Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Radiology and Oncology

The Journal of Association of Radiology and Oncology

4 Issues per year


IMPACT FACTOR 2016: 1.681
5-year IMPACT FACTOR: 1.723

CiteScore 2016: 1.70

SCImago Journal Rank (SJR) 2016: 0.538
Source Normalized Impact per Paper (SNIP) 2016: 0.921


Open Access
Online
ISSN
1581-3207
See all formats and pricing
More options …
Volume 45, Issue 2 (Jun 2011)

Issues

CD133/prominin1 is prognostic for GBM patient's survival, but inversely correlated with cysteine cathepsins' expression in glioblastoma derived spheroids

Seyed Ardebili / Irena Zajc
  • Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Boris Gole
  • Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Benito Campos
  • Division of Neurosurgical Research, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christel Herold-Mende
  • Division of Neurosurgical Research, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sara Drmota
  • Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
  • Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tamara Lah
  • Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
  • Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-06-03 | DOI: https://doi.org/10.2478/v10019-011-0015-6

CD133/prominin1 is prognostic for GBM patient's survival, but inversely correlated with cysteine cathepsins' expression in glioblastoma derived spheroids

Introduction. CD133 is a marker for a population of glioblastoma (GBM) and normal neural stem cells (NNSC). We aimed to reveal whether the migratory potential and differentiation of these stem cells is associated with CD133 expression and with cathepsin proteases (Cats).

Materials and methods. The invasiveness of normal NNSC, GBM/CD133+ cell lines and GBM spheroids was evaluated in 3D collagen, as well as of U87-MG and normal astrocytes (NHA) grown in monolayers in 2D Matrigel. Expression of Cats B, L and S was measured at mRNA and activity levels and their relation to invasiveness, to CD133 mRNA in 26 gliomas, and to the survival of these patients.

Results. The average yield of CD133+ cells from GBM samples was 9.6%. Survival of patients with higher CD133 mRNA expression was significantly shorter (p< 0.005). Invasion, associated with proteolytic degradation of matrix, was higher in normal stem cells and GBM spheroids and cells than in isolated GBM CD133+ cells. In glioma samples, there was no correlation between CD133 mRNA expression and Cat mRNAs, but there was an inverse correlation with Cat activities.

Conclusions. The study confirms CD133 as a prognostic marker for the survival of GBM patients. We demonstrated that NNSC have higher invasion potential and invade the collagen matrix in a mode different from that of GBM, initiating stem cell spheres. This result could have implications for the design of new therapeutics, including protease inhibitors that specifically target invasive tumour stem cells. Increased activity of cathepsins in CD133- cells suggests their role in the invasive behaviour of GBM.

Keywords: CD133/prominin1; cysteine cathepsins; glioblastoma; glioma stem cells; invasion; neural stem cells

  • Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007; 114: 97-109.PubMedCrossrefGoogle Scholar

  • Pilkington GJ. Cancer stem cells in the mammalian central nervous system. Cell Prolif 2005; 38: 423-33.CrossrefPubMedGoogle Scholar

  • Baur M, Preusser M, Piribauer M, Elandt K, Hassler M, Hudec M. Frequent MGMT (0(6)-methylguanine-DNA methyltransferase) hypermethylation in long-term survivors of glioblastoma: a single institution experience. Radiol Oncol 2010; 44: 113-20.Web of SciencePubMedGoogle Scholar

  • Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105-11.Google Scholar

  • Bjerkvig R, Tysnes BB, Aboody KS, Najbauer J, Terzis AJ. Opinion: the origin of the cancer stem cell: current controversies and new insights. Nat Rev Cancer 2005; 5: 899-904.PubMedCrossrefGoogle Scholar

  • Huse JT, Holland EC. Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nature Rev Cancer 2010; 10: 319-31.CrossrefWeb of ScienceGoogle Scholar

  • Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006; 444: 756-9.Google Scholar

  • Brabletz T, Jung A, Spaderna SW, Hlubek F, Kirchner T. Migrating cancer stem cells - an integrated concept of malignant tumour progression. Nat Rev Cancer 2005; 5: 744-9.PubMedCrossrefGoogle Scholar

  • Cheng JX, Liu BL, Zhang X. How powerful is CD133 as a cancer stem cell marker in brain tumors? Cancer Treat Rev 2009; 35: 403-8.PubMedGoogle Scholar

  • Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003; 63: 5821-8.PubMedGoogle Scholar

  • Das S, Srikanth M, Kessler JA. Cancer stem cells and glioma. Nat Clin Pract Neurol 2008; 4: 427-35.PubMedCrossrefGoogle Scholar

  • Joo KM, Kim SY, Jin X, Song SY, Kong DS, Lee JI, et al. Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas. Lab Invest 2008; 88: 808-15.Web of SciencePubMedGoogle Scholar

  • Beier D, Hau P, Proeschold M, Lohmeier A, Wischhusen J, Oefner PJ, et al. CD133+ and CD133- glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 2007; 67: 4010-5.PubMedWeb of ScienceGoogle Scholar

  • Wang J, Sakariassen PØ, Tsinkalovsky O, Immervoll H, Bøe SO, Svendsen A, et al. CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int J Cancer 2008; 122: 761-8.PubMedGoogle Scholar

  • Prestegarden L, Svendsen A, Wang J, Sleire L, Skaftnesmo KO, Bjerkvig R, et al. Glioma cell populations grouped by different cell type markers drive brain tumor growth. Cancer Res 2010; 70: 4274-9.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Koblinski JE, Ahram M, Sloane BF. Unraveling the role of proteases in cancer. Clin Chim Acta 2000; 291: 113-35.Web of ScienceGoogle Scholar

  • Lah TT, Durán Alonso MB, Van Noorden CJ. Antiprotease therapy in cancer: hot or not? Expert Opin Biol Ther 2006; 6: 257-79.CrossrefPubMedGoogle Scholar

  • Gocheva V, Joyce JA. Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle 2007; 6: 60-4.Web of SciencePubMedCrossrefGoogle Scholar

  • Levicar N, Nutall RK. Lah TT. Proteases in brain tumour progression. Acta Neurochir 2003; 145: 825-38.CrossrefGoogle Scholar

  • Vranic A. Antigen expression on recurrent meningioma cells. Radiol Oncol 2010; 44: 107-12.PubMedWeb of ScienceGoogle Scholar

  • Lah T, Obermajer N, Duran-Alonso MB, Kos J. Cysteine cathepsins and cystatins as cancer biomarkers. In: Edwards DR, editor. The cancer degradome: proteases and cancer biology. New York: Springer; 2008. p. 585-23.Google Scholar

  • http://www.merops.ec.uk

  • Strojnik T, Kavalar R, Trinkaus M, Lah TT. Cathepsin L in glioma progression: comparison with cathepsin B. Cancer Detect Prev 2005; 29: 448-55.PubMedCrossrefGoogle Scholar

  • Colin C, Voutsinos-Porche B, Nanni I, Fina F, Metellus PH, Intagliata D, et al. High expression of cathepsin B and plasminogen activator inhibitor type-1 are strong predictors of survival in glioblastomas. Acta Neuropathol 2009; 118: 745-54.Web of ScienceCrossrefGoogle Scholar

  • Gole B, Durán Alonso MB, Dolenc V, Lah TT. Post-translational regulation of cathepsin B, but not other cysteine cathepsins, contributes to increase glioblastoma cell invasion in vitro. Pathol Oncol Res 2009; 15: 711-23.Web of ScienceCrossrefGoogle Scholar

  • Sivaparvathi M, Yamamoto M, Nicolson GL, Gokaslan ZL, Fuller GN, Liotta LA, et al. Expression and immunohistochemical localization of cathepsin L during the progression of human gliomas. Clin Exp Metastasis 1996; 14: 27-34.CrossrefPubMedGoogle Scholar

  • Lah TT, Strojnik T, Levicar N, Bervar A, Zajc I, Pilkington G, et al. Clinical and experimental studies of cysteine cathepsins and their inhibitors in human brain tumors. Int J Biol Markers 2000; 15: 90-3.PubMedGoogle Scholar

  • Levičar N, Dewey RA, Daley E, Bates TE, Davies D, Kos J, et al. Selective suppression of cathepsin L by antisense cDNA impairs human brain tumor cell invasion in vitro and promotes apoptosis. Cancer Gene Ther 2003; 10: 141-51.CrossrefPubMedGoogle Scholar

  • Zajc I, Hreljac I, Lah T. Cathepsin L affects apoptosis of glioblastoma cells: a potential implication in the design of cancer therapeutics. Anticancer Res 2006; 26: 3357-64.Google Scholar

  • Flannery T, McQuaid S, McGoohan C, McConnell RS, McGregor G, Mirakhur M, et al. Cathepsin S expression: An independent prognostic factor in glioblastoma tumours-A pilot study. Int J Cancer 2006; 119: 854-60.CrossrefPubMedGoogle Scholar

  • Kos J, Lah TT. Cystatins in cancer. In: Žerovnik E, Kopitar-Jerala N (eds). Human Stefins and Cystatins. New York: Nova Science Publishers Inc; 2006. p. 152-65.Google Scholar

  • Sakariassen PØ, Prestegarden L, Wang J, Skaftnesmo KO, Mahesparan R, Molthoff C, et al. Angiogenesis-independent tumor growth mediated by stem-like cancer cells. Proc Natl Acad Sci USA 2006; 103: 16466-71.CrossrefGoogle Scholar

  • Palmer TD, Schwartz PH, Taupin P, Kaspar B, Stein SA, Gage FH. Progenitor cells from human brain after death. Nature 2001; 411: 42-3.Google Scholar

  • Campos B, Wan F, Farhadi M, Ernst A, Zeppernick F, Tagscherer KE, et al. Differentiation therapy exerts antitumour effects on stem-like glioma cells. Clin Cancer Res 2010; 16: 2715-28.CrossrefGoogle Scholar

  • Demuth T, Rennert JL, Hoelzinger DB, Reavie LB, Nakada M, Beaudry C, et al. Glioma cells on the run - the migratory transcriptome of 10 human glioma cell lines. BMC Genomics 2008; 9: 54.Web of ScienceGoogle Scholar

  • Campos B, Herold-Mende CC. Insight into the complex regulation of CD133 in glioma. Int J Cancer 2010; 128: 501-10.Web of ScienceGoogle Scholar

  • Wu Y, Wu PY. CD133 as a marker for cancer stem cells: progresses and concerns. Stem Cell Dev 2009; 18: 1127-34.Google Scholar

  • Zeppernick F, Ahmadi R, Campos B, Dictus C, Helmke BM, Becker N, et al. Stem cell marker CD133 affects clinical outcome in glioma patients. Clin Cancer Res 2008; 14: 123-9.Google Scholar

  • Pallini R, Ricci-Vitiani L, Banna GL, Signore M, Lombardi D, Todaro M, et al. Cancer stem cell analysis and clinical outcome in patients with glioblastoma multiforme. Clin Cancer Res 2008; 14: 8205-12.PubMedCrossrefGoogle Scholar

  • Kong D-S, Kim MH, Park W-Y, Suh Y-L, Lee J-I, Park K, et al. The progression of gliomas is associated with cancer stem cell phenotype. Oncol Rep 2008; 19: 639-43.PubMedGoogle Scholar

  • Strojnik T, Røsland GV, Sakariassen PO, Kavalar R, Lah Turnsek T. Neural stem cell markers, nestin and musashi proteins, in the progression of human glioma: correlation of nestin with prognosis of patient survival. Surg Neurol 2007; 68: 133-43.CrossrefWeb of SciencePubMedGoogle Scholar

  • Birgersdotter A, Sandberg R, Ernberg I. Gene expression perturbation in vitro-a growing case for three-dimensional (3D) culture systems. Semin Cancer Biol 2005; 15: 405-12.CrossrefPubMedGoogle Scholar

  • Karcher S, Steiner HH, Ahmadi R, Zoubaa S, Vasvari G, Bauer H, et al. Different angiogenic phenotypes in primary and secondary glioblastomas. Int J Cancer 2006; 118: 2182-9.PubMedCrossrefGoogle Scholar

  • Yu SC, Ping YF, Yi L, Zhou ZH, Chen JH, Yao XH, et al. Isolation and characterization of cancer stem cells from a human glioblastoma cell line U87. Cancer Lett 2008; 265: 124-34.Google Scholar

  • Schmitt M, Jaenicke F, Graeff H. Protease, matrix degradation and tumourcell spread. Fibrinolysis 1992; 6: 1-17.Google Scholar

  • Friedl P, Wolf K. Tumour cell invasion and migration. Diversity and escape mechanisms. Nat Rev Cancer 2003; 3: 362-74.CrossrefPubMedGoogle Scholar

  • Zajc I, Bervar A, Lah Turnšek T. Cysteine cathepsins, stefins and extracellular matrix degradation during invasion of transformed human breast cell lines. Radiol Oncol 2006; 40: 259-71.Google Scholar

  • Strojan P. Cysteine cathepsins and stefins in head and neck cancer: an update of clinical studies. Radiol Oncol 2008; 42: 69-81.Web of ScienceGoogle Scholar

  • Berquin LM, Sloane BF. Cathepsin B expression in human tumours. Adv Exp Med Biol 1996; 389: 281-94.Google Scholar

  • Urbich C, Heeschen C, Aicher A, Sasaki K, Bruhl T, Farhadi MR, at al. Cathepsin L is required for endothelial progenitor cell-induced neovascularization. Nat Med 2005; 11: 206-13.CrossrefGoogle Scholar

About the article


Published Online: 2011-06-03

Published in Print: 2011-06-01


Citation Information: Radiology and Oncology, ISSN (Online) 1581-3207, ISSN (Print) 1318-2099, DOI: https://doi.org/10.2478/v10019-011-0015-6.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Katja Kološa, Helena Motaln, Christel Herold-Mende, Marjan Koršič, and Tamara T. Lah
Cell Transplantation, 2015, Volume 24, Number 4, Page 631
[2]
Saša Kenig, Valentina Faoro, Evgenia Bourkoula, Neža Podergajs, Tamara Ius, Marco Vindigni, Miran Skrap, Tamara Lah, Daniela Cesselli, Paola Storici, and Alessandro Vindigni
Cancer Cell International, 2016, Volume 16, Number 1
[3]
Tjaša Vižin, Ib Jarle Christensen, Michael Wilhelmsen, Hans Jørgen Nielsen, and Janko Kos
BMC Cancer, 2014, Volume 14, Number 1
[4]
Chen Li, Zhongjie Yan, Xuhua Cao, Xiaowei Zhang, and Liang Yang
Journal of Molecular Neuroscience, 2016, Volume 60, Number 2, Page 145
[5]
Sherise D Ferguson, Visish M Srinivasan, Michael GZ Ghali, and Amy B Heimberger
Immunotherapy, 2016, Volume 8, Number 4, Page 413
[6]
Wenjuan Wang, Linmei Long, Long Wang, Caihong Tan, Xifeng Fei, Leisong Chen, Qiang Huang, and Zhongqin Liang
Cancer Letters, 2016, Volume 371, Number 2, Page 274
[7]
O Fornara, J Bartek Jr, A Rahbar, J Odeberg, Z Khan, I Peredo, P Hamerlik, J Bartek, G Stragliotto, N Landázuri, and C Söderberg-Nauclér
Cell Death and Differentiation, 2016, Volume 23, Number 2, Page 261
[8]
Wei Zhang, Huanran Chen, Shengqing Lv, and Hui Yang
Molecular Neurobiology, 2016, Volume 53, Number 4, Page 2354
[9]
Bin Wu, Caixing Sun, Fang Feng, Minghua Ge, and Liang Xia
Journal of Experimental & Clinical Cancer Research, 2015, Volume 34, Number 1
[10]
Ana Xavier-Magalhães, Meera Nandhabalan, Chris Jones, and Bruno M Costa
CNS Oncology, 2013, Volume 2, Number 6, Page 495
[11]
Roberto Würth, Federica Barbieri, and Tullio Florio
BioMed Research International, 2014, Volume 2014, Page 1
[12]
Reik Löser, Ralf Bergmann, Maxim Frizler, Birgit Mosch, Lilli Dombrowski, Manuela Kuchar, Jörg Steinbach, Michael Gütschow, and Jens Pietzsch
ChemMedChem, 2013, Volume 8, Number 8, Page 1330
[13]
L. K. Donovan and G. J. Pilkington
Cell Proliferation, 2012, Volume 45, Number 6, Page 527
[14]
Tjasa Vizin, Ib Christensen, Hans Nielsen, and Janko Kos
Radiology and Oncology, 2012, Volume 46, Number 3
[15]
Flavia R.S. Lima, Suzana Assad Kahn, Rossana C. Soletti, Deborah Biasoli, Tercia Alves, Anna Carolina C. da Fonseca, Celina Garcia, Luciana Romão, José Brito, Rosenilde Holanda-Afonso, Jane Faria, Helena Borges, and Vivaldo Moura-Neto
Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 2012, Volume 1826, Number 2, Page 338
[16]
Lin Fang, Hai-Bing Zhang, Hua Li, Yong Fu, and Guang-Shun Yang
Radiology and Oncology, 2012, Volume 46, Number 3
[17]
Matija Rojnik, Zala Jevnikar, Bojana Mirkovic, Damjan Janes, Nace Zidar, Danijel Kikelj, and Janko Kos
Radiology and Oncology, 2011, Volume 45, Number 4

Comments (0)

Please log in or register to comment.
Log in