Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Radiology and Oncology

The Journal of Association of Radiology and Oncology

4 Issues per year


IMPACT FACTOR 2016: 1.681
5-year IMPACT FACTOR: 1.723

CiteScore 2016: 1.70

SCImago Journal Rank (SJR) 2016: 0.538
Source Normalized Impact per Paper (SNIP) 2016: 0.921


Open Access
Online
ISSN
1581-3207
See all formats and pricing
More options …
Volume 49, Issue 3

Issues

Gamma-enolase: a well-known tumour marker, with a less-known role in cancer

Tjasa Vizin / Janko Kos
Published Online: 2015-08-21 | DOI: https://doi.org/10.1515/raon-2015-0035

Abstract

Background. Gamma-enolase, known also as neuron-specific enolase (NSE), is an enzyme of the glycolytic pathway, which is expressed predominantly in neurons and cells of the neuroendocrine system. As a tumour marker it is used in diagnosis and prognosis of cancer; however, the mechanisms enrolling it in malignant progression remain elusive. As a cytoplasmic enzyme gamma-enolase is involved in increased aerobic glycolysis, the main source of energy in cancer cells, supporting cell proliferation. However, different cellular localisation at pathophysiological conditions, proposes other cellular engagements.

Conclusions. The C-terminal part of the molecule, which is not related to glycolytic pathway, was shown to promote survival of neuronal cells by regulating neuronal growth factor receptor dependent signalling pathways, resulting also in extensive actin cytoskeleton remodelling. This additional function could be important also in cancer cells either to protect cells from stressful conditions and therapeutic agents or to promote tumour cell migration and invasion. Gamma-enolase might therefore have a multifunctional role in cancer progression: it supports increased tumour cell metabolic demands, protects tumour cells from stressful conditions and promotes their invasion and migration.

Keywords: gamma-enolase; cancer; glycolysis; cell survival; tumour marker

References

  • 1. Pancholi V. Multifunctional alpha-enolase: its role in diseases. Cell Mol Life Sci 2001; 58: 902-20.CrossrefGoogle Scholar

  • 2. Kim JW, Dang CV. Multifaceted roles of glycolytic enzymes. Trends Biochem Sci 2005; 30: 142-50.CrossrefGoogle Scholar

  • 3. Masoudi-Nejad A, Asgari Y. Metabolic cancer biology: Structural-based analysis of cancer as a metabolic disease, new sights and opportunities for disease treatment. Semin Cancer Biol 2015; 30: 21-9.CrossrefGoogle Scholar

  • 4. Dang CV, Semenza GL. Oncogenic alterations of metabolism. Trends Biochem Sci 1999; 24: 68-72.CrossrefGoogle Scholar

  • 5. McAlister L, Holland MJ. Targeted deletion of a yeast enolase structural gene. Identification and isolation of yeast enolase isozymes. J Biol Chem 1982; 257: 7181-8.Google Scholar

  • 6. Diaz-Ramos A, Roig-Borrellas A, Garcia-Melero A, Lopez-Alemany R. Alpha-enolase, a multifunctional protein: its role on pathophysiological situations. J Biomed Biotechnol 2012; 2012: 156795.Google Scholar

  • 7. Hattori T, Takei N, Mizuno Y, Kato K, Kohsaka S. Neurotrophic and neuro-protective effects of neuron-specific enolase on cultured neurons from embryonic rat brain. Neurosci Res 1995; 21: 191-8.CrossrefGoogle Scholar

  • 8. Suresh MR. Cancer Markers. In: Wild D, editor. The immunoassay handbook. Third edition. Oxford, UK: Elsevier; 2005. p. 664-94.Google Scholar

  • 9. Marangos PJ, Parma AM, Goodwin FK. Functional properties of neuronal and glial isoenzymes of brain enolase. J Neurochem 1978; 31: 727-32.CrossrefGoogle Scholar

  • 10. Fletcher L, Rider CC, Taylor CB. Enolase isoenzymes: III. Chromatographic and immunological characteristics of rat brain enolase. Biochim Biophys Acta 1976; 452: 245-52.Google Scholar

  • 11. Giallongo A, Feo S, Moore R, Croce CM, Showe LC. Molecular cloning and nucleotide sequence of a full-length cDNA for human alpha enolase. Proc Natl Acad Sci U S A 1986; 83: 6741-5.CrossrefGoogle Scholar

  • 12. Feo S, Oliva D, Barbieri G, Xu WM, Fried M, Giallongo A. The gene for the muscle-specific enolase is on the short arm of human chromosome 17. Genomics 1990; 6: 192-4.CrossrefGoogle Scholar

  • 13. Lebioda L, Stec B. Mapping of isozymic differences in enolase. Int J Biol Macromol 1991; 13: 97-100.CrossrefGoogle Scholar

  • 14. Faller LD, Johnson AM. Calorimetric studies of the role of magnesium ions in yeast enolase catalysis. Proc Natl Acad Sci U S A 1974; 71: 1083-7.CrossrefGoogle Scholar

  • 15. Brewer JM. Specificity and mechanism of action of metal ions in yeast enolase. FEBS Letters 1985; 182: 8-14.CrossrefGoogle Scholar

  • 16. Vallee BL. Zinc and metalloenzymes. Adv Protein Chem 1955; 10: 317-84.CrossrefGoogle Scholar

  • 17. Faller LD, Baroudy BM, Johnson AM, Ewall RX. Magnesium ion requirements for yeast enolase activity. Biochemistry 1977; 16: 3864-9.CrossrefGoogle Scholar

  • 18. Brewer JM. Yeast enolase: mechanism of activation by metal ions. CRC Crit Rev Biochem 1981; 11: 209-54.CrossrefGoogle Scholar

  • 19. Brewer JM, Ellis PD. 31P-nmr studies of the effect of various metals on substrate binding to yeast enolase. J Inorg Biochem 1983; 18: 71-82.CrossrefGoogle Scholar

  • 20. Ko-Jiunn L, Neng-Yao S. The role of enolase in tissue invasion and metastasis of pathogens and tumor cells. J Cancer Mol 2007; 3: 45-8.Google Scholar

  • 21. Ghosh AK, Steele R, Ray RB. Functional domains of c-myc promoter binding protein 1 involved in transcriptional repression and cell growth regulation. Mol Cell Biol 1999; 19: 2880-6.Google Scholar

  • 22. Feo S, Arcuri D, Piddini E, Passantino R, Giallongo A. ENO1 gene product binds to the c-myc promoter and acts as a transcriptional repressor: relationship with Myc promoter-binding protein 1 (MBP-1). FEBS Lett 2000; 473: 47-52.Google Scholar

  • 23. Capello M, Ferri-Borgogno S, Cappello P, Novelli F. Alpha-Enolase: a promising therapeutic and diagnostic tumor target. FEBS J 2011; 278: 1064-74.Google Scholar

  • 24. Mears R, Craven RA, Hanrahan S, Totty N, Upton C, Young SL, et al. Proteomic analysis of melanoma-derived exosomes by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Proteomics 2004; 4: 4019-31.CrossrefGoogle Scholar

  • 25. Yu X, Harris SL, Levine AJ. The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res 2006; 66: 4795-801.Google Scholar

  • 26. Cappello P, Tomaino B, Chiarle R, Ceruti P, Novarino A, Castagnoli C, et al. An integrated humoral and cellular response is elicited in pancreatic cancer by alpha-enolase, a novel pancreatic ductal adenocarcinoma-associated antigen. Int J Cancer 2009; 125: 639-48.CrossrefGoogle Scholar

  • 27. He P, Naka T, Serada S, Fujimoto M, Tanaka T, Hashimoto S, et al. Proteomics-based identification of alpha-enolase as a tumor antigen in non-small lung cancer. Cancer Sci 2007; 98: 1234-40.CrossrefGoogle Scholar

  • 28. Seweryn E, Pietkiewicz J, Bednarz-Misa IS, Ceremuga I, Saczko J, Kulbacka J, et al. Localization of enolase in the subfractions of a breast cancer cell line. Z Naturforsch C 2009; 64: 754-8.Google Scholar

  • 29. Nakajima K, Hamanoue M, Takemoto N, Hattori T, Kato K, Kohsaka S. Plasminogen binds specifically to alpha-enolase on rat neuronal plasma membrane. J Neurochem 1994; 63: 2048-57.Google Scholar

  • 30. Miles LA, Dahlberg CM, Plescia J, Felez J, Kato K, Plow EF. Role of cell-surface lysines in plasminogen binding to cells: identification of .alpha.-enolase as a candidate plasminogen receptor. Biochemistry 1991; 30: 1682-91.CrossrefGoogle Scholar

  • 31. Dudani AK, Cummings C, Hashemi S, Ganz PR. Isolation of a novel 45 kDa plasminogen receptor from human endothelial cells. Thromb Res 1993; 69: 185-96.CrossrefGoogle Scholar

  • 32. Redlitz A, Fowler BJ, Plow EF, Miles LA. The role of an enolase-related molecule in plasminogen binding to cells. Eur J Biochem 1995; 227: 407-15.CrossrefGoogle Scholar

  • 33. Merkulova T, Lucas M, Jabet C, Lamandé N, Rouzeau JD, Gros F, et al. Biochemical characterization of the mouse muscle-specific enolase: developmental changes in electrophoretic variants and selective binding to other proteins. Biochem J 1997; 323: 791-800.Google Scholar

  • 34. Keller A, Demeurie J, Merkulova T, Geraud G, Cywiner-Golenzer C, Lucas M, et al. Fibre-type distribution and subcellular localisation of alpha and beta enolase in mouse striated muscle. Biol Cell 2000; 92: 527-35.CrossrefGoogle Scholar

  • 35. Merkulova T, Dehaupas M, Nevers MC, Créminon C, Alameddine H, Keller A. Differential modulation of alpha, beta and gamma enolase isoforms in regenerating mouse skeletal muscle. Eur J Biochem 2000; 267: 3735-43.Google Scholar

  • 36. Royds JA, Variend S, Timperley WR, Taylor CB. An investigation of beta enolase as a histological marker of rhabdomyosarcoma. J Clin Pathol 1984; 37: 905-10.CrossrefGoogle Scholar

  • 37. Royds JA, Variend S, Timperley WR, Taylor CB. Comparison of beta enolase and myoglobin as histological markers of rhabdomyosarcoma. J Clin Pathol 1985; 38: 1258-60.CrossrefGoogle Scholar

  • 38. Tiainen M, Roine RO, Pettila V, Takkunen O. Serum neuron-specific enolase and S-100B protein in cardiac arrest patients treated with hypothermia. Stroke 2003; 34: 2881-6.CrossrefGoogle Scholar

  • 39. Lamerz R. NSE (neuron-specific enolase) γ-enolase. In: Thomas L, editor. Clinical laboratory diagnostics: use and assessment of clinical laboratory results. 1st. edition. Frankfurt/Main, Germany: TH-Books Verlagsgesellschaft; 1998. p. 979-81.Google Scholar

  • 40. Soh MA, Garrett SH, Somji S, Dunlevy JR, Zhou XD, Sens MA, et al. Arsenic, cadmium and neuron specific enolase (ENO2, γ-enolase) expression in breast cancer. Cancer Cell Int 2011; 11: 41.CrossrefGoogle Scholar

  • 41. Haimoto H, Takahashi Y, Koshikawa T, Nagura H, Kato K. Immunohistochemical localization of gamma-enolase in normal human tissues other than nervous and neuroendocrine tissues. Lab Invest 1985; 52: 257-63.Google Scholar

  • 42. Vinores SA, Herman MM, Rubinstein LJ. Electron-immunocytochemical localization of neuron-specific enolase in cytoplasm and on membranes of primary and metastatic cerebral tumours and on glial filaments of glioma cells. Histopathology 1986; 10: 891-908.Google Scholar

  • 43. Hafner A, Obermajer N, Kos J. gamma-1-syntrophin mediates trafficking of gamma-enolase towards the plasma membrane and enhances its neurotrophic activity. Neurosignals 2010; 18: 246-58.CrossrefGoogle Scholar

  • 44. Burack WR, Shaw AS. Signal transduction: hanging on a scaffold. Curr Opin Cell Biol 2000; 12: 211-6.CrossrefGoogle Scholar

  • 45. Ponting CP, Phillips C, Davies KE, Blake DJ. PDZ domains: targeting signalling molecules to sub-membranous sites. Bioessays 1997; 19: 469-79.CrossrefGoogle Scholar

  • 46. Obermajer N, Doljak B, Jamnik P, Fonovic UP, Kos J. Cathepsin X cleaves the C-terminal dipeptide of alpha- and gamma-enolase and impairs survival and neuritogenesis of neuronal cells. Int J Biochem Cell Biol 2009; 41: 1685-96.CrossrefGoogle Scholar

  • 47. McAleese SM, Dunbar B, Fothergill JE, Hinks LJ, Day IN. Complete amino acid sequence of the neurone-specific gamma isozyme of enolase (NSE) from human brain and comparison with the non-neuronal alpha form (NNE). Eur J Biochem 1988; 178: 413-7.CrossrefGoogle Scholar

  • 48. Butterfield DA, Lange ML. Multifunctional roles of enolase in Alzheimer’s disease brain: beyond altered glucose metabolism. J Neurochem 2009; 111: 915-33.CrossrefGoogle Scholar

  • 49. Soh M, Dunlevy JR, Garrett SH, Allen C, Sens DA, Zhou XD, et al. Increased neuron specific enolase expression by urothelial cells exposed to or malignantly transformed by exposure to Cd2+ or As3+. Toxicol Lett 2012; 212: 66-74.Google Scholar

  • 50. Yan T, Skaftnesmo KO, Leiss L, Sleire L, Wang J, Li X, et al. Neuronal markers are expressed in human gliomas and NSE knockdown sensitizes glioblastoma cells to radiotherapy and temozolomide. BMC Cancer 2011; 11: 524.CrossrefGoogle Scholar

  • 51. Loja T, Chlapek P, Kuglik P, Pesakova M, Oltova A, Cejpek P, et al. Characterization of a GM7 glioblastoma cell line showing CD133 positivity and both cytoplasmic and nuclear localization of nestin. Oncol Rep 2009; 21: 119-27.Google Scholar

  • 52. Splinter TA, Verkoelen CF, Vlastuin M, Kok TC, Rijksen G, Haglid KG, et al. Distinction of two different classes of small-cell lung cancer cell lines by enzymatically inactive neuron-specific enolase. Br J Cancer 1992; 66: 1065-9.CrossrefGoogle Scholar

  • 53. Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 2008; 13: 472-82.CrossrefGoogle Scholar

  • 54. Vesselle H, Schmidt RA, Pugsley JM, Li M, Kohlmyer SG, Vallires E, et al. Lung cancer proliferation correlates with [F-18]fluorodeoxyglucose uptake by positron emission tomography. Clin Cancer Res 2000; 6: 3837-44.Google Scholar

  • 55. Porporato PE, Dhup S, Dadhich RK, Copetti T, Sonveaux P. Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review. Front Pharmacol 2011; 2: 49.Google Scholar

  • 56. Golpour M, Akhavan Niaki H, Khorasani HR, Hajian A, Mehrasa R, Mostafazadeh A. Human fibroblast switches to anaerobic metabolic pathway in response to serum starvation: a mimic of warburg effect. Int J Mol Cell Med 2014; 3: 74-80.Google Scholar

  • 57. Wu C-A, Chao Y, Shiah S-G, Lin W-W. Nutrient deprivation induces the Warburg effect through ROS/AMPK-dependent activation of pyruvate dehydrogenase kinase. Biochim Biophys Acta 2013; 1833: 1147-56.Google Scholar

  • 58. Jang SM, Kim JW, Kim CH, Kim D, Rhee S, Choi KH. p19(ras) Represses proliferation of non-small cell lung cancer possibly through interaction with Neuron-Specific Enolase (NSE). Cancer Lett 2010; 289: 91-8..Google Scholar

  • 59. Amoêdo Ní D, Valencia J P, Rodrigues M F, Galina A, Rumjanek F D. How does the metabolism of tumour cells differ from that of normal cells. Biosci Rep. 2013; 33: e00080.Google Scholar

  • 60. Sedoris KC, Thomas SD, Miller DM. Hypoxia induces differential translation of enolase/MBP-1. BMC Cancer 2010; 10: 157.Google Scholar

  • 61. Vinores SA, Bonnin JM, Rubinstein LJ, Marangos PJ. Immunohistochemical demonstration of neuron-specific enolase in neoplasms of the CNS and other tissues. Arch Pathol Lab Med 1984; 108: 536-40.Google Scholar

  • 62. Vinores SA, Marangos PJ, Bonnin JM, Rubinstein LJ. Immunoradiometric and immunohistochemical demonstration of neuron-specific enolase in experimental rat gliomas. Cancer Res 1984; 44: 2595-9.Google Scholar

  • 63. Kondoh H, Lleonart ME, Bernard D, Gil J. Protection from oxidative stress by enhanced glycolysis; a possible mechanism of cellular immortalization. Histol Histopathol 2007; 22: 85-90.Google Scholar

  • 64. Pelicano H, Martin DS, Xu RH, Huang P. Glycolysis inhibition for anticancer treatment. Oncogene 2006; 25: 4633-46.CrossrefGoogle Scholar

  • 65. Takei N, Kondo J, Nagaike K, Ohsawa K, Kato K, Kohsaka S. Neuronal survival factor from bovine brain is identical to neuron-specific enolase. J Neurochem 1991; 57: 1178-84.CrossrefGoogle Scholar

  • 66. Hafner A, Glavan G, Obermajer N, Zivin M, Schliebs R, Kos J. Neuroprotective role of gamma-enolase in microglia in a mouse model of Alzheimer’s disease is regulated by cathepsin X. Aging Cell 2013; 12: 604-14.CrossrefGoogle Scholar

  • 67. Hattori T, Ohsawa K, Mizuno Y, Kato K, Kohsaka S. Synthetic peptide corresponding to 30 amino acids of the C-terminal of neuron-specific enolase promotes survival of neocortical neurons in culture. Biochem Biophys Res Commun 1994; 202: 25-30.Google Scholar

  • 68. Hafner A, Obermajer N, Kos J. gamma-Enolase C-terminal peptide promotes cell survival and neurite outgrowth by activation of the PI3K/Akt and MAPK/ERK signalling pathways. Biochem J 2012; 443: 439-50.CrossrefGoogle Scholar

  • 69. Pišlar AH, Kos J. C-terminal peptide of gamma-enolase impairs amyloid-beta-induced apoptosis through p75(NTR) signaling. Neuromolecular Med 2013; 15: 623-35.CrossrefGoogle Scholar

  • 70. Wendt W, Zhu X-R, Lübbert H, Stichel CC. Differential expression of cathepsin X in aging and pathological central nervous system of mice. Expl Neurol 2007; 204: 525-40.CrossrefGoogle Scholar

  • 71. Kos J, Vižin T, Fonović UP, Pišlar A. Intracellular signaling by cathepsin X: Molecular mechanisms and diagnostic and therapeutic opportunities in cancer. Semin Cancer Biol 2015; 31: 76-83.CrossrefGoogle Scholar

  • 72. Amberger-Murphy V. Hypoxia helps glioma to fight therapy. Curr Cancer Drug Targets 2009; 9: 381-90.CrossrefGoogle Scholar

  • 73. Levin VA, Panchabhai SC, Shen L, Kornblau SM, Qiu Y, Baggerly KA. Different changes in protein and phosphoprotein levels result from serum starvation of high-grade glioma and adenocarcinoma cell lines. J Proteome Res 2010; 9: 179-91.CrossrefGoogle Scholar

  • 74. Levin VA, Panchabhai S, Shen L, Baggerly KA. Protein and phosphoprotein levels in glioma and adenocarcinoma cell lines grown in normoxia and hypoxia in monolayer and three-dimensional cultures. Proteome Sci 2012; 10: 5.CrossrefGoogle Scholar

  • 75. Yan T, Skaftnesmo KO, Leiss L, Sleire L, Wang J, Li X, et al. Neuronal markers are expressed in human gliomas and NSE knockdown sensitizes. BMC Cancer 2011; 11: 524.CrossrefGoogle Scholar

  • 76. Yamaguchi H, Condeelis J. Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim Biophys Acta 2007; 1773: 642-52.Google Scholar

  • 77. Walsh JL, Keith TJ, Knull HR. Glycolytic enzyme interactions with tubulin and microtubules. Biochim Biophys Acta 1989; 999: 64-70.Google Scholar

  • 78. Trojanowicz B, Winkler A, Hammje K, Chen Z, Sekulla C, Glanz D, et al. Retinoic acid-mediated down-regulation of ENO1/MBP-1 gene products caused decreased invasiveness of the follicular thyroid carcinoma cell lines. J Mol Endocrinol 2009; 42: 249-60.Google Scholar

  • 79. Georges E, Bonneau AM, Prinos P. RNAi-mediated knockdown of alpha-enolase increases the sensitivity of tumor cells to antitubulin chemotherapeutics. Int J Biochem Mol Biol 2011; 2: 303-8.Google Scholar

  • 80. Kasprzak A, Zabel M, Biczysko W. Selected markers (chromogranin A, neuron-specific enolase, synaptophysin, protein gene product 9.5) in diagnosis and prognosis of neuroendocrine pulmonary tumours. Pol J Pathol 2007; 58: 23-33.Google Scholar

  • 81. Tapia FJ, Polak JM, Barbosa AJ, Bloom SR, Marangos PJ, Dermody C, et al. Neuron-specific enolase is produced by neuroendocrine tumours. Lancet 1981; 1: 808-11.CrossrefGoogle Scholar

  • 82. Lopez J. Carl A. Burtis, Edward R. In: Ashwood and David E. Bruns, editors. Tietz textbook of clinical chemistry and molecular diagnosis. 5th edition. St. Louis, USA: Elsevier; 2012.Google Scholar

  • 83. Stieber P, Hatz R, Holdenrieder S, Molina R, Nap M, von Pawel J, et al. National Academy of Clinical Biochemistry Guidelines for the use of tumor markers in lung cancer. Section 3P. AACC press; 2006. [citated 2015 Jan 25]. Available at http://www.nacb.org.

  • 84. Hao X, Sun B, Hu L, Lahdesmaki H, Dunmire V, Feng Y, et al. Differential gene and protein expression in primary breast malignancies and their lymph node metastases as revealed by combined cDNA microarray and tissue microarray analysis. Cancer 2004; 100: 1110-22.CrossrefGoogle Scholar

  • 85. Miremadi A, Pinder SE, Lee AH, Bell JA, Paish EC, Wencyk P, et al. Neuroendocrine differentiation and prognosis in breast adenocarcinoma. Histopathology 2002; 40: 215-22.CrossrefGoogle Scholar

  • 86. Sawaki M, Yokoi K, Nagasaka T, Watanabe R, Kagawa C, Takada H, et al. Prognostic importance of neuroendocrine differentiation in Japanese breast cancer patients. Surg Today 2010; 40: 831-5.CrossrefGoogle Scholar

  • 87. Allen FJ, Van Velden DJ, Heyns CF. Are neuroendocrine cells of practical value as an independent prognostic parameter in prostate cancer? Br J Urol 1995; 75: 751-4.CrossrefGoogle Scholar

  • 88. Marangos PJ, Schmechel DE. Neuron specific enolase, a clinically useful marker for neurons and neuroendocrine cells. Annu Rev Neurosci 1987; 10: 269-95.CrossrefGoogle Scholar

  • 89. Rundgren M, Cronberg T, Friberg H, Isaksson A. Serum neuron specific enolase - impact of storage and measuring method. BMC Res Notes 2014; 7: 726.CrossrefGoogle Scholar

  • 90. Yuan SM. Biomarkers of cerebral injury in cardiac surgery. Anadolu Kardiyol Derg 2014; 14: 638-45.CrossrefGoogle Scholar

  • 91. Sturgeon C. Practice guidelines for tumor marker use in the clinic. Clin Chem 2002; 48: 1151-9.Google Scholar

  • 92. Fujiwara H, Arima N, Ohtsubo H, Matsumoto T, Kukita T, Kawada H, et al. Clinical significance of serum neuron-specific enolase in patients with adult T-cell leukemia. Am J Hematol 2002; 71: 80-4.CrossrefGoogle Scholar

  • 93. Wang L, Liu P, Chen X, Geng Q, Lu Y. Serum neuron-specific enolase is correlated with clinical outcome of patients with non-germinal center B cell-like subtype of diffuse large B-cell lymphoma treated with rituximab-based immunochemotherapy. Med Oncol 2012; 29: 2153-8.CrossrefGoogle Scholar

  • 94. Lorenz J, Dippold W. Neuron-specific enolase-a serum marker for malignant melanoma. J Natl Cancer Inst 1989; 81: 1754-5.CrossrefGoogle Scholar

  • 95. Ro C, Chai W, Yu VE, Yu R. Pancreatic neuroendocrine tumors: biology, diagnosis, and treatment. Chin J Cancer 2013; 32: 312-24.Google Scholar

  • 96. Massironi S, Sciola V, Peracchi M, Ciafardini C, Spampatti MP, Conte D. Neuroendocrine tumors of the gastro-entero-pancreatic system. World J Gastroenterol 2008; 14: 5377-84.CrossrefGoogle Scholar

  • 97. DeYoung C, Edelman M. Prognostic Factors for Small-Cell Lung Cancer. In: Syrigos K, Nutting C, Roussos C, editors. Tumors of the chest. Berlin, Heidelberg: Springer; 2006. p. 189-97.Google Scholar

  • 98. Sturgeon CM, Duffy MJ, Stenman UH, Lilja H, Brunner N, Chan DW, et al. National Academy of Clinical Biochemistry laboratory medicine practice guidelines for use of tumor markers in testicular, prostate, colorectal, breast, and ovarian cancers. Clin Chem 2008; 54: e11-79.Google Scholar

  • 99. Lamberts SWJ, Hofland LJ, Nobels FRE. Neuroendocrine tumor markers. Front Neuroendocrinol 2001; 22: 309-39.CrossrefGoogle Scholar

  • 100. Riley RD, Heney D, Jones DR, Sutton AJ, Lambert PC, Abrams KR, et al. A systematic review of molecular and biological tumor markers in neuroblastoma. Clin Cancer Res 2004; 10: 4-12.CrossrefGoogle Scholar

  • 101. Johnsson P, Blomquist S, Lührs C, Malmkvist G, Alling C, Solem J-O, et al. Neuron-specific enolase increases in plasma during and immediately after extracorporeal circulation. Ann Thorac Surg 2000; 69: 750-4.CrossrefGoogle Scholar

  • 102. Ramont L, Thoannes H, Volondat A, Chastang F, Millet MC, Maquart FX. Effects of hemolysis and storage condition on neuron-specific enolase (NSE) in cerebrospinal fluid and serum: implications in clinical practice. Clin Chem Lab Med 2005; 43: 1215-7.Google Scholar

  • 103. Marangos PJ, Campbell IC, Schmechel DE, Murphy DL, Goodwin FK. Blood platelets contain a neuron-specific enolase subunit. J Neurochem 1980; 34: 1254-8.CrossrefGoogle Scholar

  • 104. Trape J, Filella X, Alsina-Donadeu M, Juan-Pereira L, Bosch-Ferrer A, Rigo-Bonnin R. Increased plasma concentrations of tumour markers in the absence of neoplasia. Clin Chem Lab Med 2011; 49: 1605-20.Google Scholar

  • 105. Collazos J, Esteban C, Fernandez A, Genolla J. Measurement of the serum tumor marker neuron-specific enolase in patients with benign pulmonary diseases. Am J Respir Crit Care Med 1994; 150: 143-5.CrossrefGoogle Scholar

  • 106. Filella X, Cases A, Molina R, Jo J, Bedini JL, Revert L, et al. Tumor markers in patients with chronic renal failure. Int J Biol Markers 1990; 5: 85-8.Google Scholar

  • 107. DeGiorgio CM, Gott PS, Rabinowicz AL, Heck CN, Smith TD, Correale JD. Neuron-specific enolase, a marker of acute neuronal injury, is increased in complex partial status epilepticus. Epilepsia 1996; 37: 606-9.CrossrefGoogle Scholar

  • 108. Strachan MW, Abraha HD, Sherwood RA, Lammie GA, Deary IJ, Ewing FM, et al. Evaluation of serum markers of neuronal damage following severe hypoglycaemia in adults with insulin-treated diabetes mellitus. Diabetes Metab Res Rev 1999; 15: 5-12.CrossrefGoogle Scholar

  • 109. Collazos J, Genolla J, Ruibal A. Neuron-specific enolase concentrations in serum in benign liver diseases. Clin Chem 1991; 37: 579-81.Google Scholar

  • 110. Massabki PS, Silva NP, Lourenco DM, Andrade LE. Neuron specific enolase concentration is increased in serum and decreased in platelets of patients with active systemic sclerosis. J Rheumatol 2003; 30: 2606-12.Google Scholar

  • 111. Petrak J, Ivanek R, Toman O, Cmejla R, Cmejlova J, Vyoral D, et al. Deja vu in proteomics. A hit parade of repeatedly identified differentially expressed proteins. Proteomics 2008; 8: 1744-9.CrossrefGoogle Scholar

About the article


Received: 2015-05-09

Accepted: 2015-07-13

Published Online: 2015-08-21

Published in Print: 2015-09-01


Citation Information: Radiology and Oncology, Volume 49, Issue 3, Pages 217–226, ISSN (Online) 1581-3207, DOI: https://doi.org/10.1515/raon-2015-0035.

Export Citation

© 2015 Tjasa Vizin et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
S. N. Nasir, N. Abu, N. S. Ab Mutalib, M. Ishak, I. Sagap, L. Mazlan, I. M. Rose, and R. Jamal
Clinical and Translational Oncology, 2017
[2]
Ida Pucci-Minafra, Gianluca Di Cara, Rosa Musso, Patrizia Cancemi, Nadia Albanese, Elena Roz, and Salvatore Minafra
Proteomes, 2017, Volume 5, Number 3, Page 15
[3]
Tetsuya Fukuda, Masaharu Nomura, Yasufumi Kato, Hiromasa Tojo, Kiyonaga Fujii, Toshitaka Nagao, Yasuhiko Bando, Thomas E. Fehniger, György Marko-Varga, Haruhiko Nakamura, Harubumi Kato, Toshihide Nishimura, and John Matthew Koomen
PLOS ONE, 2017, Volume 12, Number 4, Page e0176219
[4]
Katrin Lorenz, Sabine Beck, Munir M Keilani, Joanna Wasielica-Poslednik, Norbert Pfeiffer, and Franz H Grus
Clinical & Experimental Ophthalmology, 2017, Volume 45, Number 3, Page 280
[5]
Don Benjamin, Marco Colombi, Sravanth K. Hindupur, Charles Betz, Heidi A. Lane, Mahmoud Y. M. El-Shemerly, Min Lu, Luca Quagliata, Luigi Terracciano, Suzette Moes, Timothy Sharpe, Aleksandra Wodnar-Filipowicz, Christoph Moroni, and Michael N. Hall
Science Advances, 2016, Volume 2, Number 12, Page e1601756
[6]
Laura Giusti, Federica Ciregia, Alessandra Bonotti, Ylenia Da Valle, Elena Donadio, Claudia Boldrini, Rudy Foddis, Gino Giannaccini, Maria R. Mazzoni, Pier Aldo Canessa, Alfonso Cristaudo, and Antonio Lucacchini
EuPA Open Proteomics, 2016, Volume 10, Page 42

Comments (0)

Please log in or register to comment.
Log in