Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advances in Rehabilitation

The Journal of Academy of Physical Education, Warsaw

4 Issues per year

CiteScore 2016: 0.04

SCImago Journal Rank (SJR) 2016: 0.104
Source Normalized Impact per Paper (SNIP) 2016: 0.014

Open Access
See all formats and pricing
More options …

Neuroplasticity in rehabilitation after central nervous system damages – computational models

Emilia Mikołajewska / Dariusz Mikołajewski
  • Katedra Informatyki Stosowanej, Wydział Fizyki, Astronomii i Informatyki Stosowanej, Uniwersytet Mikołaja Kopernika w Toruniu
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-08-31 | DOI: https://doi.org/10.2478/rehab-2013-0029


Increasing survival rates in severe illnesses and traumatic injuries can lead to an increase in the number of disabled people with central nervous system (CNS) damages. Motor training after CNS damage is an important part of neurorehabilitation. It can partially reverse the loss of cortical representation after lesion thanks to neuroplasticity. Patients may regain some motor functions in the months following damage due both to spontaneous recovery and physical therapy interventions targeted at further improvement of function. The neural correlates of motor training after CNS damage have been investigated in animals with motor cortex lesions and in humans using fMRI, TMS, etc. However it is hard to fully explain all mechanisms of neuroplasticity. One of ways to increase knowledge and clinical experience is developing of computational models. To refine a lot of hypotheses existing in the area of CNS neuroplasticity there are useful computational models of lesions and following recovery due to neurorehabilitation. The models based on artificial neural networks are novel solution, but in some cases can provide effectivity and biological plausibility.

This article aims at investigating the extent to which the available opportunities are being exploited, including models as a first step in the development of adaptive and cost-effective rehabilitation methods tailored to individuals with CNS deficits.

  • 1. Konorski J. Conditioned reflexes and neuron organization. Cambridge: Cambridge Univ Press; 1948.Google Scholar

  • 2. Konorski J. Integracyjna działalność mózgu. Warszawa: PWN; 1969.Google Scholar

  • 3. Kossut M. Brain plasticity. Neurol Neurochir Pol 2000; 34(6):1091-1099.PubMedGoogle Scholar

  • 4. Siucińska E. Neuroprzekaźnik hamujący w plastyczności kory mózgu. Kosmos Problemy Nauk Biologicznych 2005; 2-3(267-268):195-212.Google Scholar

  • 5. Mikołajewska E. Metoda NDT-Bobath w neurorehabilitacji osób dorosłych. Warszawa: Wydawnictwo Lekarskie PZWL; 2011.Google Scholar

  • 6. Dayan E, Cohen LG. Neuroplasticity subserving motor skill learning. Neuron 2011; 72(3): 443-454.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 7. Martino G, Pluchino S, Bonfanti L, Schwartz M. Brain regeneration in physiology and pathology: the immune signature driving therapeutic plasticity of neural stem cells. Physiol Rev 2011; 91(4): 1281-1304.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 8. Bonfanti L, Peretto P. Adult neurogenesis in mammals - a theme with many variations. Eur J Neurosci 2011; 34(6): 930-950.CrossrefWeb of SciencePubMedGoogle Scholar

  • 9. Dancause N, Nudo RJ. Shaping plasticity to enhance recovery after injury. Prog Brain Res 2011; 192: 273-295.Web of SciencePubMedCrossrefGoogle Scholar

  • 10. Mikołajewska E., Mikołajewski D. Wybrane zastosowania modeli komputerowych w medycynie. Ann Acade Med Siles 2011; 1-2: 78-88.Google Scholar

  • 11. Tadeusiewicz R. (red.) Neurocybernetyka teoretyczna. Warszawa: Wydawnictwo Uniwersytetu Warszawskiego; 2009.Google Scholar

  • 12. PubMed (U.S. National Library of Medicine) http://www.ncbi.nlm.nih.gov/pubmed/ - data pobrania 20.01.2012r.Google Scholar

  • 13. Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: implications for rehabilitation. J Speech Lang Hear Res 2008; 51(1):225-239.Google Scholar

  • 14. Adkins DL, Boychuk J, Remple MS et al. Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord. J Appl Physiol 2006; 101(6):1776-1782. PubMedGoogle Scholar

  • 15. Ward NS, Newton JM, Swayne OB et al. Motor system activation after subcortical stroke depends on corticospinal system integrity. Brain 2006; 129(3):809-819.CrossrefGoogle Scholar

  • 16. Monfils MH, Plautz EJ, Kleim JA. In search of the motor engram: motor map plasticity as a mechanism for encoding motor experience. Neuroscientist 2005; 11(5):471-483. CrossrefPubMedGoogle Scholar

  • 17. Nudo RJ. Adaptive plasticity in motor cortex: implications for rehabilitation after brain injury. J Rehabil Med 2003; (41 Suppl.):7-10.CrossrefPubMedGoogle Scholar

  • 18. Rossini PM, Dal Forno G. Integrated technology for evaluation of brain function and neural plasticity. Phys Med Rehabil Clin N Am 2004; 15(1):263-306. PubMedCrossrefGoogle Scholar

  • 19. Rossini PM, Altamura C, Ferreri F et al. Neuroimaging experimental studies on brain plasticity in recovery from stroke. Eura Medicophys 2007; 43(2):241-54.PubMedGoogle Scholar

  • 20. Momjian S, Seghier M, Seeck M i wsp. Mapping of the neuronal networks of human cortical brain functions. Adv Tech Stand Neurosurg 2003; 28:91-142.Google Scholar

  • 21. Turing A. Maszyna licząca a inteligencja. W: Chwedeńczuk B, redakcja. Filozofia umysłu. Warszawa: Aletheia; 1995.Google Scholar

  • 22. Putnam H. Minds and Machines. In: Hook S, editor. Dimensions of Mind. New York: New York University Press; 1960. p. 148-180.Google Scholar

  • 23. Putnam H. Representation and Reality. Cambridge: MIT Press; 1988.Google Scholar

  • 24. Kuhn TS. Dwa bieguny. Tradycja i nowatorstwo w badaniach naukowych. Warszawa: PIW; 1985. s. 406-439.Google Scholar

  • 25. Mikołajewska E, Mikołajewski D. Role of brainstem within human body systems - computational approach. J Health Sci 2012; (2)1: 95-106.Google Scholar

  • 26. Searle JR. Mózg, umysł i nauka. Warszawa Wydawnictwo Naukowe: PWN; 1995.Google Scholar

  • 27. Koch C, Segev I. Methods in Neural Modeling. From Ions to Networks. Wyd. 2 poprawione. Cambridge: MIT Press; 1998.Google Scholar

  • 28. Bower JD, Beeman D. The Book of GENESIS. Wyd. 2. New York: Springer Verlag; 1998.Google Scholar

  • 29. O’Reilly R, Munakata Y. Computational Explorations in Cognitive Neuroscience: Understanding the Mind by Simulating the Brain. Cambridge: MIT Press; 2000.Google Scholar

  • 30. Reinkensmeyer DJ, Iobbi MG, Kahn LE et al. Modeling reaching impairment after stroke using a population vector model of movement control that incorporates neural firing-rate variability. Neural Comput 2003; 15:2619-2642.PubMedCrossrefGoogle Scholar

  • 31. Scheidt RA, Stoeckmann T. Reach adaptation and final position control amid environmental uncertainty after stroke. J Neurophysiol 2007; 97:2824-2836.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 32. Reggia J, Goodall S, Chen Y et al. Modeling post-stroke cortical map reorganization. In: Reggia JA, Ruppin E, Berndt RS, editors. Neural Modeling of Brain and Cognitive Disorders. New York: World Scientific; 1996. p. 283-302.Google Scholar

  • 33. Goodall S, Reggia JA, Chen Y et al. A computational model of acute focal cortical lesions. Stroke 1997; 28:101-109.CrossrefPubMedGoogle Scholar

  • 34. Han CE, Arbib MA, Schweighofer N. Stroke rehabilitation reaches a threshold. PLoS Comput Biol 2008; 4(8):e1000133.Web of ScienceCrossrefGoogle Scholar

  • 35. Crystal H, Finkel L. Computational Approaches to Neurological Disease. In: Reggia J A, Ruppin E, Berndt RS, editors. Neural Modeling of Brain and Cognitive Disorders. New York: World Scientific; 1996. p. 251-272.Google Scholar

  • 36. Duch W, Dobosz K. Attractors in neurodynamical systems. In: Wang R, Gu F, editors. Advances in cognitive neurodynamics II. ICCN; 2011. p.157-161.Google Scholar

  • 37. Dobosz K, Duch W. Visualization for understanding of neurodynamical systems. Cognitive Neurodynamics 2011; 5(2):145-160.PubMedWeb of ScienceGoogle Scholar

  • 38. Dobosz K, Duch W. Understanding neurodynamical systems via Fuzzy Symbolic Dynamics. Neural Networks 2010; 23: 487-496.CrossrefWeb of ScienceGoogle Scholar

  • 39. Simpson HD, Mortimer D, Goodhill GJ. Theoretical models of neural circuit development. Curr Top Dev Biol 2009; 87: 1-51.PubMedGoogle Scholar

  • 40. Wojcik GM. Self-organising criticality in the simulated models of the rat cortical microcircuits. Neurocomputing 2012; 79: 61-67.CrossrefWeb of ScienceGoogle Scholar

  • 41. Wojcik GM. Electrical parameters influence on the dynamics of the hodgkin-huxley liquid state machine. Neurocomputing 2011; 79: 68-78.Web of ScienceGoogle Scholar

  • 42. Grzyb BJ, Chinellato E, Wojcik GM, Kaminski WA. Which model to use for the liquid state machine? IJCNN, IEEE; 2010. p. 1018-1024.Google Scholar

  • 43. Kaminski WA, Wojcik GM. Liquid state machine built of hodgkin-huxley neurons. Informatica 2004; 15(1): 39-44.Google Scholar

  • 44. Wojcik GM, Kaminski WA. Liquid state machine and its separation ability as function of electrical parameters of cell. Neurocomputing 2007; 70(13-15): 2593-2697.CrossrefWeb of ScienceGoogle Scholar

  • 45. Rubinov M, McIntosh AR, Valenzuela MJ, Breakspear M. Simulation of neuronal death and network recovery in a computational model of distributed cortical activity. Am J Geriatr Psychiatry 2009; 17(3): 210-217.CrossrefWeb of ScienceGoogle Scholar

  • 46. Wojtowicz JM. Adult neurogenesis. From circuits to models. Behav Brain Res 2012 Feb 14;227(2):490-6.Web of ScienceGoogle Scholar

  • 47. Mikołajewska E, Mikołajewski D. Interfejsy mózg-komputer - zastosowania cywilne i wojskowe. Kwartalnik Bellona 2011; 2: 123-133.Google Scholar

  • 48. Duch W, Nowak W, Meller J, Osiński G, Dobosz K, Mikołajewski D, Wójcik GM. Consciousness and attention in autism spectrum disorders. Proceedings of Cracow Grid Workshop 2010. p. 202-211. Google Scholar

About the article

Published Online: 2013-08-31

Published in Print: 2012-03-01

Citation Information: Advances in Rehabilitation, Volume 26, Issue 1, Pages 51–58, ISSN (Online) 1734-4948, DOI: https://doi.org/10.2478/rehab-2013-0029.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in