Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in Analytical Chemistry

Editor-in-Chief: Schechter, Israel

Editorial Board: Pauw, Edwin / Vries, Mattanjah / Grushka, Eli / Laserna, J. / Licht, Stuart / Lubman, David / Mandler, Daniel / Palleschi, Vincenzo / Sigman, Michael / Whitesides, George

4 Issues per year


IMPACT FACTOR 2016: 1.917

CiteScore 2016: 2.09

SCImago Journal Rank (SJR) 2016: 0.528
Source Normalized Impact per Paper (SNIP) 2016: 1.017

Online
ISSN
2191-0189
See all formats and pricing
More options …
Volume 33, Issue 3

Issues

Chromatographic and electrophoretic methods for nanodisc purification and analysis

Bo Højen Justesen
  • Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thomas Günther-Pomorski
  • Corresponding author
  • Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-08-28 | DOI: https://doi.org/10.1515/revac-2014-0014

Abstract

Soluble nanoscale lipid bilayers, termed nanodiscs, are widely used in science for studying the membrane-anchored and integral membrane protein complexes under defined experimental conditions. Although their formation occurs by a self-assembly process, nanodisc purification and the verification of proper reconstitution are still major challenges during the sample preparation. This review gives an overview of the methods used for purifying and analyzing nanodiscs and nanodisc-reconstituted membrane proteins, with an emphasis on the chromatographic and electrophoretic approaches.

This article offers supplementary material which is provided at the end of the article.

Keywords: chromatography; free flow electrophoresis; mass spectrometry; nanodiscs; native PAGE

References

  • Baas, B. J.; Denisov, I. G.; Sligar, S. G. Homotropic cooperativity of monomeric cytochrome P450 3A4 in a nanoscale native bilayer environment. Arch. Biochem. Biophys. 2004, 430, 218–228.Google Scholar

  • Bayburt, T. H.; Sligar, S. G. Self-assembly of single integral membrane proteins into soluble nanoscale phospholipid bilayers. Prot. Sci. 2003, 12, 2476–2481.Google Scholar

  • Bayburt, T. H.; Sligar, S. G. Membrane protein assembly into nanodiscs. FEBS Lett. 2010, 584, 1721–1727.Web of ScienceGoogle Scholar

  • Bayburt, T. H.; Grinkova, Y. V.; Sligar, S. G. Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett. 2002, 2, 853–856.Google Scholar

  • Bayburt, T. H.; Grinkova, Y. V.; Sligar, S. G. Assembly of single bacteriorhodopsin trimers in bilayer nanodiscs. Arch. Biochem. Biophys. 2006, 450, 215–222.Google Scholar

  • Beales, P. A.; Geerts, N.; Inampudi, K. K.; Shigematsu, H.; Wilson, C. J.; Vanderlick, T. K. Reversible assembly of stacked membrane nanodiscs with reduced dimensionality and variable periodicity. J. Am. Chem. Soc. 2013, 135, 3335–3338.Web of ScienceGoogle Scholar

  • Boldog, T.; Grimme, S.; Li, M.; Sligar, S. G.; Hazelbauer, G. L. Nanodiscs separate chemoreceptor oligomeric states and reveal their signaling properties. Proc. Natl. Acad. Sci. 2006, 103, 11509–11514.Google Scholar

  • Crichton, P. G.; Harding, M.; Ruprecht, J. J.; Lee, Y.; Kunji, E. R. S. Lipid, detergent, and Coomassie blue G-250 affect the migration of small membrane proteins in blue native gels: mitochondrial carriers migrate as monomers not dimers. J. Biol. Chem. 2013, 288, 22163–22173.Web of ScienceGoogle Scholar

  • Dalal, K.; Duong, F. Reconstitution of the SecY translocon in nanodiscs. In Protein Secretion; Methods in Molecular Biology; Economou, A., Ed. Humana Press: New York, 2010; Vol. 619, pp. 145–156.Google Scholar

  • Denisov, I. G.; Grinkova, Y. V.; Lazarides, A. A.; Sligar, S. G. Directed self-assembly of monodisperse phospholipid bilayer nanodiscs with controlled size. J. Am. Chem. Soc. 2004, 126, 3477–3487.Google Scholar

  • Denisov, I. G.; Baas, B. J.; Grinkova, Y. V.; Sligar, S. G. Cooperativity in cytochrome P450 3A4: linkages in substrate binding, spin state, uncoupling, and product formation. J. Biol. Chem. 2007, 282, 7066–7076.Web of ScienceGoogle Scholar

  • Frauenfeld, J.; Gumbart, J.; Sluis, E. O. v. d.; Funes, S.; Gartmann, M.; Beatrix, B.; Mielke, T.; Berninghausen, O.; Becker, T.; Schulten, K.; Beckmann, R. Cryo-EM structure of the ribosome – SecYE complex in the membrane environment. Nat. Struct. Mol. Biol. 2011, 18, 614–621.Web of ScienceGoogle Scholar

  • Grinkova, Y. V.; Denisov, I. G.; Sligar, S. G. Engineering extended membrane scaffold proteins for self-assembly of soluble nanoscale lipid bilayers. Prot. Eng. Des. Select. 2010, 23, 843–848.Web of ScienceGoogle Scholar

  • Hagn, F.; Etzkorn, M.; Raschle, T.; Wagner, G. Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J. Am. Chem. Soc. 2013, 135, 1919–1925.Web of ScienceGoogle Scholar

  • Hoffstetter-Kuhn, S.; Kuhn, R.; Wagner, H. Free flow electrophoresis for the purification of proteins: I. Zone electrophoresis and isotachophoresis. Electrophoresis 1990, 11, 304–309.Google Scholar

  • Hopper, J. T. S.; Yu, Y. T.-C.; Li, D.; Raymond, A.; Bostock, M.; Liko, I.; Mikhailov, V.; Laganowsky, A.; Benesch, J. L. P.; Caffrey, M.; Nietlispach, D.; Robinson, C. V. Detergent-free mass spectrometry of membrane protein complexes. Nat. Methods 2013, 10, 1206–1208.Web of ScienceGoogle Scholar

  • Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graphics 1996, 14, 33–38.Google Scholar

  • Inagaki, S.; Ghirlando, R.; Grisshammer, R. Biophysical characterization of membrane proteins in nanodiscs. Methods 2013, 59, 287–300.Web of ScienceGoogle Scholar

  • Justesen, B. H.; Hansen, R. W.; Martens, H. J.; Theorin, L.; Palmgren, M. G.; Martinez, K. L.; Pomorski, T. G.; Fuglsang, A. T. Active plasma membrane P-type H+-ATPase reconstituted into nanodiscs is a monomer. J. Biol. Chem. 2013a, 288, 26419–26429.Web of ScienceGoogle Scholar

  • Justesen, B. H.; Laursen, T.; Weber, G.; Fuglsang, A. T.; Møller, B. L.; Günther Pomorski, T. Isolation of monodisperse nanodisc-reconstituted membrane proteins using free flow electrophoresis. Anal. Chem. 2013b, 85, 3497–3500.Web of ScienceGoogle Scholar

  • Katayama, H.; Wang, J.; Tama, F.; Chollet, L.; Gogol, E. P.; Collier, R. J.; Fisher, M. T. Three-dimensional structure of the anthrax toxin pore inserted into lipid nanodiscs and lipid vesicles. Proc. Natl. Acad. Sci. 2010, 107, 3453–3457.Web of ScienceGoogle Scholar

  • Lyukmanova, E. N.; Shenkarev, Z. O.; Khabibullina, N. F.; Kopeina, G. S.; Shulepko, M. A.; Paramonov, A. S.; Mineev, K. S.; Tikhonov, R. V.; Shingarova, L. N.; Petrovskaya, L. E.; Dolgikh, D. A.; Arseniev, A. S.; Kirpichnikov, M. P. Lipid-protein nanodiscs for cell-free production of integral membrane proteins in a soluble and folded state: comparison with detergent micelles, bicelles and liposomes. Biochim. Biophys. Acta Biomembr. 2012, 1818, 349–358.Web of ScienceGoogle Scholar

  • Marty, M.; Wilcox, K.; Klein, W.; Sligar, S. Nanodisc-solubilized membrane protein library reflects the membrane proteome. Anal. Bioanal. Chem. 2013, 405, 4009–4016.Web of ScienceGoogle Scholar

  • Marty, M.; Zhang, H.; Cui, W.; Gross, M.; Sligar, S. Interpretation and deconvolution of nanodisc native mass spectra. J. Am. Soc. Mass Spectrom. 2014, 25, 269–277.Web of ScienceGoogle Scholar

  • Moritz, R. L.; Simpson, R. J. Liquid-based free-flow electrophoresis-reversed-phase HPLC: a proteomic tool. Nat. Methods 2005, 2, 863–873.Google Scholar

  • Mörs, K.; Roos, C.; Scholz, F.; Wachtveitl, J.; Dötsch, V.; Bernhard, F.; Glaubitz, C. Modified lipid and protein dynamics in nanodiscs. Biochim. Biophys. Acta Biomembr. 2013, 1828, 1222–1229.Web of ScienceGoogle Scholar

  • Nath, A.; Atkins, W. M.; Sligar, S. G. Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochemistry 2007, 46, 2059–2069.Web of ScienceGoogle Scholar

  • Pandit, A.; Shirzad-Wasei, N.; Wlodarczyk, L. M.; van Roon, H.; Boekema, E. J.; Dekker, J. P.; de Grip, W. J. Assembly of the major light-harvesting complex II in lipid nanodiscs. Biophys. J. 2011, 101, 2507–2515.Web of ScienceGoogle Scholar

  • Puthenveetil, R.; Vinogradova, O. Optimization of the design and preparation of nanoscale phospholipid bilayers for its application to solution NMR. Prot. Struct. Funct. Bioinform. 2013, 81, 1222–1231.Google Scholar

  • Ritchie, T. K.; Grinkova, Y. V.; Bayburt, T. H.; Denisov, I. G.; Zolnerciks, J. K.; Atkins, W. M.; Sligar, S. G. Chapter 11 reconstitution of membrane proteins in phospholipid bilayer nanodiscs. In Methods in Enzymology, Nejat, D., Ed. Academic Press: New York, 2009a; Vol. 464, pp. 211–231.Google Scholar

  • Ritchie, T. K.; Grinkova, Y. V.; Bayburt, T. H.; Denisov, I. G.; Zolnerciks, J. K.; Atkins, W. M.; Sligar, S. G. Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol. 2009b, 464, 211–231.Web of ScienceGoogle Scholar

  • Roos, C.; Zocher, M.; Müller, D.; Münch, D.; Schneider, T.; Sahl, H.-G.; Scholz, F.; Wachtveitl, J.; Ma, Y.; Proverbio, D.; Henrich, E.; Dötsch, V.; Bernhard, F. Characterization of co-translationally formed nanodisc complexes with small multidrug transporters, proteorhodopsin and with the E. coli MraY translocase. Biochim. Biophys. Acta Biomembr. 2012, 1818, 3098–3106.Web of ScienceGoogle Scholar

  • Shao, J.; Fan, L. Y.; Cao, C. X.; Huang, X. Q.; Xu, Y. Q. Quantitative investigation of resolution increase of free-flow electrophoresis via simple interval sample injection and separation. Electrophoresis 2012, 33, 2065–2074.Web of ScienceGoogle Scholar

  • Shaw, A. W.; Pureza, V. S.; Sligar, S. G.; Morrissey, J. H. The local phospholipid environment modulates the activation of blood clotting. J. Biol. Chem. 2007, 282, 6556–6563.Web of ScienceGoogle Scholar

  • Shenkarev, Z. O.; Lyukmanova, E. N.; Butenko, I. O.; Petrovskaya, L. E.; Paramonov, A. S.; Shulepko, M. A.; Nekrasova, O. V.; Kirpichnikov, M. P.; Arseniev, A. S. Lipid-protein nanodiscs promote in vitro folding of transmembrane domains of multi-helical and multimeric membrane proteins. Biochim. Biophys. Acta Biomembr. 2013, 1828, 776–784.Web of ScienceGoogle Scholar

  • Yan, R.; Mo, X.; Paredes, A. M.; Dai, K.; Lanza, F.; Cruz, M. A.; Li, R. Reconstitution of the platelet glycoprotein Ib-IX complex in phospholipid bilayer nanodiscs. Biochemistry 2011, 50, 10598–10606.Web of ScienceGoogle Scholar

About the article

Bo Højen Justesen

Bo Justesen received his Master of Science Degree in Engineering, Nano- and Biotechnology from the University of Aalborg in 2008. In 2013 he completed his PhD studies in Biotechnology at the University of Copenhagen. His thesis work focused on the reconstitution of a plant plasma membrane proton ATPase into nanodiscs for structural and functional characterization. His postdoctoral work involves the application of nanodisc and styrene maleic acid lipid particle (SMALP) technologies to study functional membrane proteins.

Thomas Günther-Pomorski

Thomas Günther-Pomorski studied Biophysics at the Humboldt University of Berlin, where he received his PhD in 1996. After postdoctoral research experience at the Max Planck Institute for Infection Biology in Berlin, the Academic Medical Center in Amsterdam and the Utrecht University, The Netherlands, he became a Junior Professor for Cell Biophysics at the Humboldt University of Berlin, Germany. In 2009 he was appointed as Associate Professor of Membrane Biology at University of Copenhagen. His lab currently develops and applies biophysical methods to study organization, function and regulation of membrane pumps.


Corresponding author: Thomas Günther-Pomorski, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark, e-mail:


Received: 2014-05-01

Accepted: 2014-08-01

Published Online: 2014-08-28

Published in Print: 2014-10-01


Citation Information: Reviews in Analytical Chemistry, Volume 33, Issue 3, Pages 165–172, ISSN (Online) 2191-0189, ISSN (Print) 0793-0135, DOI: https://doi.org/10.1515/revac-2014-0014.

Export Citation

©2014 by De Gruyter. Copyright Clearance Center

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
John E. Rouck, John E. Krapf, Jahnabi Roy, Hannah C. Huff, and Aditi Das
FEBS Letters, 2017, Volume 591, Number 14, Page 2057
[2]
Ilia G. Denisov and Stephen G. Sligar
Chemical Reviews, 2017, Volume 117, Number 6, Page 4669

Comments (0)

Please log in or register to comment.
Log in