Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Radiology and Oncology

The Journal of Association of Radiology and Oncology

4 Issues per year

IMPACT FACTOR 2016: 1.681
5-year IMPACT FACTOR: 1.723

CiteScore 2016: 1.70

SCImago Journal Rank (SJR) 2016: 0.538
Source Normalized Impact per Paper (SNIP) 2016: 0.921

Open Access
See all formats and pricing
More options …
Volume 45, Issue 4


Titanium dioxide in our everyday life; is it safe?

Matej Skocaj / Metka Filipic
  • Department for Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jana Petkovic
  • Department for Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sasa Novak
Published Online: 2011-11-16 | DOI: https://doi.org/10.2478/v10019-011-0037-0

Titanium dioxide in our everyday life; is it safe?

Background. Titanium dioxide (TiO2) is considered as an inert and safe material and has been used in many applications for decades. However, with the development of nanotechnologies TiO2 nanoparticles, with numerous novel and useful properties, are increasingly manufactured and used. Therefore increased human and environmental exposure can be expected, which has put TiO2 nanoparticles under toxicological scrutiny. Mechanistic toxicological studies show that TiO2 nanoparticles predominantly cause adverse effects via induction of oxidative stress resulting in cell damage, genotoxicity, inflammation, immune response etc. The extent and type of damage strongly depends on physical and chemical characteristics of TiO2 nanoparticles, which govern their bioavailability and reactivity. Based on the experimental evidence from animal inhalation studies TiO2 nanoparticles are classified as "possible carcinogenic to humans" by the International Agency for Research on Cancer and as occupational carcinogen by the National Institute for Occupational Safety and Health. The studies on dermal exposure to TiO2 nanoparticles, which is in humans substantial through the use of sunscreens, generally indicate negligible transdermal penetration; however data are needed on long-term exposure and potential adverse effects of photo-oxidation products. Although TiO2 is permitted as an additive (E171) in food and pharmaceutical products we do not have reliable data on its absorption, distribution, excretion and toxicity on oral exposure. TiO2 may also enter environment, and while it exerts low acute toxicity to aquatic organisms, upon long-term exposure it induces a range of sub-lethal effects.

Conclusions. Until relevant toxicological and human exposure data that would enable reliable risk assessment are obtained, TiO2 nanoparticles should be used with great care.

Keywords: titanium dioxide; nanoparticles; toxicity; applications; safety

  • Ophus EM, Rode L, Gylseth B, Nicholson DG, Saeed K. Analysis of titanium pigments in human lung tissue. Scand J Work Environ Health 1979; 53: 290-6.CrossrefGoogle Scholar

  • Lindenschmidt RC, Driscoll KE, Perkins MA, Higgins JM, Maurer JK, Belfiore KA. The comparison of a fibrogenic and two nonfibrogenic dusts by bronchoalveolar lavage. Toxicol Appl Pharmacol 1990; 102: 268-81.CrossrefPubMedGoogle Scholar

  • Backus R. Lighting up time for TiO2. Industrial Minerals 2007; 473: 28-39.Google Scholar

  • Robichaud CO, Uyar AE, Darby MR, Zucker LG, Wiesner MR. Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environ Sci Technol 2009; 43: 4227-33.Google Scholar

  • Rowe RC, Sheskey PJ, Weller PJ. Handbook of pharmaceutical excipients. Fourth ed. London: Pharmaceutical Press, London, United Kingdom, and the American Pharmaceutical Association; 2003.Google Scholar

  • Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, et al. Nanomaterials in the environment: behaviour, fate, bioavailability, and effects. Environ Toxicol Chem 2008; 27: 1825-51.PubMedCrossrefGoogle Scholar

  • Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 2009; 4: 634-41.CrossrefPubMedGoogle Scholar

  • Kosmulski M. The pH-dependent surface charging and points of zero charge V. Update. J Colloid Interface Sci 2011; 353: 1-15.Google Scholar

  • Tang H, Prasad K, Sanjinbs R, Schmid P E, Levy F. Electrical and optical properties of Ti02 anatase thin films. J Appl Phys 2004; 75: 2042-7.Google Scholar

  • Augustynski J. The role of the surface intermediates in the photoelectro-chemical behaviour of anatase and rutile TiO2. Electrochimica Acta 1993; 38: 43-6.Google Scholar

  • Hewitt JP. Titanium dioxide: a different kind of sunshield. Drug Cosmet Ind 1992; 151: 26-32.Google Scholar

  • Fujishima A, Zhang X, Tryk DA. TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 2008; 63: 515-82.CrossrefGoogle Scholar

  • Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 2006; 68: 1794-807.CrossrefGoogle Scholar

  • Geiser M, Casaulta M, Kupferschmid B, Schulz H, Semmler-Behnke M, Kreyling W. The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles. Am J Respir Cell Mol Biol 2008; 38: 371-6.CrossrefPubMedGoogle Scholar

  • Aderem A, Underhill DM. Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 1999; 17: 593-623.PubMedCrossrefGoogle Scholar

  • Stearns RC, Paulauskis JD, Godleski JJ. Endocytosis of ultrafine particles by A549 cells. Am J Respir Cell Mol Biol 2001; 24: 108-15.Google Scholar

  • Geiser M, Rothen-Rutishauser B, Kapp N, Schurch S, Kreyling W, Schulz H, et al. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 2005; 113: 1555-60.CrossrefPubMedGoogle Scholar

  • Rothen-Rutishauser BM, Schurch S, Haenni B, Kapp N, Gehr P. Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques. Environ Sci Technol 2006; 40: 4353-9.CrossrefGoogle Scholar

  • Kocbek P, Teskac K, Kreft ME, Kristl J. Toxicological aspects of long-term treatment of keratinocytes with ZnO and TiO2 nanoparticles. Small 2010; 6: 1908-17.CrossrefGoogle Scholar

  • Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi HB, et al. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. Acs Nano 2008; 2: 2121-34.CrossrefPubMedGoogle Scholar

  • Donaldson K, Stone V, Clouter A, Renwick L, MacNee W. Ultrafine particles. Occup Environ Med 2001; 58: 211-6.PubMedCrossrefGoogle Scholar

  • Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science 2006; 311: 622-7.Google Scholar

  • Dunford R, Salinaro A, Cai LZ, Serpone N, Horikoshi S, Hidaka H, et al. Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. Febs Lett 1997; 418: 87-90.Google Scholar

  • Gurr JR, Wang ASS, Chen CH, Jan KY. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 2005; 213: 66-73.Google Scholar

  • Long TC, Tajuba J, Sama P, Saleh N, Swartz C, Parker J, et al. Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environ Health Persp 2007; 115: 1631-7.Google Scholar

  • Lu N, Zhu Z, Zhao X, Tao R, Yang X, Gao Z. Nano titanium dioxide photocatalytic protein tyrosine nitration: a potential hazard of TiO2 on skin. Biochem Biophys Res Commun 2008; 370: 675-80.Google Scholar

  • Park EJ, Yi J, Chung YH, Ryu DY, Choi J, Park K. Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett 2008; 180: 222-9.Google Scholar

  • Sayes CM, Wahi R, Kurian PA, Liu Y, West JL, Ausman KD, et al. Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 2006; 92: 174-85.CrossrefPubMedGoogle Scholar

  • Wang JX, Chen CY, Liu Y, Jiao F, Li W, Lao F, et al. Potential neurological lesion after nasal instillation of TiO2 nanoparticles in the anatase and rutile crystal phases. Toxicol Lett 2008; 183: 72-80.Google Scholar

  • Uchino T, Tokunaga H, Ando M, Utsumi H. Quantitative determination of OH radical generation and its cytotoxicity induced by TiO2-UVA treatment. Toxicol in Vitro 2002; 16: 629-35.CrossrefGoogle Scholar

  • Dodd NJ, Jha AN. Titanium dioxide induced cell damage: a proposed role of the carboxyl radical. Mutat Res 2009; 660: 79-82.Google Scholar

  • Petković J, Žegura B, Stevanović M, Drnovšek N, Uskoković D, Novak S et al. DNA damage and alterations in expression of DNA damage responsive genes induced by TiO2 nanoparticles in human hepatoma HepG2 cells. Nanotoxicology 2011; 5: 341-53.CrossrefGoogle Scholar

  • Petković J, Küzma T, Rade K, Novak S, Filipič M. Pre-irradiation of anatase TiO2 particles with UV enhances their cytotoxic and genotoxic potential in human hepatoma HepG2 cells. J Hazard Mater 2011; doi: 10.1016/j.jhazmat.2011.09.004.CrossrefGoogle Scholar

  • Barthel A, Klotz LO. Phosphoinositide 3-kinase signaling in the cellular response to oxidative stress. Biol Chem 2005; 386: 207-16.Google Scholar

  • Kang JL, Moon C, Lee HS, Lee HW, Park EM, Kim HS, et al. Comparison of the biological activity between ultrafine and fine titanium dioxide particles in RAW 264.7 cells associated with oxidative stress. J Toxicol Environ Health, Part A 2008; 71: 478-85.CrossrefGoogle Scholar

  • Rahman Q, Lohani M, Dopp E, Pemsel H, Jonas L, Weiss DG, et al. Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts. Environ Health Persp 2002; 110: 797-800.CrossrefGoogle Scholar

  • Wang JJ, Sanderson BJS, Wang H. Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mutat Res-Gen Tox En 2007; 628: 99-106.Google Scholar

  • Xu A, Chai YF, Nohmi T, Hei TK. Genotoxic responses to titanium dioxide nanoparticles and fullerene in gpt delta transgenic MEF cells. Part Fibre Toxicol 2009; 6: 3.Google Scholar

  • Zhu RR, Wang SL, Chao J, Shi DL, Zhang R, Sun XY, et al. Bio-effects of Nano-TiO2 on DNA and cellular ultrastructure with different polymorph and size. Mat Sci Eng C-Bio S 2009; 29: 691-6.CrossrefGoogle Scholar

  • Kang SJ, Kim BM, Lee YJ, Chung HW. Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes. Environ Mol Mutagen 2008; 49: 399-405.CrossrefGoogle Scholar

  • Warheit DB, Hoke RA, Finlay C, Donner EM, Reed KL, Sayes CM. Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett 2007; 171: 99-110.Google Scholar

  • Theogaraj E, Riley S, Hughes L, Maier M, Kirkland D. An investigation of the photo-clastogenic potential of ultrafine titanium dioxide particles. Mutat Res-Gen Tox En 2007; 634: 205-19.Google Scholar

  • Driscoll KE, Deyo LC, Carter JM, Howard BW, Hassenbein DG, Bertram TA. Effects of particle exposure and particle-elicited inflammatory cells on mutation in rat alveolar epithelial cells. Carcinogenesis 1997; 18: 423-30.CrossrefPubMedGoogle Scholar

  • Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH. Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 2009; 69: 8784-9.CrossrefPubMedGoogle Scholar

  • Li N, Ma LL, Wang J, Zheng L, Liu J, Duan YM, et al. Interaction between nano-anatase TiO2 and liver DNA from mice in vivo. Nanoscale Res Lett 2010; 51: 108-15.CrossrefGoogle Scholar

  • Vamanu CI, Cimpan MR, Hol PJ, Sornes S, Lie SA, Gjerdet NR. Induction of cell death by TiO2 nanoparticles: Studies on a human monoblastoid cell line. Toxicol in Vitro 2008; 22: 1689-96.CrossrefGoogle Scholar

  • Palomaki J, Karisola P, Pylkkanen L, Savolainen K, Alenius H. Engineered nanomaterials cause cytotoxicity and activation on mouse antigen presenting cells. Toxicology 2010; 267: 125-31.Google Scholar

  • Larsen ST, Roursgaard M, Jensen KA, Nielsen GD. Nano titanium dioxide particles promote allergic sensitization and lung inflammation in mice. Basic Clin Pharmacol Toxicol 2010; 106: 114-7.CrossrefPubMedGoogle Scholar

  • de Haar C, Hassing I, Bol M, Bleumink R, Pieters R. Ultrafine but not fine particulate matter causes airway inflammation and allergic airway sensitization to co-administered antigen in mice. Clin Exp Allergy 2006; 36: 1469-79.CrossrefPubMedGoogle Scholar

  • Moon EY, Yi GH, Kang JS, Lim JS, Kim HM, Pyo S. An increase in mouse tumor growth by an in vivo immunomodulating effect of titanium dioxide nanoparticles. J Immunotoxicol 2011; 81: 56-67.CrossrefGoogle Scholar

  • Borm PJ, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, et al. The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 2006; 3: 11.Google Scholar

  • Peters A, Veronesi B, Calderon-Garciduenas L, Gehr P, Chen LC, Geiser M, et al. Translocation and potential neurological effects of fine and ultrafine particles a critical update. Part Fibre Toxicol 2006; 3: 13.Google Scholar

  • Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B. Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): Implications for nanoparticle neurotoxicity. Environ Sci Technol 2006; 40: 4346-52.CrossrefGoogle Scholar

  • Liu SC, Xu LJ, Zhang T, Ren GG, Yang Z. Oxidative stress and apoptosis induced by nanosized titanium dioxide in PC12 cells. Toxicology 2010; 267: 172-7.Google Scholar

  • Liu XY, Ren XF, Deng XY, Huo YA, Xie J, Huang H, et al. A protein interaction network for the analysis of the neuronal differentiation of neural stem cells in response to titanium dioxide nanoparticles. Biomaterials 2010; 31: 3063-70.PubMedCrossrefGoogle Scholar

  • Scuri M, Chen BT, Castranova V, Reynolds JS, Johnson VJ, Samsell L, et al. Effects of titanium dioxide nanoparticle exposure on neuroimmune responses in rat airways. J Toxicol Environ Health, Part A 2010; 73: 1353-69.CrossrefGoogle Scholar

  • Nohynek GJ, Schaefer H. Benefit and risk of organic ultraviolet filters. Regul Toxicol Pharmacol 2001; 333: 285-99.Google Scholar

  • FDA. Sunscreen drug products for over-the-counter human use, Final Monograph, Federal Register 64 27666, US Rockville, MD; 2000.Google Scholar

  • Newman MD, Stotland M, Ellis JI. The safety of nanosized particles in titanium dioxide- and zinc oxide-based sunscreens. J Am Acad Dermatol 2009; 61: 685-92.PubMedCrossrefGoogle Scholar

  • Breggin L, Falkner R, Jaspers N, Pendergrass J, Porter R. Securing the promise of nanotechnologies towards transatlantic regulatory cooperation. London: Affairs RIoI; 2009.Google Scholar

  • Serpone N, Dondi D, Albini A. Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare products. Inorg Chim Acta 2007; 360: 794-802.Google Scholar

  • Salvador A, Chisvert A. Sunscreen analysis - A critical survey on UV filters determination. Anal Chim Acta 2005; 537: 1-14.Google Scholar

  • Nohynek GJ, Antignac E, Re T, Toutain H. Safety assessment of personal care products/cosmetics and their ingredients. Toxicol Appl Pharmacol 2010; 243: 239-59.PubMedCrossrefGoogle Scholar

  • Nohynek GJ, Lademann J, Ribaud C, Roberts MS. Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit Rev Toxicol 2007; 373: 251-77.Google Scholar

  • Salinaro A, Emeline AV, Zhao J., Hidaka. H., Ryabchuk V, Serpone KN. Terminology, relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. Part II: Experimental determination of quantum yields (Technical Report). Pure Appl Chem 1999; 71: 321-6.CrossrefGoogle Scholar

  • Serpone N, Salinaro A, Hidaka H, Horikoshi S, Knowland J, Dunford R. Solar engineering. In: Morehouse JM, Hogan RE (eds). New York: ASME; 1998.Google Scholar

  • Jaroenworaluck A, Sunsaneeyametha W, Kosachan N, Stevens R. Characteristics of silica-coated TiO2 and its UV absorption for sunscreen cosmetic applications. Surf Interface Anal 2006; 38: 473-7.CrossrefGoogle Scholar

  • Labiele J, Feng J, Botta C, Borschneck D, Sammut M, Cabie M, et al. Agging of TiO2 nanocomposites used in sunscreens. Dispersion and fate of the degradation products in aqueous environment. Environ Pollut 2010; 158: 1-8.Google Scholar

  • Mills A, Le Hunte S. An overview of semiconductor photocatalysis. J Photoch Photobio A 1997; 108: 1-35.CrossrefGoogle Scholar

  • Wakefield G, Lipscomb S, Holland E, Knowland J. The effects of manganese doping on UVA absorption and free radical generation of micronised titanium dioxide and its consequences for the photostability of UVA absorbing organic sunscreen components. Photochem Photobiol Sci 2004; 37: 648-52.CrossrefGoogle Scholar

  • Pan Z, Lee W, Slutsky L, Clark RA, Pernodet N, Rafailovich MH. Adverse effects of titanium dioxide nanoparticles on human dermal fibroblasts and how to protect cells. Small 2009; 54: 511-20.CrossrefGoogle Scholar

  • Kiss B, Biro T, Czifra G, Toth BI, Kertesz Z, Szikszai Z, et al. Investigation of micronized titanium dioxide penetration in human skin xenografts and its effect on cellular functions of human skin-derived cells. Exp Dermatol 2008; 17: 659-67.PubMedCrossrefGoogle Scholar

  • Jin CY, Zhu BS, Wang XF, Lu QH. Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells. Chem Res Toxicol 2008; 219: 1871-7.Google Scholar

  • Yanagisawa R, Takano H, Inoue K, Koike E, Kamachi T, Sadakane K, et al. Titanium Dioxide Nanoparticles Aggravate Atopic Dermatitis-Like Skin Lesions in NC/Nga Mice. Exp Biol Med 2009; 234: 314-22.Google Scholar

  • Hoet PH, Bruske-Hohlfeld I, Salata OV. Nanoparticles - known and unknown health risks. J Nanobiotechnology 2004; 21: 12.CrossrefGoogle Scholar

  • Tyner KM, Wokovich AM, Godar DE, Doub WH, Sadrieh N. The state of nano-sized titanium dioxide (TiO2) may affect sunscreen performance. Int J Cosmetic Sci 2010; 33: 234-44.Google Scholar

  • Lademann J, Weigmann H, Rickmeyer C, Barthelmes H, Schaefer H, Mueller G, et al. Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol Appl Skin Physiol 1999; 12: 247-56.CrossrefGoogle Scholar

  • Pflucker F, Wendel V, Hohenberg H, Gartner E, Will T, Pfeiffer S, et al. The human stratum corneum layer: an effective barrier against dermal uptake of different forms of topically applied micronised titanium dioxide. Skin Pharmacol Appl Skin Physiol 2001; 14: 92-7.PubMedGoogle Scholar

  • Schulz J, Hohenberg H, Pflucker F, Gartner E, Will T, Pfeiffer S, et al. Distribution of sunscreens on skin. Adv Drug Deliv Rev 2002; 54: S157-63.CrossrefGoogle Scholar

  • Schilling K, Bradford B, Castelli D, Dufour E, Nash JF, Pape W, et al. Human safety review of "nano" titanium dioxide and zinc oxide. Photochem Photobiol Sci 2010; 9: 495-509.CrossrefPubMedGoogle Scholar

  • Senzui M, Tamura T, Miura K, Ikarashi Y, Watanabe Y, Fujii M. Study on penetration of titanium dioxide (TiO2) nanoparticles into intact and damaged skin in vitro. J Toxicol Sci 2010; 35: 107-13.CrossrefGoogle Scholar

  • Tan MH, Commens CA, Burnett L, Snitch PJ. A pilot study on the percutaneous absorption of microfine titanium dioxide from sunscreens. Australas J Dermatol 1996; 37: 185-7.CrossrefPubMedGoogle Scholar

  • Wu J, Liu W, Xue C, Zhou S, Lan F, Bi L, et al. Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure. Toxicol Letters 2009; 191: 1-8.Google Scholar

  • Sadrieh N, Wokovich AM, Gopee NV, Zheng JW, Haines D, Parmiter D, et al. Lack of Significant Dermal Penetration of Titanium Dioxide from Sunscreen Formulations Containing Nano- and Submicron-Size TiO(2) Particles. Toxicol Sci 2010; 115: 156-66.Google Scholar

  • Mosteller RD. Simplified calculation of body-surface area. N Engl J Med 1987; 317: 1098.Google Scholar

  • FDA [Internet]. Food and drugs chapter I, Listing of color additives exempt from certification. Federal Register 21CFR73, US Rockville, MD; 2010; [cited 2011 October 14]. Available from: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=73&showFR=1

  • Kumagai K. Uber den Resorptionvergang der corpuscularen Bestandteile im Darm. 192: 429-31.Google Scholar

  • Jani PU, McCarthy DE, Florence AT. Titanium dioxide (rutile) particle uptake from the rat GI tract and translocation to systemic organs after oral administration. Int J Pharm 1994; 105: 157-68.CrossrefGoogle Scholar

  • Wang JX, Zhou GQ, Chen CY, Yu HW, Wang TC, Ma YM, et al. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 2007; 168: 176-85.Google Scholar

  • Duan Y, Liu J, Ma L, Li N, Liu H, Wang J, et al. Toxicological characteristics of nanoparticulate anatase titanium dioxide in mice. Biomaterials 2010; 31: 894-9.PubMedCrossrefGoogle Scholar

  • Powell JJ, Harvey RSJ, Ashwood P, Wolstencroft R, Gershwin ME, Thompson RPH. Immune potentiation of ultrafine dietary particles in normal subjects and patients with inflammatory bowel disease. J Autoimmun 2000; 14: 99-105.PubMedCrossrefGoogle Scholar

  • National Cancer Institute. Bioassay of titanium dioxide for possible carcinogenicity. Washington, DC: U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health; 1979.Google Scholar

  • Bernard BK, Osheroff MR, Hofmann A, Mennear JH. Toxicology and carcinogenesis studies of dietary titanium dioxide-coated mica in male and female Fischer 344 rats. J Toxicol Env Health 1990; 29: 417-29.Google Scholar

  • Okazaki Y, Gotoh E. Comparison of metal release from various metallic biomaterials in vitro. Biomaterials 2005; 26: 11-21.PubMedCrossrefGoogle Scholar

  • Hext PM, Tomenson JA, Thompson P. Titanium dioxide: inhalation toxicology and epidemiology. Ann Occup Hyg 2005; 49: 461-72.PubMedCrossrefGoogle Scholar

  • Fryzek JP, Chadda B, Marano D, White K, Schweitzer S, McLaughlin JK, et al. A cohort mortality study among titanium dioxide manufacturing workers in the United States. J Occup Environ Med 2003; 45: 400-9.PubMedCrossrefGoogle Scholar

  • Boffetta P, Soutar A, Cherrie JW, Granath F, Andersen A, Anttila A, et al. Mortality among workers employed in the titanium dioxide production industry in Europe. Cancer Causes Control 2004; 157: 697-706.CrossrefGoogle Scholar

  • NIOSH. Occupational Exposure to Titanium Dioxid. Department Of Health And Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health 2011.Google Scholar

  • Peters A, Dockery DW, Muller JE, Mittleman MA. Increased particulate air pollution and the triggering of myocardial infarction. Circulation 2001; 103: 2810-5.CrossrefPubMedGoogle Scholar

  • Peters A, Doring A, Wichmann HE, Koenig W. Increased plasma viscosity during an air pollution episode: a link to mortality? Lancet 1997; 349: 1582-7.Google Scholar

  • McGuinnes C, Duffin R, Brown S, Mills NL, Megson IL, MacNee W, et al. Surface derivatization state of polystyrene latex nanoparticles determines both their potency and their mechanism of causing human platelet aggregation in vitro. Toxicol Sci 2011; 119: 359-68.Google Scholar

  • Donaldson K, Stone V, Seaton A, MacNee W. Ambient particle inhalation and the cardiovascular system: Potential mechanisms. Environ Health Perspect 2001; 109: 523-27.PubMedGoogle Scholar

  • Ferin J, Oberdorster G, Penney DP. Pulmonary retention of ultrafine and fine particles in rats. Am J Respir Cell Mol Biol 1992; 65: 535-42.CrossrefGoogle Scholar

  • Oberdörster G, Ferin J, Lehnert BE. Correlation between particle-size, in vivo particle persistence, and lung injury. Environ Health Perspect 1994 102: 173-9.Google Scholar

  • Renwick LC, Donaldson K, Clouter A. Impairment of alveolar macrophage phagocytosis by ultrafine particles. Toxicol Appl Pharmacol 2001; 172: 119-27.Google Scholar

  • van Ravenzwaay B, Landsiedel R, Fabian E, Burkhardt S, Strauss V, Ma-Hock L. Comparing fate and effects of three particles of different surface properties: nano-TiO2, pigmentary TiO2 and quartz. Toxicol Lett 2009; 186: 152-9.CrossrefPubMedGoogle Scholar

  • Kapp N, Studer D, Gehr P, Geiser M. Electron energy-loss spectroscopy as a tool for elemental analysis in biological specimens. Methods Mol Biol 2007; 369: 431-47.Google Scholar

  • Nemmar A, Vanbilloen H, Hoylaerts MF, Hoet PH, Verbruggen A, Nemery B. Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. Am J Respir Crit Care Med 2001; 164: 1665-8.Google Scholar

  • Nurkiewicz TR, Porter DW, Hubbs AF, Cumpston JL, Chen BT, Frazer DG, et al. Nanoparticle inhalation augments particle-dependent systemic microvascular dysfunction. Part Fibre Toxicol 2008; 5:1.Google Scholar

  • Kim HW, Ahn EK, Jee BK, Yoon HK, Lee KH, Lim Y. Nanoparticulate-induced toxicity and related mechanism in vitro and in vivo. J Nanopart Res 2009; 111: 55-65.CrossrefGoogle Scholar

  • Oberdorster G. Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health 2001; 74: 1-8.PubMedGoogle Scholar

  • Warheit DB, Webb TR, Sayes CM, Colvin VL, Reed KL. Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: Toxicity is not dependent upon particle size and surface area. Toxicol Sci 2006; 91: 227-36.CrossrefGoogle Scholar

  • Rehn B, Seiler F, Rehn S, Bruch J, Maier M. Investigations on the inflammatory and genotoxic lung effects of two types of titanium dioxide: untreated and surface treated. Toxicol Appl Pharmacol 2003; 189: 84-95.Google Scholar

  • Grassian VH, O'Shaughnessy PT, Adamcakova-Dodd A, Pettibone JM, Thorne PS. Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ Health Perspect 2007; 115: 397-402.PubMedGoogle Scholar

  • Warheit DB, Webb TR, Reed KL, Frerichs S, Sayes CM. Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: Differential responses related to surface properties. Toxicology 2007; 230: 90-104.Google Scholar

  • Roursgaard M, Jensen KA, Poulsen SS, Jensen NEV, Poulsen LK, Hammer M, et al. Acute and subchronic airway inflammation after intratracheal instillation of quartz and titanium dioxide agglomerates in mice. Scientific World Journal 2011; 11: 801-25.CrossrefGoogle Scholar

  • Chen HW, Su SF, Chien CT, Lin WH, Yu SL, Chou CC, et al. Titanium dioxide nanoparticles induce emphysema-like lung injury in mice. FASEB J 2006; 20: 2393-5.PubMedCrossrefGoogle Scholar

  • Park EJ, Yoon J, Choi K, Yi J, Park K. Induction of chronic inflammation in mice treated with titanium dioxide nanoparticles by intratracheal instillation. Toxicology 2009; 260: 37-46.Google Scholar

  • Lee KP, Trochimowicz HJ, Reinhardt CF. Pulmonary Response of Rats Exposed to Titanium-Dioxide (TiO2) by Inhalation for 2 Years. Toxicol Appl Pharmacol 1985; 79: 179-92.CrossrefGoogle Scholar

  • Borm PJA, Hohr D, Steinfartz Y, Zeittrager I, Albrecht C. Chronic inflammation and tumor formation in rats after intratracheal instillation of high doses of coal dusts, titanium dioxides, and quartz. Inhal Toxicol 2000; 12: 225-31.Google Scholar

  • Heinrich U, Fuhst R, Rittinghausen S, Creutzenberg O, Bellmann B, Koch W, et al. Chronic inhalation exposure of Wistar rats and 2 different strains of mice to diesel-engine exhaust, carbon-black, and titanium-dioxide. Inhal Toxicol 1995; 74: 533-56.CrossrefGoogle Scholar

  • Muhle H, Bellmann B, Creutzenberg O, Koch W, Dasenbrock C, Ernst H, et al. Pulmonary response to toner, TiO2 and crystalline silica upon chronic inhalation exposure in Syrian golden hamsters. Inhal Toxicol 1998; 10: 699-729.Google Scholar

  • Bermudez E, Mangum JB, Asgharian B, Wong BA, Reverdy EE, Janszen DB, et al. Long-term pulmonary responses of three laboratory rodent species to subchronic inhalation of pigmentary titanium dioxide particles. Toxicol Sci 2002; 70: 86-97.PubMedCrossrefGoogle Scholar

  • Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext PM, Warheit DB, et al. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci 2004; 77: 347-57.PubMedCrossrefGoogle Scholar

  • Hsieh TH, Yu CP. Two-phase pulmonary clearance of insoluble particles in mammalian species. Inhal Toxicol 1998; 102: 121-30.Google Scholar

  • Wang JX, Liu Y, Jiao F, Lao F, Li W, Gu YQ, et al. Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles. Toxicology 2008; 254: 82-90.Google Scholar

  • Yamadori I, Ohsumi S, Taguchi K. Titanium dioxide deposition and adenocarcinoma of the lung. Acta Pathol Jpn 1986; 36: 783-90.PubMedGoogle Scholar

  • Chen JL, Fayerweather WE. Epidemiologic-study of workers exposed to titanium-dioxide. J Occup Environ Med 1988; 30: 937-42.CrossrefGoogle Scholar

  • Ramanakumar AV, Parent ME, Latreille B, Siemiatycki J. Risk of lung cancer following exposure to carbon black, titanium dioxide and talc: results from two case-control studies in Montreal. Int J Cancer 2008; 122: 183-9.PubMedCrossrefGoogle Scholar

  • Boffetta P, Soutar A, Cherrie JW, Granath F, Andersen A, Anttila A, et al. Mortality among workers employed in the titanium dioxide production industry in Europe. Cancer Causes Control 2004; 15: 697-706.CrossrefPubMedGoogle Scholar

  • IARC. Carbon black, titanium dioxide, and talc. IARC monographs on the evaluation of carcinogenic risks to humans, vol. 93. International Agency for Research on Cancer: Lyon, France, 2006.Google Scholar

  • Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, Cogliano V. Carcinogenicity of carbon black, titanium dioxide, and talc. Lancet Oncol 2006; 74: 295-6.CrossrefGoogle Scholar

  • Cadosch D, Chan E, Gautschi OP, Filgueira L. Metal is not inert: Role of metal ions released by biocorrosion in aseptic loosening-Current concepts. J Biomed Mater Res A 2009; 91: 1252-62.PubMedCrossrefGoogle Scholar

  • Sargeant A, Goswami T. Hip implants - Paper VI - Ion concentrations. Mater Design 2007; 28: 155-71.CrossrefGoogle Scholar

  • Valentine-Thon E, Schiwara HW. Validity of MELISA (R) for metal sensitivity testing. Neuroendocrinol Lett 2003; 241: 57-64.Google Scholar

  • Hallab N, Merritt K, Jacobs JJ. Metal sensitivity in patients with orthopaedic implants. J Bone Joint Surg Am 2001; 83: 428-36.PubMedGoogle Scholar

  • Wang JX, Fan YB, Gao Y, Hu QH, Wang TC. TiO2 nanoparticles translocation and potential toxicological effect in rats after intraarticular injection. Biomaterials 2009; 30: 4590-600.CrossrefGoogle Scholar

  • Urban RM, Jacobs JJ, Tomlinson MJ, Gavrilovic J, Black J, Peoc'h M. Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. J Bone Joint Surg Am 2000; 82: 457-76.PubMedGoogle Scholar

  • Margevicius KJ, Bauer TW, McMahon JT, Brown SA, Merritt K. Isolation and characterization of debris in membranes around total joint prostheses. J Bone Joint Surg Am 1994; 76: 1664-75.PubMedGoogle Scholar

  • Agins HJ, Alcock NW, Bansal M, Salvati EA, Wilson PD, Pellicci PM, et al. Metallic wear in failed titanium-alloy total hip replacements. A histological and quantitative analysis. J Bone Joint Surg Am 1988; 70: 347-56.PubMedGoogle Scholar

  • Giavaresi G, Ambrosio L, Battiston GA, Casellato U, Gerbasi R, Finia M, et al. Histomorphometric, ultrastructural and microhardness evaluation of the osseointegration of a nanostructured titanium oxide coating by metalorganic chemical vapour deposition: an in vivo study. Biomaterials 2004; 25: 5583-91.CrossrefGoogle Scholar

  • Cui C, Liu H, Li Y, Sun J, Wang R, Liu S, et al. Fabrication and biocompatibility of nano-TiO2/titanium alloys biomaterials. Mater Lett 2005; 59: 3144-48.CrossrefGoogle Scholar

  • Drnovsek N, Daneu N, Recnik A, Mazaj M, Kovac J, Novak S. Hydrothermal synthesis of a nanocrystalline anatase layer on Ti6A4V implants. Surf Coat Tech 2009; 203: 1462-68.Google Scholar

  • Tedetti M, Sempere R. Penetration of ultraviolet radiation in the marine environment. A review. Photochem Photobiol 2006; 82: 389-97.PubMedCrossrefGoogle Scholar

  • Aruoja V, Dubourguier H-C, Kasemets K, Kahru A. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 2009; 407: 1461-68.Google Scholar

  • Hund-Rinke K, Simon M. Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environ Sci Pollut Res Int 2006; 134: 225-32.Google Scholar

  • Hartmann NB, Von der Kammer F, Hofmann T, Baalousha M, Ottofuelling S, Baun A. Algal testing of titanium dioxide nanoparticles-Testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology 2010; 269: 190-7.Google Scholar

  • Kim S-C, Lee D-K. Preparation of TiO2-coated hollow glass beads and their application to the control of algal growth in eutrophic water. Microchem J 2005; 80: 227-32.CrossrefGoogle Scholar

  • Hong J, Ma H, Otaki M. Controlling algal growth in photo-dependent decolorant sludge by photocatalysis. J Biosci Bioeng 2005; 99: 592-7.PubMedCrossrefGoogle Scholar

  • Velzeboer I, Hendriks AJ, Ragas AMJ, Van de Meent D. Aquatic ecotoxicity tests of some nanomaterials. Environ Toxicol Chem 2008; 27: 1942-47.CrossrefPubMedGoogle Scholar

  • Adams LK, Lyon DY, Alvarez PJ. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 2006; 40: 3527-32.CrossrefPubMedGoogle Scholar

  • Zhu X, Chang Y, Chen Y. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere 2010; 78: 209-15.CrossrefGoogle Scholar

  • Wiench K, Wohlleben W, Hisgen V, Radke K, Salinas E, Zok S, et al. Acute and chronic effects of nano- and non-nano-scale TiO(2) and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna. Chemosphere 2009; 76: 1356-65.CrossrefGoogle Scholar

  • Kim KT, Klaine SJ, Cho J, Kim SH, Kim SD. Oxidative stress responses of Daphnia magna exposed to TiO(2) nanoparticles according to size fraction. Sci Total Environ; 408: 2268-72.Google Scholar

  • Lee S-W, Kim S-M, Choi J. Genotoxicity and ecotoxicity assays using the freshwater crustacean Daphnia magna and the larva of the aquatic midge Chironomus riparius to screen the ecological risks of nanoparticle exposure. Environ Toxicol Phar 2009; 281: 86-91.Google Scholar

  • Zhu X, Zhu L, Duan Z, Qi R, Li Y, Lang Y. Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage. J Environ Sci Health A Tox Hazard Subst Environ Eng 2008; 433: 278-84.Google Scholar

  • Federici G, Shaw BJ, Handy RD. Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): Gill injury, oxidative stress, and other physiological effects. Aquat Toxicol 2007; 844: 415-30.Google Scholar

  • Scown TM, van Aerle R, Johnston BD, Cumberland S, Lead JR, Owen R, et al. High Doses of Intravenously Administered Titanium Dioxide Nanoparticles Accumulate in the Kidneys of Rainbow Trout but with no Observable Impairment of Renal Function. Toxicol Sci 2009; 109: 372-80.PubMedCrossrefGoogle Scholar

  • Linhua H, Zhenyu W, Baoshan X. Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histpathological changes in Juvenile Carp (Cyprinus carpio). J Environ Sci 2009; 21: 1459-66.Google Scholar

  • Galloway T, Lewis C, Dolciotti I, Johnston BD, Moger J, Regoli F. Sublethal toxicity of nano-titanium dioxide and carbon nanotubes in a sediment dwelling marine polychaete. Environ Pollut 2010; 158: 1748-55.Google Scholar

  • Zhu X, Wang J, Zhang X, Chang Y, Chen Y. Trophic transfer of TiO(2) nanoparticles from Daphnia to zebrafish in a simplified freshwater food chain. Chemosphere 2010; 79: 928-33.CrossrefGoogle Scholar

  • Zhang XZ, Sun HW, Zhang ZY, Niu Q, Chen YS, Crittenden JC. Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles. Chemosphere 2007; 67: 160-66.CrossrefPubMedGoogle Scholar

  • Sun HW, Zhang XZ, Niu Q, Chen YS, Crittenden JC. Enhanced accumulation of arsenate in carp in the presence of titanium dioxide nanoparticles. Water Air Soil Pollut 2007; 178: 245-54.Google Scholar

  • Canesi L, Ciacci C, Vallotto D, Gallo G, Marcomini A, Pojana G. In vitro effects of suspensions of selected nanoparticles (C60 fullerene, TiO2, SiO2) on Mytilus hemocytes. Aquat Toxicol 2010; 96: 151-8.CrossrefGoogle Scholar

  • Vevers WF, Jha AN. Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro. Ecotoxicology 2008; 175: 410-20.Google Scholar

  • Reeves JF, Davies SJ, Dodd NJF, Jha AN. Hydroxyl radicals (OH) are associatedwithtitaniumdioxide (TiO2) nanoparticle-inducedcytotoxicityandoxidative DNA damage in fish cells. Mutat Res-Fund Mol M 2008; 640: 113-22.Google Scholar

  • Drobne D, Jemec A, Pipan Tkalec Z. In vivo screening to determine hazards of nanoparticles: nanosized TiO2. Environ Pollut 2009; 157: 1157-64.Google Scholar

  • Mueller NC, Nowack B. Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 2008; 421: 4447-53.Google Scholar

  • Valant J, Drobne D, Sepcic K, Jemec A, Kogej K, Kostanjsek R. Hazardous potential of manufactured nanoparticles identified by in vivo assay. J Hazard Mater 2009; 171: 160-5.Google Scholar

  • Wang H, Wick RL, Xing B. Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut 2009; 157: 1171-7.Google Scholar

  • Roh J-Y, Park Y-K, Park K, Choi J. Ecotoxicological investigation of CeO2 and TiO2 nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints. Environ Toxicol Phar 2010; 29: 167-72.CrossrefGoogle Scholar

  • Hu CW, Li M, Cui YB, Li DS, Chen J, Yang LY. Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biol Biochem 2010; 42: 586-91.CrossrefGoogle Scholar

  • Yang F, Hong F, You W, Liu C, Gao F, Wu C, et al. Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 2006; 110: 179-90.CrossrefGoogle Scholar

  • Gao F, Hong F, Liu C, Zheng L, Su M, Wu X, et al. Mechanism of nanoanatase TiO2 on promoting photosynthetic carbon reaction of spinach. Biol Trace Elem Res 2006; 111: 239-53.CrossrefGoogle Scholar

  • Gao F, Liu C, Qu C, Zheng L, Yang F, Su M, et al. Was improvement of spinach growth by nano-TiO2 treatment related to the changes of Rubisco activase? BioMetals 2008; 212: 211-17.CrossrefGoogle Scholar

  • Su MY, Liu C, Qu CX, Zheng L, Chen L, Huang H, et al. Nano-anatase relieves the inhibition of electron transport caused by linolenic acid in chloroplasts of spinach. Biol Trace Elem Res 2008; 122: 73-81.PubMedGoogle Scholar

  • Lei Z, Mingyu S, Xiao W, Chao L, Chunxiang Q, Liang C, et al. Antioxidant Stress is Promoted by Nano-anatase in Spinach Chloroplasts Under UV-B Radiation. Biol Trace Elem Res 2008; 121: 69-79.Google Scholar

  • Lu CM, Zhang CY, Wen JQ, Wu GR. (in Chinese). Soybean Sci 2002; 21: 168-71.Google Scholar

  • Matsunaga T, Tomoda R, Nakajima T, Wake H. Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett 1985; 29: 211-4.CrossrefGoogle Scholar

  • Ibáńez JA, Litter MI, Pizarro RA. Photocatalytic bactericidal effect of TiO2 on Enterobacter cloacae: Comparative study with other Gram (-) bacteria. J Photochem Photobiol, A 2003; 157: 81-5.Google Scholar

  • Jang HD, Kim S-K, Kim S-J. Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties. J Nanopart Res 2001; 3: 141-7.CrossrefGoogle Scholar

  • Shang C, Cheung LM, Ho C-M, Zeng M. Repression of photoreactivation and dark repair of coliform bacteria by TiO2-modified UV-C disinfection. App Catal B 2009; 89: 536-42.CrossrefGoogle Scholar

  • Khan U, Benabderrazik N, Bourdelais AJ, Baden DG, Rein K, Gardinali PR, et al. UV and solar TiO2 photocatalysis of brevetoxins (PbTxs). Toxicon 2010; 55: 1008-16.CrossrefPubMedGoogle Scholar

  • Prijic S, Sersa G. Magnetic nanoparticles as targeted delivery systems in oncology. Radiol Oncol 2011; 45: 1-16.PubMedCrossrefGoogle Scholar

  • Lagopati N, Kitsiou PV, Kontos AI, Venieratos P, Kotsopoulou E, Kontos AG, et al. Photo-induced treatment of breast epithelial cancer cells using nanostructured titanium dioxide solution. J Photochem Photobiol, A 2010; 214: 215-23.CrossrefGoogle Scholar

  • Stefanou E, Eyangelou A, Falaras P. Effects of UV-irradiated titania nanoparticles on cell proliferation, cancer metastasis and promotion. Catal Today 2010; 151: 58-63.Google Scholar

  • Cai R, Kubota Y, Shuin T, Sakai H, Hashimoto K, Fujishima A. Induction of cytotoxicity by photoexcited TiO2 particles. Cancer Res 1992; 52: 2346-8.Google Scholar

  • Fujishima A, Hashimoto K, Watanabe T. TiO2 Photocatalysis: Fundamentals and Applications. Tokyo: BKC, Inc; 1999.Google Scholar

  • Fujishima A, Call RX, Otsuki J, Hashimoto K, Iron K, Yamashita T, et al. Biochemical application of photoelectrochemistry: photokilling of malignant cells with TiO2 powder. Electrochim Acta 1993; 38: 153-7.CrossrefGoogle Scholar

  • Kalbacova M, Macak MJ, Schmidt-Stein F, Mierke CT, Schmuki P. Phys. Status Solidi (RRL). 2008; 2: 194-8.Google Scholar

  • Kubota Y, Shuin T, Kawasaki C, Hosaka M, Kitamura H, Cai R et al. Photokilling of T-24 Human Bladder-Cancer Cells with Titanium-Dioxide. Br J Cancer 1994; 70: 1107-11.CrossrefGoogle Scholar

  • Thevenot P, Cho J, Wavhal D, Timmons RB, Tang L. Surface chemistry influences cancer killing effect of TiO2 nanoparticles. Nanomedicine 2008; 43: 226-36.Google Scholar

  • Song M, Zhang RY, Dai YY, Gao F, Chi HM, Lv G, et al. The in vitro inhibition of multidrug resistance by combined nanoparticulate titanium dioxide and UV irradition. Biomaterials 2006; 27: 4230-38.CrossrefPubMedGoogle Scholar

  • Schmidt-Stein F, Hahn R, Gnichwitz JF, Song YY, Shrestha NK, Hirsch A, et al. X-ray induced photocatalysis on TiO2 and TiO2 nanotubes: Degradation of organics and drug release. Electrochem Commun 2009; 1111: 2077-80.Google Scholar

  • Matsui K, Segawa M, Tanaka T, Kondo A, Ogino C. Antibody-immobilized TiO2 nanoparticles for cancer therapy. J Biosci Bioeng 2009; 108: S36-S37.CrossrefGoogle Scholar

  • Xu J, Sun Y, Huang JJ, Chen CM, Liu GY, Jiang Y et al. Photokilling cancer cells using highly cell-specific antibody-TiO2 bioconjugates and electroporation. Bioelectrochem 2007; 712: 217-22.Google Scholar

  • Lai T-Y, Lee W-C. Killing of cancer cell line by photoexcitation of folic acidmodified titanium dioxide nanoparticles. J Photochem Photobiol, A 2009; 204: 148-53.Google Scholar

  • Lomer MCE, Hutchinson C, Volkert S, Greenfield SM, Catterall A, Thompson RPH et al. Dietary sources of inorganic microparticles and their intake in healthy subjects and patients with Crohn's disease. Brit J Nutr 2004; 92: 947-55.CrossrefGoogle Scholar

About the article

Published Online: 2011-11-16

Published in Print: 2011-12-01

Citation Information: Radiology and Oncology, Volume 45, Issue 4, Pages 227–247, ISSN (Online) 1581-3207, ISSN (Print) 1318-2099, DOI: https://doi.org/10.2478/v10019-011-0037-0.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Rebeca Martinez-Haya, Consuelo Sabater, Maria-Ángeles Castillo, Miguel A. Miranda, and M. Luisa Marin
Journal of Hazardous Materials, 2018
Zhi Zhang, Zhi Cheng Liang, Jian Hua Zhang, Sheng Li Tian, Jun Le Qu, Jiao Ning Tang, and Shi De Liu
Ecotoxicology and Environmental Safety, 2018, Volume 154, Page 108
Bin Zhao, Tianxi Yang, Zhiyun Zhang, Michael E. Hickey, and Lili He
Environmental Science & Technology, 2018
Arslan Shamim, Sajjad Ahmad, Anwar Khitab, Waqas Anwar, Rao Arsalan Khushnood, and Muhammad Usman
International Journal of Strategic Engineering, 2018, Volume 1, Number 1, Page 48
Lin Zhao, Yifang Zhu, Zhangjian Chen, Huadong Xu, Jingwen Zhou, Shichuan Tang, Zhizhen Xu, Fanling Kong, Xinwei Li, Yifei Zhang, Xianzuo Li, Ji Zhang, and Guang Jia
Nanotoxicology, 2018, Page 1
Angélica Montiel-Dávalos, Guadalupe Jazmin Silva Sánchez, Elizabeth Huerta-García, Cristhiam Rueda-Romero, Giovanny Soca Chafre, Irma B. Mitre-Aguilar, Ernesto Alfaro-Moreno, José Pedraza-Chaverri, Rebeca López-Marure, and Partha Mukhopadhyay
PLOS ONE, 2017, Volume 12, Number 12, Page e0188169
Muzaffar Ahmad Boda and Mohammad Ashraf Shah
Journal of Materials Science: Materials in Electronics, 2017
Christian Riebeling, Jean-Pascal Piret, Bénédicte Trouiller, Inge Nelissen, Christelle Saout, Olivier Toussaint, and Andrea Haase
NanoImpact, 2017
Xinan Wang, Yun Liu, Juan Wang, Yaguang Nie, Shaopeng Chen, Tom K. Hei, Zhaoxiang Deng, Lijun Wu, Guoping Zhao, and An Xu
Nanotoxicology, 2017, Page 1
Yingjun Zhou, Fashui Hong, Yusheng Tian, Xiangyu Zhao, Jie Hong, Yuguan Ze, and Ling Wang
Toxicol. Res., 2017
Muhammad Sajid and Muhammad Ilyas
Environmental Science and Pollution Research, 2017
Jaleh Varshosaz, Bahar Arbabi, Nader Pestehchian, Sedigheh Saberi, and Mahdi Delavari
International Journal of Biological Macromolecules, 2017
Marie Dorier, David Béal, Caroline Marie-Desvergne, Muriel Dubosson, Frédérick Barreau, Eric Houdeau, Nathalie Herlin-Boime, and Marie Carriere
Nanotoxicology, 2017, Page 1
Saud Alarifi and Daoud Ali
International Journal of Toxicology, 2015, Volume 34, Number 3, Page 258
Barbara Burnat, Justyna Robak, Andrzej Leniart, Ireneusz Piwoński, and Damian Batory
Ceramics International, 2017, Volume 43, Number 16, Page 13735
Zhi Zhang, Jianhua Zhang, Caixia Shi, Heng Guo, RuiYang Ni, Junle Qu, Jiaoning Tang, and Shide Liu
Environmental Science and Pollution Research, 2017, Volume 24, Number 20, Page 17241
J Ahmad, MA Siddiqui, MJ Akhtar, HA Alhadlaq, A Alshamsan, ST Khan, R Wahab, AA Al-Khedhairy, A Al-Salim, J Musarrat, Q Saquib, M Fareed, and M Ahamed
Human & Experimental Toxicology, 2017, Page 096032711771404
Cassiana Ganem Achtschin and Aytan Miranda Sipahi
Nutrition & Food Science, 2017, Volume 47, Number 3, Page 432
Deborah R. Tasat, Mariela G. Domingo, Marcos E. Bruno, María B. Guglielmotti, and Daniel G. Olmedo
Toxicologic Pathology, 2017, Volume 45, Number 5, Page 624
Joanna A. Ruszkiewicz, Adi Pinkas, Beatriz Ferrer, Tanara V. Peres, Aristides Tsatsakis, and Michael Aschner
Toxicology Reports, 2017, Volume 4, Page 245
William Dudefoi, Kristy Moniz, Emma Allen-Vercoe, Marie-Hélène Ropers, and Virginia K. Walker
Food and Chemical Toxicology, 2017, Volume 106, Page 242
Gamze Kuku and Mustafa Culha
Nanomaterials, 2017, Volume 7, Number 4, Page 83
Nouf Al-Rasheed, Laila Faddah, Hanan Ibrahim, Azza M Mohamed, Nawal Al-Rasheed, and Nayira Abdelbaky
Brazilian Archives of Biology and Technology, 2015, Volume 58, Number 4, Page 577
Yu-kun Qin, Xing-pan Guo, Fei-yun Tou, Hui Pan, Jing-nan Feng, Jie Xu, Bo Chen, Min Liu, and Yi Yang
Environ. Sci.: Nano, 2017, Volume 4, Number 5, Page 1178
B. Zhao, X. Cao, R. De La Torre-Roche, C. Tan, T. Yang, J. C. White, H. Xiao, B. Xing, and L. He
RSC Adv., 2017, Volume 7, Number 35, Page 21380
Michele Pittol, Daiane Tomacheski, Douglas Naue Simões, Vanda Ferreira Ribeiro, and Ruth Marlene Campomanes Santana
Plastics, Rubber and Composites, 2017, Volume 46, Number 5, Page 223
Waleed M.M. Mahmoud, Tushar Rastogi, and Klaus Kümmerer
Current Opinion in Green and Sustainable Chemistry, 2017, Volume 6, Page 1
Rossella Alinovi, Matteo Goldoni, Silvana Pinelli, Francesca Ravanetti, Maricla Galetti, Giorgio Pelosi, Giuseppe De Palma, Pietro Apostoli, Antonio Cacchioli, Antonio Mutti, and Paola Mozzoni
Toxicology in Vitro, 2017, Volume 42, Page 76
Maha Z. Rizk, Sanaa A. Ali, Manal A. Hamed, Nagy Saba El-Rigal, Hanan F. Aly, and Heba H. Salah
Biomedicine & Pharmacotherapy, 2017, Volume 90, Page 466
Vani R. Desai, Shirajahammad M. Hunagund, Malatesh S. Pujar, Mahantesha Basanagouda, Jagadish S. Kadadevarmath, and Ashok H. Sidarai
Journal of Molecular Liquids, 2017, Volume 233, Page 166
Olan Cleary, Finn Purcell-Milton, Aurélien Vandekerckhove, and Yurii K. Gun'ko
Advanced Optical Materials, 2017, Volume 5, Number 16, Page 1601000
Lingqun Ye, Fashui Hong, Xiao Ze, Lingjuan Li, Yaoming Zhou, and Yuguan Ze
Journal of Biomedical Materials Research Part A, 2017, Volume 105, Number 5, Page 1374
Meng Li, Biao Liu, Shili Zheng, Shaona Wang, Hao Du, D.B. Dreisinger, and Yi Zhang
Journal of Cleaner Production, 2017, Volume 149, Page 206
William Dudefoi, Hélène Terrisse, Mireille Richard-Plouet, Eric Gautron, Florin Popa, Bernard Humbert, and Marie-Hélène Ropers
Food Additives & Contaminants: Part A, 2017, Page 1
Adny H Silva, Claudriana Locatelli, Ubirajara PR Filho, Bruna F Gomes, Rui M de Carvalho Júnior, Jefferson S de Gois, Daniel LG Borges, and Tânia B Creczynski-Pasa
Toxicology and Industrial Health, 2017, Volume 33, Number 2, Page 147
Lucia Kořenková, Martin Šebesta, Martin Urík, Marek Kolenčík, Gabriela Kratošová, Marek Bujdoš, Ivo Vávra, and Edmund Dobročka
Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 2017, Volume 67, Number 4, Page 285
Cheng-Teng Ng, Jasmine Jia’En Li, Resham Lal Gurung, Manoor Prakash Hande, Choon-Nam Ong, Boon-Huat Bay, and Lin-Yue Lanry Yung
Experimental Biology and Medicine, 2013, Volume 238, Number 12, Page 1355
Azucena Bermejo-Nogales, Mona Connolly, Philipp Rosenkranz, María-Luisa Fernández-Cruz, and José M. Navas
Ecotoxicology and Environmental Safety, 2017, Volume 138, Page 309
Saud Alarifi, Daoud Ali, Ankit Verma, Saad Alakhtani, and Bahy A. Ali
International Journal of Toxicology, 2013, Volume 32, Number 4, Page 296
Rawand Masoud, Tania Bizouarn, Sylvain Trepout, Frank Wien, Laura Baciou, Sergio Marco, Chantal Houée Levin, and Elena A. Rozhkova
PLOS ONE, 2015, Volume 10, Number 12, Page e0144829
Daniela Pelclova, Vladimir Zdimal, Petr Kacer, Nadezda Zikova, Martin Komarc, Zdenka Fenclova, Stepanka Vlckova, Jaroslav Schwarz, Otakar Makeš, Kamila Syslova, Tomas Navratil, Francesco Turci, Ingrid Corazzari, Sergey Zakharov, and Dhimiter Bello
Nanotoxicology, 2017, Volume 11, Number 1, Page 52
M. Sysoltseva, R. Winterhalter, A. S. Wochnik, C. Scheu, and H. Fromme
International Journal of Cosmetic Science, 2017, Volume 39, Number 3, Page 292
M. Biola-Clier, D. Beal, S. Caillat, S. Libert, L. Armand, N. Herlin-Boime, S. Sauvaigo, T. Douki, and M. Carriere
Mutagenesis, 2017, Volume 32, Number 1, Page 161
Santanu Patra, Raksha Choudhary, Ekta Roy, Rashmi Madhuri, and Prashant K. Sharma
Biosensors and Bioelectronics, 2016, Volume 86, Page 818
Xiaochen Zhang, Hongqiang Yin, Zhigui Li, Tao Zhang, and Zhuo Yang
Cell Biology and Toxicology, 2016, Volume 32, Number 6, Page 513
Annette Okupnik and Stephan Pflugmacher
Environmental Toxicology and Chemistry, 2016, Volume 35, Number 11, Page 2859
Xiaohong Yu, Fashui Hong, and Yu-Qing Zhang
Journal of Biomedical Materials Research Part A, 2016, Volume 104, Number 11, Page 2881
Supunsa Kongseng, Krongtong Yoovathaworn, Kanokpan Wongprasert, Rodjana Chunhabundit, Patinya Sukwong, and Dakrong Pissuwan
Journal of Applied Toxicology, 2016, Volume 36, Number 10, Page 1364
Saša Novak, Martina Lorenzetti, Anja Drame, Janja Vidmar, Janez Ščančar, and Metka Filipič
Journal of Nanoparticle Research, 2016, Volume 18, Number 5
Hua-Jie Wang, Ying Cao, Cai-Feng Wang, Shi-Zhong Cui, Li-Wei Mi, and Teruo Miyazawa
Scientific Reports, 2016, Volume 6, Number 1
Liu Yang, Wen Li, Michael Kirberger, Wenzhen Liao, and Jiaoyan Ren
Biomater. Sci., 2016, Volume 4, Number 5, Page 785
Iwona Krzyżewska, Joanna Kyzioł-Komosińska, Czesława Rosik-Dulewska, Justyna Czupioł, and Patrycja Antoszczyszyn-Szpicka
Archives of Environmental Protection, 2016, Volume 42, Number 1
D Pelclova, V Zdimal, Z Fenclova, S Vlckova, F Turci, I Corazzari, P Kacer, J Schwarz, N Zikova, O Makes, K Syslova, M Komarc, J Belacek, T Navratil, M Machajova, and S Zakharov
Occupational and Environmental Medicine, 2016, Volume 73, Number 2, Page 110
Zheng-Mei Song, Lin Wang, Ni Chen, Aoneng Cao, Yuanfang Liu, and Haifang Wang
Colloids and Surfaces B: Biointerfaces, 2016, Volume 142, Page 65
Juan Mou, Tianquan Lin, Fuqiang Huang, Hangrong Chen, and Jianlin Shi
Biomaterials, 2016, Volume 84, Page 13
Fashui Hong, Yajing Wang, Yingjun Zhou, Qi Zhang, Yushuang Ge, Ming Chen, Jie Hong, and Ling Wang
Journal of Agricultural and Food Chemistry, 2016, Volume 64, Number 1, Page 346
Ali Ataya, Kristopher P. Kline, Jessica Cope, and Hassan Alnuaimat
Respiratory Medicine Case Reports, 2015, Volume 16, Page 146
Pinhua Rao, Zhaowei Sun, Wenqi Zhang, Wei Yao, Luanjiao Wang, and Guoyu Ding
RSC Adv., 2015, Volume 5, Number 109, Page 89545
Xiaoying Guan, Xinhua Jiang, Chuan Yang, Xiumei Tian, and Li Li
Nanotoxicology, 2016, Volume 10, Number 5, Page 531
Christian Riebeling, Andreas Luch, and Mario Enrico Götz
Nanotoxicology, 2016, Volume 10, Number 3, Page 343
Intissar Grissa, Jaber Elghoul, Lobna Ezzi, Sana Chakroun, Emna Kerkeni, Mohsen Hassine, Lassaad El Mir, Meriem Mehdi, Hassen Ben Cheikh, and Zohra Haouas
Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2015, Volume 794, Page 25
Fanny Caputo, Milena De Nicola, Andrzej Sienkiewicz, Anna Giovanetti, Ignacio Bejarano, Silvia Licoccia, Enrico Traversa, and Lina Ghibelli
Nanoscale, 2015, Volume 7, Number 38, Page 15643
Fashui Hong, Xiaoyang Zhao, Wenhui Si, Yuguan Ze, Ling Wang, Yingjun Zhou, Jie Hong, Xiaohong Yu, Lei Sheng, Dong Liu, Bingqing Xu, and Jianhao Zhang
Journal of Hazardous Materials, 2015, Volume 300, Page 718
Fashui Hong, Wenhui Si, Xiaoyang Zhao, Ling Wang, Yingjun Zhou, Ming Chen, Yushaung Ge, Qi Zhang, Yajing Wang, and Jianhao Zhang
Journal of Agricultural and Food Chemistry, 2015, Volume 63, Number 31, Page 7084
Ayca Erdem, David Metzler, Daniel K. Cha, and C. P. Huang
Environmental Science and Pollution Research, 2015, Volume 22, Number 22, Page 17917
Sabrina Losert, Adrian Hess, Gabriele Ilari, Natalie von Goetz, and Konrad Hungerbuehler
Journal of Nanoparticle Research, 2015, Volume 17, Number 7
Koigoora Srikanth, Eduarda Pereira, Armando C. Duarte, and Janapala Venkateswara Rao
Protoplasma, 2016, Volume 253, Number 3, Page 873
Zheng-Mei Song, Ni Chen, Jia-Hui Liu, Huan Tang, Xiaoyong Deng, Wen-Song Xi, Kai Han, Aoneng Cao, Yuanfang Liu, and Haifang Wang
Journal of Applied Toxicology, 2015, Volume 35, Number 10, Page 1169
Stéphane Faucher and Gaëtane Lespes
Journal of Trace Elements in Medicine and Biology, 2015, Volume 32, Page 40
Luis Guillermo Garduño-Balderas, Ismael Manuel Urrutia-Ortega, Estefany Ingrid Medina-Reyes, and Yolanda Irasema Chirino
Journal of Applied Toxicology, 2015, Volume 35, Number 10, Page 1073
Yukiko Yoshiura, Hiroto Izumi, Takako Oyabu, Masayoshi Hashiba, Tatsunori Kambara, Yohei Mizuguchi, Byeong Woo Lee, Takami Okada, Taisuke Tomonaga, Toshihiko Myojo, Kazuhiro Yamamoto, Shinichi Kitajima, Masanori Horie, Etsushi Kuroda, and Yasuo Morimoto
Journal of Nanoparticle Research, 2015, Volume 17, Number 6
Zhiqin Shi, Yujie Niu, Qian Wang, Lei Shi, Huicai Guo, Yi Liu, Yue Zhu, Shufeng Liu, Chao Liu, Xin Chen, and Rong Zhang
Journal of Hazardous Materials, 2015, Volume 298, Page 310
Zhilei Mao, Bo Xu, Xiaoli Ji, Kun Zhou, Xuemei Zhang, Minjian Chen, Xiumei Han, Qiusha Tang, Xinru Wang, and Yankai Xia
Nanoscale, 2015, Volume 7, Number 18, Page 8466
Shigeru Sato, Takashi Takaki, Hidetoshi Nishiyama, and Tokuya Omi
Journal of Cosmetics, Dermatological Sciences and Applications, 2013, Volume 03, Number 01, Page 121
Antonio Lettino, Claudia Belviso, Francesco Cavalcante, and Saverio Fiore
Environmental Geochemistry and Health, 2016, Volume 38, Number 1, Page 73
Nazanin Golbamaki, Bakhtiyor Rasulev, Antonio Cassano, Richard L. Marchese Robinson, Emilio Benfenati, Jerzy Leszczynski, and Mark T. D. Cronin
Nanoscale, 2015, Volume 7, Number 6, Page 2154
Fashui Hong, Jie Hong, Ling Wang, Yingjun Zhou, Dong Liu, Bingqing Xu, Xiaohong Yu, and Lei Sheng
Journal of Agricultural and Food Chemistry, 2015, Volume 63, Number 5, Page 1639
Vaiyapuri Subbarayan Periasamy, Jegan Athinarayanan, Ahmed M. Al-Hadi, Fahad Al Juhaimi, and Ali A. Alshatwi
Archives of Environmental Contamination and Toxicology, 2015, Volume 68, Number 3, Page 521
Rossella Alinovi, Matteo Goldoni, Silvana Pinelli, Marco Campanini, Irene Aliatis, Danilo Bersani, Pier Paolo Lottici, Sergio Iavicoli, Marta Petyx, Paola Mozzoni, and Antonio Mutti
Toxicology in Vitro, 2015, Volume 29, Number 3, Page 426
H. Zangeneh, A.A.L. Zinatizadeh, M. Habibi, M. Akia, and M. Hasnain Isa
Journal of Industrial and Engineering Chemistry, 2015, Volume 26, Page 1
Eşref Demir, Hakan Akça, Fatma Turna, Sezgin Aksakal, Durmuş Burgucu, Bülent Kaya, Onur Tokgün, Gerard Vales, Amadeu Creus, and Ricard Marcos
Environmental Research, 2015, Volume 136, Page 300
Daoud Ali, Saud Alarifi, Saad Alkahtani, Abdullah A. AlKahtane, and Abdulaziz Almalik
Cell Biochemistry and Biophysics, 2015, Volume 71, Number 3, Page 1643
V. A. Ortega, B. A. Katzenback, J. L. Stafford, M. Belosevic, and G. G. Goss
Nanotoxicology, 2015, Volume 9, Number 1, Page 23
Alberto Katsumiti, Deborah Berhanu, Kieren T. Howard, Inmaculada Arostegui, Miriam Oron, Paul Reip, Eugenia Valsami-Jones, and Miren P. Cajaraville
Nanotoxicology, 2015, Volume 9, Number 5, Page 543
Eun-Jung Park, Seung Yun Lee, Gwang-Hee Lee, Dong-Wan Kim, Younghun Kim, Myung-Haing Cho, and Jae-Ho Kim
Toxicology Letters, 2014, Volume 230, Number 1, Page 69
Quentin Le Trequesser, Gladys Saez, Guillaume Devès, Claire Michelet, Philippe Barberet, Marie-Hélène Delville, and Hervé Seznec
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2014, Volume 341, Page 58
Quentin Le Trequesser, Guillaume Devès, Gladys Saez, Laurent Daudin, Philippe Barberet, Claire Michelet, Marie-Hélène Delville, and Hervé Seznec
Analytical Chemistry, 2014, Volume 86, Number 15, Page 7311
João Pinto da Costa, Rui Oliveira-Silva, Ana Luísa Daniel-da-Silva, and Rui Vitorino
Biotechnology Advances, 2014, Volume 32, Number 5, Page 952
Saud Alarifi, Daoud Ali, Ankit Verma, Fahad N. Almajhdi, and Ahmed A. Al-Qahtani
In Vitro Cellular & Developmental Biology - Animal, 2014, Volume 50, Number 8, Page 714
Saud Alarifi, Daoud Ali, Saad Alkahtani, and M. S. Alhader
Biological Trace Element Research, 2014, Volume 159, Number 1-3, Page 416
Camille Larue, Hiram Castillo-Michel, Sophie Sobanska, Nicolas Trcera, Stéphanie Sorieul, Lauric Cécillon, Laurent Ouerdane, Samuel Legros, and Géraldine Sarret
Journal of Hazardous Materials, 2014, Volume 273, Page 17
E. Verleysen, P.-J. De Temmerman, E. Van Doren, M. Abi Daoud Francisco, and J. Mast
Powder Technology, 2014, Volume 258, Page 180
Zhangjian Chen, Yun Wang, Te Ba, Yang Li, Ji Pu, Tian Chen, Yanshuang Song, Yongen Gu, Qin Qian, Jinglin Yang, and Guang Jia
Toxicology Letters, 2014, Volume 226, Number 3, Page 314
Nina Bendixen, Sabrina Losert, Christian Adlhart, Marco Lattuada, and Andrea Ulrich
Journal of Chromatography A, 2014, Volume 1334, Page 92
Raju Y. Prasad, Steven O. Simmons, Micaela G. Killius, Robert M. Zucker, Andrew D. Kligerman, Carl F. Blackman, Rebecca C. Fry, and David M. DeMarini
Environmental and Molecular Mutagenesis, 2014, Volume 55, Number 4, Page 336
Saud Alarifi, Daoud Ali, Saad Alakhtani, Entissar S. Al Suhaibani, and Ahmed A. Al-Qahtani
Biological Trace Element Research, 2014, Volume 157, Number 1, Page 84
Haifang Wang, Li-Jing Du, Zheng-Mei Song, and Xin-Xin Chen
Nanomedicine, 2013, Volume 8, Number 12, Page 2007
Goran Gajski, Želimir Jelčić, Višnja Oreščanin, Marko Gerić, Robert Kollar, and Vera Garaj-Vrhovac
Biochimica et Biophysica Acta (BBA) - General Subjects, 2014, Volume 1840, Number 1, Page 565
Wei Song, Jiangxue Wang, Meili Liu, Ping Li, Gang Zhou, Zhou Li, and Yubo Fan
Journal of Nanomaterials, 2013, Volume 2013, Page 1
Suxin Gui, Bingyan Li, Xiaoyang Zhao, Lei Sheng, Jie Hong, Xiaohong Yu, Xuezi Sang, Qingqing Sun, Yuguan Ze, Ling Wang, and Fashui Hong
Journal of Agricultural and Food Chemistry, 2013, Volume 61, Number 37, Page 8959
Stephanie C. Bolyard, Debra R. Reinhart, and Swadeshmukul Santra
Environmental Science & Technology, 2013, Page 130710152553007
Sung Gu Han, Bradley Newsome, and Bernhard Hennig
Toxicology, 2013, Volume 306, Page 1
Sijing Xiong, Yuxin Tang, Huiyun Sheena Ng, Xinxin Zhao, Zhelong Jiang, Zhong Chen, Kee Woei Ng, and Say Chye Joachim Loo
Toxicology, 2013, Volume 304, Page 132
Xuyang Liu, Gexin Chen, Arturo A. Keller, and Chunming Su
Environ. Sci.: Processes Impacts, 2013, Volume 15, Number 1, Page 169
François Perreault, Silvia Pedroso Melegari, Cristina Henning da Costa, Ana Letícia de Oliveira Franco Rossetto, Radovan Popovic, and William Gerson Matias
Science of The Total Environment, 2012, Volume 441, Page 117
Xin-Xin Chen, Bin Cheng, Yi-Xin Yang, Aoneng Cao, Jia-Hui Liu, Li-Jing Du, Yuanfang Liu, Yuliang Zhao, and Haifang Wang
Small, 2013, Volume 9, Number 9-10, Page 1765
Sijing Xiong, Saji George, Haiyang Yu, Robert Damoiseaux, Bryan France, Kee Woei Ng, and Joachim Say-Chye Loo
Archives of Toxicology, 2013, Volume 87, Number 6, Page 1075
Yun Wang, Zhangjian Chen, Te Ba, Ji Pu, Tian Chen, Yanshuang Song, Yongen Gu, Qin Qian, Yingying Xu, Kun Xiang, Haifang Wang, and Guang Jia
Small, 2013, Volume 9, Number 9-10, Page 1742
Sijing Xiong, Saji George, Zhaoxia Ji, Sijie Lin, Haiyang Yu, Robert Damoiseaux, Bryan France, Kee Woei Ng, and Say Chye Joachim Loo
Archives of Toxicology, 2013, Volume 87, Number 1, Page 99

Comments (0)

Please log in or register to comment.
Log in