Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Radiology and Oncology

The Journal of Association of Radiology and Oncology

4 Issues per year


IMPACT FACTOR 2016: 1.681
5-year IMPACT FACTOR: 1.723

CiteScore 2016: 1.70

SCImago Journal Rank (SJR) 2016: 0.538
Source Normalized Impact per Paper (SNIP) 2016: 0.921


Open Access
Online
ISSN
1581-3207
See all formats and pricing
More options …
Volume 45, Issue 2 (Jun 2011)

Issues

Microsatellite instability in colorectal cancer

Matej Horvat / Borut Stabuc
Published Online: 2011-03-15 | DOI: https://doi.org/10.2478/v10019-011-0005-8

Microsatellite instability in colorectal cancer

Background. Colorectal cancer (CRC) is the third most common cancer in the world. In 75% CRC develops sporadically, in 25% hereditary or as a consequence of inflammatory bowel disease. CRC carcinogenesis develops over many years. The cause of CRC in 85% is chromosomal instability (CIN) and in 15% microsatellite instability (MSI-H), where hereditary nonpolyposis colorectal cancer (HNPCC) represents 10-20%. Microsatellite sequences (MS) are repeated sequences of short stretches of DNA all over the genome. Microsatellite stability (MSS) means MS are the same in each cell of an individual, whereas microsatellite instability (MSI-H) means MS differ in normal and cancer cells of an individual. The cause of MSI-H is a damaged mismatch repair mechanism (MMR), with the most important MMR proteins being MSH2, MLH1 and MSH6.

Conclusions. MSI-H seems to be an important prognostic factor in CRC and an important predictive factor of CRC chemotherapeutic treatment efficacy. Clinical trials conducted until now have shown contradictory findings in different chemotherapeutic settings, adjuvant and palliative; therefore MSI-H is going to be the object of the future research. The future of cancer treatment is in the individualized therapy based on molecular characteristics of the tumour, such as MSI-H in CRC.

Keywords: colorectal cancer; microsatellite instability; chemotherapy

  • Weitz J, Koch M, Debus J, Höhler T, Galle PR, Büchler MW. Colorectal cancer. Lancet 2005; 365: 153-65.Google Scholar

  • Primic-Žakelj M, Zadnik V, Žagar T, Zakotnik B. Survival of cancer patients, diagnosed in 1991-2005 in Slovenia. Ljubljana: Institute of Oncology Ljubljana, Cancer Registry of Republic of Slovenia; 2009.Google Scholar

  • Cancer incidence in Slovenia 2007. Ljubljana: Institute of Oncology Ljubljana, Cancer Registry of Republic of Slovenia; 2010.Google Scholar

  • Velenik V. Post-treatment surveillance in colorectal cancer. Radiol Oncol 2010; 44: 135-41.PubMedGoogle Scholar

  • Zhou YL, Boardman LA, Miller RC. Genetic testing for young-onset colorectal cancer: case report and evidence-based clinical guidelines. Radiol Oncol 2010; 44: 57-61.PubMedGoogle Scholar

  • Fearon ER, Vogelstein B. A genetic model for colorectal tumourogenesis. Cell 1990; 61: 759-67.CrossrefGoogle Scholar

  • West NJ, Courtney EDY, Poullis AP, Leicester RJ. Apoptosis in the colonic crypt, colorectal adenomata, and manipulation by chemoprevention. Cancer Epidemiol Biomarkers Prev 2009; 18: 1680-7.PubMedCrossrefGoogle Scholar

  • Duval A, Hamelin R. Mutations at coding repeat sequences in mismatch repair-deficient human cancers: toward a new concept of target genes for instability. Cancer Res 2002; 62: 2447-54.PubMedGoogle Scholar

  • Lynch JP, Hoops TC. The genetic pathogenesis of colorectal cancer. Hemat Oncol Clin N Am 2002; 16: 775-810.CrossrefGoogle Scholar

  • Kondo Y, Issa JPJ. Epigenetic changes in colorectal cancer. Cancer Met Rev 2004; 23: 29-39.CrossrefGoogle Scholar

  • Kozuka S, Nogaki M, Ozeki T, Masumori S. Premalignancy of the mucosal polyp in the large intestine. Estimation of the periods required for malignant transformation of mucosal polyps. Dis Colon Rectum 1975; 18: 494-500.CrossrefPubMedGoogle Scholar

  • Kinzler K, Vogelstein B. Gatekeepers and caretakers. Nature 1997; 386: 761-3.Google Scholar

  • Grady WM. Genomic instability and colon cancer. Cancer Metast Rev 2004; 23: 11-27.CrossrefGoogle Scholar

  • Stoler DL, Chen N, Basik M, Kahlenberg MS, Rodriguez-Bigas MA, Petrelli NJ, et al. The onset and extent of genomic instability in sporadic colorectal tumour progression. Proc Natl Acad Sci USA 1999; 96: 15121-6.CrossrefGoogle Scholar

  • Law DJ, Olschwang S, Monpezat J-P. Concerted nonsystemic allelic loss in human colorectal carcinoma. Science 1988; 241: 961-5.Google Scholar

  • Paulovich AG, Toczyski DP, Hartwell LH. When checkpoints fail. Cell 1997; 88: 315-21.PubMedCrossrefGoogle Scholar

  • Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, et al. Genetic alterations during colorectal tumour development. N Engl J Med 1988; 319: 525-32.Google Scholar

  • Powell SM, Zilz N, Beazer-Barclay Y. APC mutations occur early during colorectal oncogenesis. Nature 1992; 359: 235-7.Google Scholar

  • Lenglauer C, Kinzler KW, Vogelstein B. Genetic instability in colorectal cancers. Nature 1997; 386: 623-7.Google Scholar

  • Jass JR, Whitehall VLJ, Young J, Leggett BA. Emerging concepts in colorectal neoplasia. Gastroenterology 2002; 123: 862-76.Google Scholar

  • Thibodeau SN, Bren G, Schaid D. Microsatellite instability in cancer of the proximal colon. Science 1993; 260: 816-9.Google Scholar

  • Worthley DL, Leggett BA. Colorectal cancer: Molecular features and clinical opportunities. Clin Biochem Rev 2010; 31: 31-8.PubMedGoogle Scholar

  • De la Chapelle A, Hampel H. Clinical relevance of microsatellite instability in colorectal cancer. J Clin Oncol 2010; 28: 3380-7.Google Scholar

  • Radman M, Wagner R. Carcinogenesis. Missing mismatch repair. Nature 1993; 366: 722.Google Scholar

  • McClulloch SD, Kunkel TA. The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res 2008; 18: 148-61.CrossrefGoogle Scholar

  • Eshleman JR, Markowitz SD. Mismatch repair defects in human carcinogenesis. Hum Mol Genet 1996; 5: 1489-94.PubMedGoogle Scholar

  • Umar A, Boland CR, Terdiman JP. Revised Bethesda guidelines for hereditary non-poliposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 2004; 96: 261-8.CrossrefGoogle Scholar

  • Jover R, Zapater P, Castells A, Llor X, Andreu M, Cubiella J, et al. Mismatch repair status in the prediction of benefit from adjuvant Flourouracil chemotherapy in colorectal cancer. Gut 2006; 55: 848-55.CrossrefGoogle Scholar

  • Niv Y. Microsatellite instability and MLH1 promoter hypermetalition in colorectal cancer. World J Gastroenterol 2007; 13: 1767-9.Google Scholar

  • Liang JT, Huang KC, Lai HS, Lee PH, Cheng YM, Hsu HC, et al. High frequency microsatellite instability predicts better chemosensitivity to high dose 5-fluorouracil plus Leucovorin chemotherapy for stage IV sporadic colorectal cancer after palliative bowel resection. Int J Cancer 2002; 101: 519-25.PubMedCrossrefGoogle Scholar

  • Markowitz S, Wang J Myeroff L, Parsons R, Sun L, Lutterbaugh J, et al. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 1995; 268: 1336-8.Google Scholar

  • Lawes DA, SenGupta S, Boulos PB. The clinical importance and prognostic implications of microsatellite instability in sporadic cancer. Eur J Surg Oncol 2003; 29: 201-12.PubMedCrossrefGoogle Scholar

  • Modrich P. Mechanisms and biological effects of mismatch repair. Ann Rev Genet 1991; 25: 229-53.CrossrefGoogle Scholar

  • Joseph N, Duppatla V, Rao DN. Prokaryotic DNA mismatch repair. Prog Nucleic Acid Res 2006; 81: 1-49.Google Scholar

  • Iyer R, Pluciennik A, Modrich P, Modrich PL. DNA mismatch repair: functions and mechanisms. Chem Rev 2006; 106: 302-23.CrossrefPubMedGoogle Scholar

  • Hsieh P, Yamane K. DNA mismatch repair: Molecular mechanisms, cancer and ageing. Mech Ageing Dev 2008; 129: 391-407.Google Scholar

  • Shibata D, Peinado MA, Ionov Y, Malkhosyan S, Perucho M. Genomic instability in repeated sequences is an early somatic event in colorectal tumorogenesis that persists after transformation. Nat Genet 1994; 6: 273-81.CrossrefGoogle Scholar

  • Warusavitarne J, Schnitzler M. The role of chemotherapy in microsatellite unstable (MSI-H) colorectal cancer. Int J Colorectal Dis 2007; 22: 739-48.CrossrefPubMedGoogle Scholar

  • Aaltonen LA, Peltomaki P, Leach FS, Sistonen P, Pylkkänen L, Mecklin JP, et al. Clues to the pathogenesis of familial colorectal cancer. Science 1993; 260: 812-6.Google Scholar

  • Gryfe R, Kim H, Hsieh ETK, Aronson MD, Holowaty EJ, Bull SB et al. Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N Engl J Med 2000; 342: 69-77.Google Scholar

  • Hemminki A, Mecklin JP, Jarvinen H, Aaltonen LA, Joensuu H. Microsatellite instability is a favorable prognostic indicator in patients with colorectal cancer receiving chemotherapy. Gastroenterology 2000; 119: 921-8.Google Scholar

  • Popat S, Hubner R, Houlston RS. Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol 2005; 23: 609-18.PubMedGoogle Scholar

  • Lim SB, Jeong SY, Lee MR, Ku JL, Shin YK, Kim WH, et al. Prognostic signifance of microsatellite instability in sporadic colorectal cancer. Int J Colorectal Dis 2004; 19: 533-7.CrossrefGoogle Scholar

  • Fink D, Nebel S, Aebi S, Zheng H, Cenni B, Nehmé A, et al. The role of DNA mismatch repair in platinum drug resistance. Cancer Res 1996; 56: 4881-6.PubMedGoogle Scholar

  • Vaisman A, Varchenko M, Umar A, Kunkel TA, Risinger JI, Barrett JC, et al. The role of hMLH1, hMSH3 and hMSH6 defects in Cisplatin and Oxaliplatin resistance: correlation with replicative bypass of platinum-DNA adducts. Cancer Res 1998; 58: 3579-85.Google Scholar

  • Bras-Goncalves RA, Rosty C, Laurent-Puig P, Soulié P, Dutrillaux B, Poupon MF. Sensitivity to CPT-11 of xenografted human colorectal cancers as a function of microsatellite instability and p53 status. Br J Cancer 2000; 82: 913-23.Google Scholar

  • Aebi S, Kurdi-Haidar B, Gordon R, Cenni B, Zheng H, Fink D, et al. Loss of DNA mismatch repair in acquired resistance to Cisplatin. Cancer Res 1996; 56: 3087-90.PubMedGoogle Scholar

  • Fallik D, Borrini F, Boige V, Viguier J, Jacob S, Miquel C, et al. Microsatellite instability is a predictive factor of the tumor response to Irinotecan in patients with advanced colorectal cancer. Cancer Res 2003; 63: 5738-44.PubMedGoogle Scholar

  • Rothenberg ML, Meropol NJ, Poplin EA, Van Cutsem E, Wadler S. Mortality associated with Irinotecan plus bolus Flourouracil/Leucovorin. Summary findings of an independent panel. J Clin Oncol 2001; 19: 3801-7.Google Scholar

  • Braun MS, Richman SD, Thompson L, Daly CL, Meade AM, Adlard JW, et al. Association of molecular markers with toxicity outcomes in a randomized trial of chemotherapy for advanced colorectal cancer: The FOCUS trial. J Clin Oncol 2009; 27: 5519-28.CrossrefGoogle Scholar

  • Ocvirk J. Advances in the treatment of metastatic colorectal carcinoma. Radiol Oncol 2009; 43: 1-8.CrossrefGoogle Scholar

  • Adlard JW, Richman SD, Seymour MT, Quirke P. Prediction of the response of colorectal cancer to systemic therapy. Lancet Oncol 2002; 8: 75-82.CrossrefGoogle Scholar

  • Fischer F, Baerenfaller K, Jiricny J. 5-flourouracil is efficiently removed from DNA by the base excision and mismatch repair systems. Gastroenterology 2007; 133: 1858-68.Google Scholar

  • Ricciardiello L, Ceccarelli C, Angiolini G, Pariali M, Chieco P, Paterini P, et al. High tymidylate synthase expression in colorectal cancer with microsatellite instability: implications for chemotherapeutic strategies. Clin Cancer Res 2005; 11: 4234-40.CrossrefGoogle Scholar

  • Tajima A, Hess MT, Cabrera BL, Kolodner RD, Carethers JM. The mismatch repair complex hMutS alpha recognizes 5-flourouracil modified DNA: implications for chemosensitivity and resistance. Gastroenterology 2004; 127: 1678-84.CrossrefGoogle Scholar

  • Carethers JM, Chauhan DP, Fink D, Nebel S, Bresalier RS, Howell SB, et al. Mismatch repair proficiency and in vitro response to 5-flourouracil. Gastroenterology 1999; 117: 123-31.Google Scholar

  • Kirchner T, Jung A. Pathologische Diagnostik fuer die individualisierte Therapie des Dickdarmkarzinoms. Pathologe 2010; 31: 16-21.CrossrefGoogle Scholar

  • Jover R, Zapater P, Castells A, Llor X, Andreu M, Cubiella J, et al. The efficacy of adjuvant chemotherapy with 5-flourouracil in colorectal cancer depends on the mismatch repair status. Eur J Cancer 2009; 45: 365-73.CrossrefGoogle Scholar

  • Ribic CM, Sargent DJ, Moore MJ, Thibodeau SN, French AJ, Goldberg RM, et al. Tumor microsatellite-instability status as a predictor of benefit from Flourouracil-based adjuvant chemotherapy for colon cancer. N Eng J Med 2003; 349: 247-57.Google Scholar

  • Magrini R, Bhonde MR, Hanski M, Notter M, Scherübl H, Boland CR. Cellular effects of CPT-11 on colon carcinoma cells: dependence on p53 and hMLH1 status. Int J Cancer 2002; 101: 23-31.Google Scholar

  • Chamara M, Edmonston TB, Burkholder S, Walters R, Anne P, Mitchell E, et al. Microsatellite status and cell cycle associated markers in rectal cancer patients undergoing combined regimen of 5-FU and CPT-11 chemotherapy and radiotherapy. Anticancer Res 2004; 24: 3161-7.Google Scholar

  • Fink D, Aebi S, Howell SB. The role of DNA mismatch repair in drug resistance. Cancer Res 1998; 4: 1-6.Google Scholar

  • Claij N, te Riele H. Microsatellite instability in human cancer: a prognostic marker for chemotherapy? Exp Cell Res 1999; 246: 1-10.Google Scholar

  • Des Guetz G, Schischmanoff O, Nicolas P, Perret GY, Morere JF, Uzzan B. Does microsatellite instability predict the efficacy of adjuvant chemotherapy in colorectal cancer? A systematic review with meta-analysis. Eur J Cancer 2009; 45: 1890-6.CrossrefPubMedGoogle Scholar

  • Des Guetz G, Uzzan B, Nicolas P, Schischmanoff O, Perret GY, Morere JF. Microsatellite instability does not predict the efficacy of chemotherapy in metastatic colorectal cancer. A systematic review and meta-analysis. Anticancer Res 2009; 29: 1615-20.PubMedGoogle Scholar

  • Des Guetz G, Mariani P, Cucherousset J, Benamoun M, Lagorce C, Sastre X et al. Microsatellite instability and sensitivity to FOLFOX treatment in metastatic colorectal cancer. Anticancer Res 2007; 27: 2715-19.Google Scholar

  • Guastadisegni C, Colafranceschi M, Ottini L, Dogliotti E. Microsatellite instability as a marker of prognosis and response to therapy. A meta analysis of colorectal cancer survival data. Eur J Cancer 2010; 46: 2788-98.CrossrefPubMedGoogle Scholar

  • Sinicrope F, Foster NR, Sargent DJ, Thibodeau SN, Smyrk TC, O'Connell MJ et al. Model-based prediction of defective DNA mismatch repair using clinicopathological variables in sporadic colon cancer patients. Cancer 2010; 116: 1691-8.PubMedCrossrefGoogle Scholar

About the article


Published Online: 2011-03-15

Published in Print: 2011-06-01


Citation Information: Radiology and Oncology, ISSN (Online) 1581-3207, ISSN (Print) 1318-2099, DOI: https://doi.org/10.2478/v10019-011-0005-8.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Josep J. Centelles
ISRN Oncology, 2012, Volume 2012, Page 1
[2]
Cui-Zhen Fan, Yu-Ping Chu, Ping Wei, Hong Dai, and Wenming Chen
Radiology and Oncology, 2011, Volume 45, Number 4
[3]
Irena Oblak, Franc Anderluh, Vaneja Velenik, Barbara Mozina, Janja Ocvirk, Eva Ciric, and Natasa Podvrsnik
Radiology and Oncology, 2011, Volume 45, Number 3

Comments (0)

Please log in or register to comment.
Log in