305 (1969).CrossrefGoogle Scholar

  • 80.

    Abu Issa, N. N., Antropov, A. E., Gusev, V. P., Zarubin, P. P., Kolozhvari A. A., Smirnov, A. V.: The excitation function analysis of alpha-particles- production on nuclei 64,66,68Zn with energy 14.8–24.4 MeV. 39th Meeting on Nuclear Spectroscopy and the Structure of the Atomic Nucleus, Tashkent, Nauka Publishing (1989), p. 350.Google Scholar

  • 81.

    Gyurky, G., Mohr, P., Fülöp, Z., Halász, Z., Kiss, G. G., Szücs, T., Somorjai, E.: Relation between total cross-sections from elastic scattering and α-induced reactions: The example of 64Zn. Phys. Rev. C 86, 041601 (2012).CrossrefGoogle Scholar

  • 82.

    Guin, R., Das, S. K., Saha, S. K.: Cross-sections and linear momentum transfer in α-induced reactions on 85Rb. Radiochim. Acta 88, 435 (2000).Google Scholar

About the article

Received: 2019-05-07

Accepted: 2019-10-02

Published Online: 2019-11-19

Citation Information: Radiochimica Acta, 20193169, ISSN (Online) 2193-3405, ISSN (Print) 0033-8230, DOI: https://doi.org/10.1515/ract-2019-3169.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in