Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Radiology and Oncology

The Journal of Association of Radiology and Oncology

4 Issues per year


IMPACT FACTOR 2016: 1.681
5-year IMPACT FACTOR: 1.723

CiteScore 2016: 1.70

SCImago Journal Rank (SJR) 2016: 0.538
Source Normalized Impact per Paper (SNIP) 2016: 0.921


Open Access
Online
ISSN
1581-3207
See all formats and pricing
More options …
Volume 48, Issue 3 (Sep 2014)

Issues

MRI-assisted cervix cancer brachytherapy pre-planning, based on application in paracervical anaesthesia: final report

Primoz Petric
  • Department of Radiation Oncology, National Center for Cancer Care and Research, Doha, Qatar
  • Department of Radiotherapy, Institute of Oncology Ljubljana, Ljubljana, Slovenia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Robert Hudej / Omar Hanuna / Primoz Marolt / Noora Mohammed A A Al-Hammadi / Mohamed P. Riyas / Barbara Segedin
  • Corresponding author
  • Department of Radiotherapy, Institute of Oncology Ljubljana, Ljubljana, Slovenia
  • Department of Radiotherapy, Institute of Oncology Ljubljana, Ljubljana, Slovenia. Phone +386 1 5879 206; Fax: +386 1 5879 400
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-07-10 | DOI: https://doi.org/10.2478/raon-2014-0009

Abstract

Background. Optimal applicator insertion is a precondition for the success of cervix cancer brachytherapy (BT). We aimed to assess feasibility and efficacy of MRI-assisted pre-planning, based on applicator insertion in para-cervical anaesthesia (PCA).

Patients and methods. Five days prior to BT, the pre-planning procedure was performed in 18 cervix cancer patients: tandem-ring applicator was inserted under PCA, pelvic MRI obtained and applicator removed. Procedure tolerability was assessed. High risk clinical target volume (HR CTV) and organs at risk were delineated on the pre-planning MRI, virtual needles placed at optimal positions, and dose planning performed. At BT, insertion was carried out in subarachnoidal anaesthesia according to pre-planned geometry. Pre-planned and actual treatment parameters were compared.

Results. Pre-planning procedure was well tolerated. Median difference between the pre-planned and actual needle insertion depth and position were 2 (0―10) mm and 4 (0―30) degrees, respectively. The differences between the pre-planned and actual geometric and dosimetric parameters were statistically non-significant. All actual needles were positioned inside the HR CTV and outside the organs at risk (OAR).

Conclusions. Our pre-planning approach is well tolerated and effective. Pre-planned geometry and dose distribution can be reproduced at BT.

Keywords: cervix cancer; MRI; pre-planning; image-guided brachytherapy

References

  • 1. Haie-Meder C, Pötter R, Van Limbergen E, Briot E, De Brabandere M, Dimopoulos J, et al. Recommendations from Gynaecological (GYN) GECESTRO Working Group (I): concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother Oncol 2005; 74: 235-45.CrossrefGoogle Scholar

  • 2. Dimopoulous JCA, Schard G, Berger D, Lang S, Goldner G, Helbich T, et al. Systematic evaluation of MRI findings in different stages of treatment of cervical cancer: potential of MRI on delineation of target patho-anatomical structures and organs at risk. Int J Radiat Oncol Biol Phys 2006; 64: 1380-8.CrossrefGoogle Scholar

  • 3. Boss EA, Barentsz JO, Massuger LF, Boonstra H. The role of MI imaging in invasive cervical carcinoma. Eur Radiol 2000; 10: 256-70.CrossrefGoogle Scholar

  • 4. Subak LL, Hricak H. Powell CB, Azizi L, Stern JL. Cervical carcinoma: computed tomography and magnetic resonance imaging for preoperative staging. Obstet Gynecol 1995; 86:3-50.Google Scholar

  • 5. Mitchell DG, Snyder B, Coakley F, Reinhold C, Thomas G, Amendola M, et al. Early invasive cervical cancer: tumor delineation by magnetic resonance imaging, computed tomography, and clinical examination, verified by pathologic results, in the ACRIN 6651/GOG 183 Intergroup Study. J Clin Oncol 2006; 24: 5687-94.PubMedGoogle Scholar

  • 6. Oszarlak O, Tjalma W, Scheppens E, Corthouts B, Op de Beeck B, Van Marck E, et al. The correlation of preoperative CT, MR imaging, and clinical staging (FIGO) with histopathology findings in primary cervical carcinoma. Eur Radiol 2003; 13: 338-45.Google Scholar

  • 7. Hricak H, Gatsonsis C, Coakley FV, Snyder B, Reinhold C, Schwartz LH, et al. Early invasive cervical cancer: CT and MR imaging in preoperative evaluation - ACRIN/GOG comparative study of diagnostic performance and interobserver variability. Radiology 2007; 245: 491-8.Web of ScienceCrossrefGoogle Scholar

  • 8. Jung DC, Ju W, Choi HJ, Kang S, Park S, Yoo CW, et al. The validity of tumour diameter assessed by magnetic resonance imaging and gross specimen with regard to tumour volume in cervical cancer patients. Eur J Cancer 2008; 44: 1524-8.CrossrefWeb of SciencePubMedGoogle Scholar

  • 9. Bipat S, Glas AS, van der Velden J, Zwinderman AH, Bossuyt PM, Stoker J. Computed tomography and magnetic resonance imaging in staging of uterine cervical carcinoma: a systemic review. Gynecol Oncol 2003; 91: 59-66.CrossrefGoogle Scholar

  • 10. Dimopoulos JCA, Schirl G, Baldinger A, Helbich TH, Pötter R. MRI assessment of cervical cancer for adaptive radiotherapy. Strahlenther Onkol 2009; 185: 282-7.Web of ScienceCrossrefPubMedGoogle Scholar

  • 11. Kiristis C, Lang S, Dimopoulos J, Berger D, Georg D, Pötter R. The Vienna applicator for combined intracavitary and interstitial brachytherapy of cervical cancer: design, application, treatment planning, and dosimetric results. Int J Radiat Oncol Biol Phys 2006; 65: 624-30.CrossrefGoogle Scholar

  • 12. Dimopoulos JCA, Kiristis C, Petric P, Georg P, Lang S, Berger D, et al. The Vienna applicator for combined intracavitary and interstitial brachytherapy of cervical cancer: clinical feasibility and preliminary results. Int J Radiat Oncol Biol Phys 2006; 66: 83-90.PubMedCrossrefGoogle Scholar

  • 13. Pötter R, Dimopoulos J, Georg P, Lang S, Waldhäusl C, Wachter-Gerstner N, et al. Clinical impact of MRI assisted dose volume adaptation and dose escalation in brachytherapy of locally advanced cervix cancer. Radiother Oncol 2007; 83: 148-55.CrossrefWeb of SciencePubMedGoogle Scholar

  • 14. Haie-Meder C. MRI-based brachytherapy (BT) in the treatment of cervical cancer: experience of the Institute Gustave-Roussy. Radiother Oncol 2007; 83(Suppl 1): S11-12.Google Scholar

  • 15. Lindegaard JC, Tandercup K, Nielsen SK, Haack S, Gelineck J. MRI-guided 3D optimization significantly improves DVH parameters of pulsed-dose-rate brachytherapy in locally advanced cervical cancer. Int J Radiat Oncol Biol Phys 2008; 71: 756-64.Web of SciencePubMedCrossrefGoogle Scholar

  • 16. De Brabandere M, Mousa AG, Nulens A, Swinnen A, Van Limbergen E. Potential of dose optimization in MRI-based PDR brachytherapy of cervix carcinoma. Radiother Oncol 2008; 88: 217-26.CrossrefGoogle Scholar

  • 17. Petrič, P, Hudej R, Šegedin B, Zobec Logar HB. MRI assisted treatment planning improves the DVH parameters in cervix cancer brachytherapy. Radiother Oncol 2011; 99: 264-265.CrossrefGoogle Scholar

  • 18. Hudej R, Petric P, Burger J. Standard versus 3D optimized MRI-based planning for uterine cervix cancer brachyradiotherapy-the Ljubljana experience. In: Jarm T, Kramar P, Županič A, editors. International Federation for Medical and Biological Engineering proceedings. 11th Mediterranean Conference on Medical and Biological Engineering and Computing 2007, 26-30 June, 2007, Ljubljana, Slovenia. New York: Springer; 2007(16). p. 875-8.Google Scholar

  • 19. Jürgenliemk-Schulz IM, Tersteeg RJ, Roesink JM, Bijmolt S, Nomden CN, Moerland MA, et al. MRI-guided treatment-planning optimisation in intracavitary or combined intracavitary/interstitial PDR brachytherapy using tandem ovoid applicators in locally advanced cervical cancer. Radiother Oncol 2009; 93: 322-30.CrossrefGoogle Scholar

  • 20. Petrič P, Hudej R, Rogelj P, Lindegaard J, Tanderup K, Kirisits C, et al. Frequency-distribution mapping of HR CTV in cervix cancer: possibilities and limitations of existent and prototype applicators. Radiother Oncol 2010; 96: 70.Google Scholar

  • 21. Kuipers T, Hoekstra CJ, van Riet A, Mak AC, Vonk EJ, Elders LH. HDR brachytherapy applied to cervical carcinoma with moderate lateral expansion: modified principles of treatment. Radiother Oncol 2001; 58: 25-30.CrossrefPubMedGoogle Scholar

  • 22. Pötter R, Haie-Mader C, Van Limbergen E, Barillot I, De Brabandere M, Dimopoulos J, et al. Recommendations from gynaecological (GYN) GECESTRO Working Group: (II): concepts and terms of 3D imaging, radiation physics, radiobiology, and 3D dose volume parameters. Radiother Oncol 2006; 78: 67-77.CrossrefGoogle Scholar

  • 23. Hellebust TP, Kirisits C, Berger D, Pérez-Calatayud J, De Brabandere M, De Leeuw A, et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group: Considerations and pitfalls in comissioning and applicator reconstruction in 3D image-based treatment planning of cervix cancer brachytherapy. Radiother Oncol 2010; 96: 153-60.Web of ScienceCrossrefGoogle Scholar

  • 24. Dimopoulos JC, Petrow P, Tanderup K, Petric P, Berger D, Kirisits C, et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (IV): Basic principles and parameters for MRI imaging within the frame of image based adaptive cervix cancer brachytherapy. Radiother Oncol 2012; 103: 113-22.CrossrefWeb of ScienceGoogle Scholar

  • 25. Petric, P, Hudej R, Music M. MRI assisted cervix cancer brachytherapy preplanning, based on insertion of the applicator in para-cervical anaesthesia: preliminary results of a prospective study. J Contemp Brachyther 2009; 1: 163-9.Google Scholar

  • 26. Gerbaulet A, Pötter R, Haie-Meder C. Cervix cancer. In: Gerbaulet A, Pötter R, Mazeron JJ, Meertens H, Van Limbergen E, eds. The GEC ESTRO Handbook of Brachytherapy. Brussels: European Society of Therapeutic Radiology and Oncology; 2002. p. 301-63.Google Scholar

  • 27. Fokdal L, Tanderup K, Hokland SB, Røhl L, Pedersen EM, Nielsen SK, et al. Clinical feasibilty of combined intracavitary/interstitial brachytherapy in locally advanced cervical cancer employing MRI with a tandem/ring applicator in situ and virtual preplanning of the interstitial component. Radiother Oncol 2013; 107: 63-8.CrossrefGoogle Scholar

  • 28. Granai CO, Allee P, Doherty F, Madoc-Jones H, Curry SL. Ultrasound used for assessing the in situ position of intrauterine tandems. Gynecol Oncol 1984; 18: 334-8.PubMedCrossrefGoogle Scholar

  • 29. Sahinler I, Cepni I, Colpan D, Cepni K, Koksal S, Koca A, et al. Tandem application with transvaginal ultrasound guidance. Int J Radiat Oncol Biol Phys 2004; 59: 190-6.PubMedCrossrefGoogle Scholar

  • 30. Mayr NA, Montebello JF, Sorosky JI, Daugherty JS, Nguyen DL, Mardirossian G, et al. Brachytherapy management of the retroverted uterus using ultrasound- guided implant applicator placement. Brachytherapy 2005; 4: 24-9.PubMedCrossrefGoogle Scholar

  • 31. Davidson MT, Yuen J, D’Souza D, Radwan JS, Hammond JA, Batchelar DL. Optimization of high-dose-rate cervix brachytherapy applicator placement: the benefits of intraoperative ultrasound guidance. Brachytherapy 2008; 7: 248-53.Web of ScienceCrossrefPubMedGoogle Scholar

  • 32. Stock RG, Chan K, Terk M, Dewyngaert JK, Stone NN, Dottino P. A new technique for performing Syed -Neblett template interstitial implants for gynecologic malignancies using transrectal-ultrasound guidance. Int J Radiat Oncol Biol Phys 1997; 37: 819-25.CrossrefPubMedGoogle Scholar

  • 33. Weitmann HD, Knocke TH, Waldhäusl C, Pötter R. Ultrasound-guided interstitial Brachytherapy in the treatment of advanced vaginal recurences from cervical and endometrial carcinoma. Strahlenther Onkol 2006; 182: 86-95.CrossrefGoogle Scholar

  • 34. Petric P, Pötter R, Van Limbergen E, Haie Meder C. Adaptive contouring of the target volume and organs at risk. In: Viswanathan AN, editor. Gynecologic radiation therapy: novel approaches to image-guidance and management. Heidelberg: Springer cop.; 2011. p. 99-118.Google Scholar

  • 35. Viswanathan AN, Cormack R, Holloway CL, Tanaka C, O’Farrell D, Devlin PM, et al. Magnetic resonance-guided interstitial therapy for vaginal recurrence of endometrial cancer. Int J Radiat Oncol Biol Phys 2006; 66: 91-9.PubMedCrossrefGoogle Scholar

  • 36. D’Amico AV, Cormack R, Tempany CM, Kumar S, Topulos G, Kooy HM, et al. Real-time magnetic resonance image-guided interstitial brachytherapy in the treatment of select patients with clinically localized prostate cancer. Int J Radiat Oncol Biol Phys 1998; 42: 507-15.PubMedGoogle Scholar

  • 37. Menard C, Susil RC, Choyke P, Gustafson GS, Kammerer W, Ning H, et al. MRI-guided HDR prostate brachytherapy in standard 1.5T scanner. Int J Radiat Oncol Biol Phys 2004; 59: 1414-23.Google Scholar

  • 38. Albert M, Tempany CM, Schultz D, Chen MH, Cormack RA, Kumar S, et al. Late genitourinary and gastrointestinal toxicity after magnetic resonance image-guided prostate brachytherapy with or without neoadjuvant external beam radiation therapy. Cancer 2003; 98: 949-54.PubMedCrossrefGoogle Scholar

  • 39. Kettenbach J, Pokrajac B, Schamp S, Fellner C, Schmid R, Gustorff B, et al. MRI-assisted brachytherapy of nonresectable liver metastases. Preliminary technical and clinical experiences. Radiologe 2001; 41: 56-63.CrossrefPubMedGoogle Scholar

  • 40. Tangsiriwatthana T, Sangkomkamhang US, Lumbiganon P, Laopaiboon M. Paracervical local anaesthesia for cervical dilatation and uterine intervention. Cochrane Database of Systematic Reviews 2013, Issue 9. Art. No.: CD005056. DOI: 10.1002/14651858.CD005056.CrossrefGoogle Scholar

  • 41. Cooper NA, Khan KS, Clark TJ. Local anaesthesia for pain control during outpatient hysteroscopy: systematic review and meta-analysis. Br Med J 2010; 340: c1130.Web of ScienceGoogle Scholar

  • 42. Finikiotis G. Side-effects and complications of outpatient hysteroscopy. Aust N Z J Obstet Gynaecol 1993; 33: 61-2.Google Scholar

  • 43. Petric P, Hudej R, Rogelj P, Blas M, Segedin B, Logar HB, et al. Comparison of 3D MRI with high sampling efficiency and 2D multiplanar MRI for contouring in cervix cancer brachytherapy. Radiol Oncol 2012; 46: 242-51.PubMedWeb of ScienceGoogle Scholar

  • 44. Zobec Logar HL, Segedin B, Hudej R, Petric P. Definitive radiotherapy for uterine cervix cancer: long term results for patients treated in the period from 1998 till 2002 at the Institute of Oncology Ljubljana. Radiol Oncol 2013; 47: 280-8. Web of ScienceGoogle Scholar

About the article

Received: 2013-12-13

Accepted: 2014-01-14

Published Online: 2014-07-10

Published in Print: 2014-09-01


Citation Information: Radiology and Oncology, ISSN (Online) 1581-3207, DOI: https://doi.org/10.2478/raon-2014-0009.

Export Citation

© by Barbara Segedin. This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Niluja Thiruthaneeswaran, Nicki Groom, Gerry Lowe, Linda Bryant, and Peter J. Hoskin
Brachytherapy, 2017
[2]
Elisha Fredman, Bryan Traughber, Tarun Podder, Valdir Colussi, Yiran Zheng, Suzanne Russo, Karin Herrmann, Raj Paspulati, Steven Waggoner, Kristin Zanotti, Christa Nagel, John Nakayama, Mitchell Machtay, and Rodney Ellis
Brachytherapy, 2017
[3]
Ee Siang Choong, Peter Bownes, Hima Bindu Musunuru, Sree Rodda, Carolyn Richardson, Bashar Al-Qaisieh, Sarah Swift, Jane Orton, and Rachel Cooper
Brachytherapy, 2016, Volume 15, Number 1, Page 40

Comments (0)

Please log in or register to comment.
Log in