Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Radiology and Oncology

The Journal of Association of Radiology and Oncology

4 Issues per year

IMPACT FACTOR 2016: 1.681
5-year IMPACT FACTOR: 1.723

CiteScore 2016: 1.70

SCImago Journal Rank (SJR) 2016: 0.538
Source Normalized Impact per Paper (SNIP) 2016: 0.921

Open Access
See all formats and pricing
More options …
Volume 49, Issue 3 (Sep 2015)


Careful treatment planning enables safe ablation of liver tumors adjacent to major blood vessels by percutaneous irreversible electroporation (IRE)

Bor Kos / Peter Voigt
  • Leipzig University Hospital, Department of Diagnostic and Interventional Radiology, Leipzig, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Damijan Miklavcic / Michael Moche
  • Corresponding author
  • Leipzig University Hospital, Department of Diagnostic and Interventional Radiology, Leipzig, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-08-21 | DOI: https://doi.org/10.1515/raon-2015-0031


Background. Irreversible electroporation (IRE) is a tissue ablation method, which relies on the phenomenon of electroporation. When cells are exposed to a sufficiently electric field, the plasma membrane is disrupted and cells undergo an apoptotic or necrotic cell death. Although heating effects are known IRE is considered as non-thermal ablation technique and is currently applied to treat tumors in locations where thermal ablation techniques are contraindicated.

Materials and methods. The manufacturer of the only commercially available pulse generator for IRE recommends a voltage-to-distance ratio of 1500 to 1700 V/cm for treating tumors in the liver. However, major blood vessels can influence the electric field distribution. We present a method for treatment planning of IRE which takes the influence of blood vessels on the electric field into account; this is illustrated on a treatment of 48-year-old patient with a metastasis near the remaining hepatic vein after a right side hemi-hepatectomy.

Results. Output of the numerical treatment planning method shows that a 19.9 cm3 irreversible electroporation lesion was generated and the whole tumor was covered with at least 900 V/cm. This compares well with the volume of the hypodense lesion seen in contrast enhanced CT images taken after the IRE treatment. A significant temperature raise occurs near the electrodes. However, the hepatic vein remains open after the treatment without evidence of tumor recurrence after 6 months.

Conclusions. Treatment planning using accurate computer models was recognized as important for electrochemotherapy and irreversible electroporation. An important finding of this study was, that the surface of the electrodes heat up significantly. Therefore the clinical user should generally avoid placing the electrodes less than 4 mm away from risk structures when following recommendations of the manufacturer.

Keywords: irreversible electroporation; liver tumors; colorectal carcinoma; finite element method


  • 1 Davalos R, Mir L, Rubinsky B. Tissue ablation with irreversible electroporation. Ann Biomed Eng 2005; 33: 223-31.CrossrefGoogle Scholar

  • 2 Yarmush ML, Golberg A, Serša G, Kotnik T, Miklavčič D. Electroporation-based technologies for medicine: principles, applications, and challenges. Annu Rev Biomed Eng 2014; 16: 295-320.Web of ScienceCrossrefGoogle Scholar

  • 3 Jiang C, Davalos R, Bischof J. A review of basic to clinical studies of irreversible electroporation therapy. IEEE Trans Biomed Eng 2015; 62: 4-20.CrossrefGoogle Scholar

  • 4 Martin RCG. Irreversible electroporation of locally advanced pancreatic head adenocarcinoma. J Gastrointest Surg 2013; 17: 1850-6.CrossrefWeb of ScienceGoogle Scholar

  • 5 Scheffer HJ, Melenhorst MCAM, Vogel JA, van Tilborg AAJM, Nielsen K, Kazemier G, et al. Percutaneous irreversible electroporation of locally advanced pancreatic carcinoma using the dorsal approach: a case report. Cardiovasc Intervent Radiol 2015; 38: 760–5.CrossrefGoogle Scholar

  • 6 Qin Z, Jiang J, Long G, Lindgren B, Bischof JC. Irreversible electroporation: an in vivo study with dorsal skin fold chamber. Ann Biomed Eng 2013; 41: 619-29.CrossrefWeb of ScienceGoogle Scholar

  • 7 Neal RE, Garcia PA, Kavnoudias H, Rosenfeldt F, Mclean CA, Earl V, et al. In vivo irreversible electroporation kidney ablation: experimentally correlated numerical models. IEEE Trans Biomed Eng 2015; 62: 561-9.CrossrefWeb of ScienceGoogle Scholar

  • 8 Arena CB, Mahajan RL, Nichole Rylander M, Davalos RV. An experimental and numerical investigation of phase change electrodes for therapeutic irreversible electroporation. J Biomech Eng 2013; 135: 111009.Web of ScienceCrossrefGoogle Scholar

  • 9 Garcia PA, Rossmeisl JH Jr, Neal RE 2nd, Ellis TL, Davalos RV. A parametric study delineating irreversible electroporation from thermal damage based on a minimally invasive intracranial procedure. Biomed Eng Online 2011; 10: 34.Web of ScienceGoogle Scholar

  • 10 Haemmerich D, Wood BJ. Hepatic radiofrequency ablation at low frequencies preferentially heats tumour tissue. Int J Hyperth 2006; 22: 563-74.CrossrefGoogle Scholar

  • 11 Pillai K, Akhter J, Chua TC, Shehata M, Alzahrani N, Al-Alem I, et al. Heat sink effect on tumor ablation characteristics as observed in monopolar radiofrequency, bipolar radiofrequency, and microwave, using ex vivo calf liver model. Medicine 2015; 94: e580.CrossrefWeb of ScienceGoogle Scholar

  • 12 Poulou LS, Botsa E, Thanou I, Ziakas PD, Thanos L. Percutaneous microwave ablation vs radiofrequency ablation in the treatment of hepatocellular carcinoma. World J Hepatol 2015; 7: 1054-63.CrossrefGoogle Scholar

  • 13 Golberg A, Bruinsma BG, Uygun BE, Yarmush ML. Tissue heterogeneity in structure and conductivity contribute to cell survival during irreversible electroporation ablation by «electric field sinks». Sci Rep 2015; 5: 8485.CrossrefWeb of ScienceGoogle Scholar

  • 14 Marcan M, Pavliha D, Music MM, Fuckan I, Magjarevic R, Miklavcic D. Segmentation of hepatic vessels from MRI images for planning of electroporation-based treatments in the liver. Radiol Oncol 2014; 48: 267-81.CrossrefWeb of ScienceGoogle Scholar

  • 15 Marčan M, Kos B, Miklavčič D. Effect of blood vessel segmentation on the outcome of electroporation-based treatments of liver tumors. PloS One 2015; 10: e0125591.Web of ScienceGoogle Scholar

  • 16 Haemmerich D, Schutt D, Wright A, Webster J, Mahvi D. Electrical conductivity measurement of excised human metastatic liver tumours before and after thermal ablation. Physiol Meas 2009; 30: 459-66.Web of ScienceCrossrefGoogle Scholar

  • 17 Cukjati D, Batiuskaite D, Andre F, Miklavcic D, Mir L. Real time electroporation control for accurate and safe in vivo non-viral gene therapy. Bioelectrochemistry 2007; 70: 501-7.Web of ScienceCrossrefGoogle Scholar

  • 18 Corovic S, Lackovic I, Sustaric P, Sustar T, Rodic T, Miklavcic D. Modeling of electric field distribution in tissues during electroporation. Biomed Eng OnLine 2013; 12: 16.CrossrefWeb of ScienceGoogle Scholar

  • 19 Hasgall P, Neufeld E, Gosselin M, Klingenböck A, Kuster N. IT’IS Database for thermal and electromagnetic parameters of biological tissues. 2011. Available at http://www.itis.ethz.ch/database. Accessed 15 March 2015.

  • 20 Henriques FC. Studies of thermal injury; the predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury. Arch Pathol 1947; 43: 489-502.Google Scholar

  • 21 Sel D, Cukjati D, Batiuskaite D, Slivnik T, Mir LM, Miklavcic D. Sequential finite element model of tissue electropermeabilization. IEEE Trans Biomed Eng 2005; 52: 816-27.CrossrefGoogle Scholar

  • 22 Aström M, Zrinzo LU, Tisch S, Tripoliti E, Hariz MI, Wårdell K. Method for patient-specific finite element modeling and simulation of deep brain stimulation. Med Biol Eng Comput 2009; 47: 21-8.Web of ScienceCrossrefGoogle Scholar

  • 23 Županič A, Kos B, Miklavcic D. Treatment planning of electroporation-based medical interventions: electrochemotherapy, gene electrotransfer and irreversible electroporation. Phys Med Biol 2012; 57: 5425-40.Web of ScienceCrossrefGoogle Scholar

  • 24 Daniels C, Rubinsky B. Electrical field and temperature model of nonthermal irreversible electroporation in heterogeneous tissues. J Biomech Eng-Trans ASME 2009; 131: 071006.Web of ScienceCrossrefGoogle Scholar

  • 25 Lee YJ, Lu DSK, Osuagwu F, Lassman C. Irreversible electroporation in porcine liver: short- and long-term effect on the hepatic veins and adjacent tissue by CT with pathological correlation. Invest Radiol 2012; 47: 671-5.Web of ScienceCrossrefGoogle Scholar

  • 26 Pavliha D, Mušič MM, Serša G, Miklavčič D. Electroporation-based treatment planning for deep-seated tumors based on automatic liver segmentation of MRI images. PloS One 2013; 8: e69068.Web of ScienceGoogle Scholar

  • 27 Miklavcic D, Snoj M, Zupanic A, Kos B, Cemazar M, Kropivnik M, et al. Towards treatment planning and treatment of deep-seated solid tumors by electrochemotherapy. Biomed Eng Online 2010; 9: 10.Web of ScienceCrossrefGoogle Scholar

  • 28 Long G, Bakos G, Shires PK, Gritter L, Crissman JW, Harris JL, et al. Histological and finite element analysis of cell death due to irreversible electroporation. Technol Cancer Res Treat 2014; 13: 561-9.Google Scholar

  • 29 Zhang Y, White SB, Nicolai JR, Zhang Z, West DL, Kim D, et al. Multimodality imaging to assess immediate response to irreversible electroporation in a rat liver tumor model. Radiology 2014; 271: 721-9.Web of ScienceCrossrefGoogle Scholar

  • 30 Scheffer HJ, Nielsen K, de Jong MC, van Tilborg AAJM, Vieveen JM, Bouwman A (R. A), et al. Irreversible electroporation for nonthermal tumor ablation in the clinical setting: a systematic review of safety and efficacy. J Vasc Interv Radiol 2014; 25: 997-1011.CrossrefGoogle Scholar

  • 31 Wagstaff PGK, de Bruin DM, van den Bos W, Ingels A, van Gemert MJC, Zondervan PJ, et al. Irreversible electroporation of the porcine kidney: Temperature development and distribution. Urol Oncol 2015; 33: 168. e1–168.e7.CrossrefGoogle Scholar

  • 32 Dollinger M, Jung E-M, Beyer L, Niessen C, Scheer F, Müller-Wille R, et al. Irreversible electroporation ablation of malignant hepatic tumors: subacute and follow-up CT appearance of ablation zones. J Vasc Interv Radiol 2014; 25: 1589-94.CrossrefGoogle Scholar

  • 33 Meir A, Hjouj M, Rubinsky L, Rubinsky B. Magnetic resonance imaging of electrolysis. Sci Rep 2015; 5: 8095.CrossrefGoogle Scholar

  • 34 Pucihar G, Krmelj J, Reberšek M, Napotnik TB, Miklavčič D. Equivalent pulse parameters for electroporation. IEEE Trans Biomed Eng 2011; 58: 3279-88.Web of ScienceCrossrefGoogle Scholar

  • 35 Garcia PA, Pancotto T, Rossmeisl JH, Henao-Guerrero N, Gustafson NR, Daniel GB, et al. Non-thermal irreversible electroporation (N-TIRE) and adjuvant fractionated radiotherapeutic multimodal therapy for intracranial malignant glioma in a canine patient. Technol Cancer Res Treat 2011; 10: 73-83.Google Scholar

  • 36 Miklavčič D, Serša G, Brecelj E, Gehl J, Soden D, Bianchi G, et al. Electrochemotherapy: technological advancements for efficient electroporation-based treatment of internal tumors. Med Biol Eng Comput 2012; 50: 1213-25.Web of ScienceCrossrefGoogle Scholar

  • 37 Kranjc M, Markelc B, Bajd F, Čemažar M, Serša I, Blagus T, et al. In Situ Monitoring of electric field distribution in mouse tumor during electroporation. Radiology 2015; 274: 115-23.CrossrefWeb of ScienceGoogle Scholar

  • 38 Garcia PA, Davalos RV, Miklavcic D. A numerical investigation of the electric and thermal cell kill distributions in electroporation-based therapies in tissue. PloS One 2014; 9: e103083.Web of ScienceGoogle Scholar

About the article

Received: 2015-06-04

Accepted: 2015-07-07

Published Online: 2015-08-21

Published in Print: 2015-09-01

Citation Information: Radiology and Oncology, ISSN (Online) 1581-3207, DOI: https://doi.org/10.1515/raon-2015-0031.

Export Citation

© 2015 Bor Kos et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Luciano Tarantino, Giuseppina Busto, Aurelio Nasto, Raffaele Fristachi, Luigi Cacace, Maria Talamo, Catello Accardo, Sara Bortone, Paolo Gallo, Paolo Tarantino, Riccardo Aurelio Nasto, Matteo Nicola Dario Di Minno, and Pasquale Ambrosino
World Journal of Gastroenterology, 2017, Volume 23, Number 5, Page 906
M. Marino, N. Olaiz, E. Signori, F. Maglietti, C. Suárez, S. Michinski, and G. Marshall
Electrochimica Acta, 2017
Matej Kranjc, Simona Kranjc, Franci Bajd, Gregor Serša, Igor Serša, and Damijan Miklavčič
Scientific Reports, 2017, Volume 7, Number 1
Paulo A. Garcia, Bor Kos, John H. Rossmeisl, Denis Pavliha, Damijan Miklavčič, and Rafael V. Davalos
Medical Physics, 2017
Claudia Muratori, Andrei G. Pakhomov, Loree Heller, Maura Casciola, Elena Gianulis, Sergey Grigoryev, Shu Xiao, and O. N. Pakhomova
Technology in Cancer Research & Treatment, 2017, Page 153303461771239
Zilin Qin, Jianying Zeng, Guifeng Liu, Xinan Long, Gang Fang, Zhonghai Li, Kecheng Xu, and Lizhi Niu
Technology in Cancer Research & Treatment, 2017, Page 153303461771153
Samo Mahnič-Kalamiza, Nataša Poklar Ulrih, Eugène Vorobiev, and Damijan Miklavčič
International Journal of Heat and Mass Transfer, 2017, Volume 111, Page 150
Vitalij Novickij, Eglė Lastauskienė, Jurgita Švedienė, Audrius Grainys, Gediminas Staigvila, Algimantas Paškevičius, Irutė Girkontaitė, Auksė Zinkevičienė, Svetlana Markovskaja, and Jurij Novickij
The Journal of Membrane Biology, 2017
Daniel C. Sweeney, Matej Reberšek, Janja Dermol, Lea Rems, Damijan Miklavčič, and Rafael V. Davalos
Biochimica et Biophysica Acta (BBA) - Biomembranes, 2016, Volume 1858, Number 11, Page 2689
L. Rems and D. Miklavčič
Journal of Applied Physics, 2016, Volume 119, Number 20, Page 201101
Alexander Golberg, Bote G. Bruinsma, Maria Jaramillo, Martin L. Yarmush, and Basak E. Uygun
PeerJ, 2016, Volume 4, Page e1571

Comments (0)

Please log in or register to comment.
Log in