Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in Analytical Chemistry

Editor-in-Chief: Schechter, Israel

Editorial Board: Pauw, Edwin / Vries, Mattanjah / Grushka, Eli / Laserna, J. / Licht, Stuart / Lubman, David / Mandler, Daniel / Palleschi, Vincenzo / Sigman, Michael / Whitesides, George

IMPACT FACTOR 2017: 2.111

CiteScore 2017: 1.67

SCImago Journal Rank (SJR) 2017: 0.505
Source Normalized Impact per Paper (SNIP) 2017: 0.590

See all formats and pricing
More options …
Volume 33, Issue 4


Synchrotron-based infrared spectroscopy brings to light the structure of protein aggregates in neurodegenerative diseases

Guylaine Hoffner
  • Corresponding author
  • Brain Physiology Laboratory, Centre National de la Recherche Scientifique, Paris Descartes University, 45 rue des Saints Pères, 75006 Paris, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ William André / Christophe Sandt / Philippe Djian
  • Corresponding author
  • Brain Physiology Laboratory, Centre National de la Recherche Scientifique, Paris Descartes University, 45 rue des Saints Pères, 75006 Paris, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-11-11 | DOI: https://doi.org/10.1515/revac-2014-0016


The accumulation of misfolded proteins in the form of aggregates characterizes a number of diseases of the central nervous system such as Alzheimer’s disease, Parkinson’s disease, prion diseases, and the diseases of polyglutamine expansion. Recent evidence obtained in vitro and in mice has suggested that protein aggregates are structurally diverse and that their structure largely determines toxicity. The structure of the aggregated proteins in the brain of human patients remains mostly unknown, and we will give here the reasons for which synchrotron-based infrared spectroscopy is emerging as one of the best techniques to access this structure. We will also review the few publications that already exist on the application of synchrotron-based infrared spectroscopy to the study of protein aggregates in human brain. The establishment of a correlation between aggregate structure and neurological toxicity is important not only to understand the aggregation process itself but also in order to specifically target the most toxic structures when searching for prophylactic or therapeutic inhibitors of protein aggregation.

Keywords: Alzheimer; amyloid; Huntington; Parkinson; prion


  • Acerbo, A. S.; Carr, G. L.; Judex, S.; Miller, L. M. Imaging the material properties of bone specimens using reflection-based infrared microspectroscopy. Anal. Chem. 2012, 84, 3607–3613.Google Scholar

  • André, W.; Sandt, C.; Dumas, P.; Djian, P.; Hoffner, G. Structure of inclusions of Huntington’s disease brain revealed by synchrotron infrared microspectroscopy: polymorphism and relevance to cytotoxicity. Anal. Chem. 2013, 85, 3765–3773.Google Scholar

  • Armstrong, R. A.; Myers, D.; Smith, C. U. Alzheimer’s disease: size class frequency distribution of senile plaques: do they indicate when a brain tissue was affected? Neurosci. Lett. 1991, 127, 223–226.Google Scholar

  • Arrasate, M.; Mitra, S.; Schweitzer, E.; Segal, M.; Finkbeiner, S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 2004, 431, 805–810.Google Scholar

  • Barth, A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta 2007, 1767, 1073–1101.Google Scholar

  • Bassan, P.; Kohler, A.; Martens, H.; Lee, J.; Byrne, H. J.; Dumas, P.; Gazi, E.; Brown, M.; Clarke, N.; Gardner, P. Resonant Mie scattering (RmieS) correction of infrared spectra from highly scattering biological samples. Analyst 2010a, 135, 268–277.Google Scholar

  • Bassan, P.; Kohler, A.; Martens, H.; Lee, J.; Jackson, E.; Lockyer, N.; Dumas, P.; Brown, M.; Clarke, N.; Gardner, P. RMieS-EMSC correction for infrared spectra of biological cells: extension using full Mie theory and GPU computing. J. Biophotonics 2010b, 3, 609–620.Google Scholar

  • Bonda, M.; Perrin, V.; Vileno, B.; Runne, H.; Kretlow, A.; Forró, L.; Luthi-Carter, R.; Miller, L. M.; Jeney, S. Synchrotron infrared microspectroscopy detecting the evolution of Huntington’s disease neuropathology and suggesting unique correlates of dysfunction in white versus gray brain matter. Anal. Chem. 2011, 83, 7712–7720.Google Scholar

  • Bruijn, L. I.; Becher, M. W.; Lee, M. K.; Anderson, K. L.; Jenkins, N. A.; Copeland, N. G.; Sisodia, S. S.; Rothstein, J. D.; Borchelt, D. R.; Price, D. L.; Cleveland, D. W. ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 1997, 18, 327–338.Google Scholar

  • Byler, D. M.; Susi, H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers 1986, 25, 469–487.Google Scholar

  • Cerf, E.; Sarroukh, R.; Tamamizu-Kato, S.; Breydo, L.; Derclaye, S.; Dufrêne, Y. F.; Narayanaswami, V.; Goormaghtigh, E.; Ruysschaert, J. M.; Raussens, V. Antiparallel beta-sheet: a signature structure of the oligomeric amyloid beta-peptide. Biochem. J. 2009, 421, 415–423.Google Scholar

  • Chirgadze, Y. N.; Nevskaya, N. A. Infrared spectra and resonance interaction of amide-I vibration of the antiparallel-chain pleated sheet. Biopolymers 1976a, 15, 607–625.Google Scholar

  • Chirgadze, Y. N.; Nevskaya, N. A. Infrared spectra and resonance interaction of amide-I vibration of the parallel-chain pleated sheets. Biopolymers 1976b, 15, 627–636.Google Scholar

  • Chishti, M. A.; Yang, D. S.; Janus, C.; Phinney, A. L.; Horne, P.; Pearson, J.; Strome, R.; Zuker, N.; Loukides, J.; French, J.; Turner, S.; Lozza, G.; Grilli, M.; Kunicki, S.; Morissette, C.; Paquette, J.; Gervais, F.; Bergeron, C.; Fraser, P. E.; Carlson, G. A.; George-Hyslop, P. S.; Westaway, D. Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. J. Biol. Chem. 2001, 276, 21562–21570.Google Scholar

  • Choo, L. P.; Wetzel, D. L.; Halliday, W. C.; Jackson, M.; LeVine, S. M.; Mantsch, H. H. In situ characterization of beta-amyloid in Alzheimer’s diseased tissue by synchrotron Fourier transform infrared microspectroscopy. Biophys. J. 1996, 71, 1672–1679.Google Scholar

  • Delacourte, A.; Défossez, A. Biochemical characterization of an immune serum which specifically marks neurons in neurofibrillary degeneration in Alzheimer’s disease. C R Acad. Sci. III 1986, 303, 439–444.Google Scholar

  • DiFiglia, M.; Sapp, E.; Chase, K. O.; Davies, S. W.; Bates, G. P.; Vonsattel, J. P.; Aronin, N. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 1997, 277, 1990–1993.Google Scholar

  • Dumas, P.; Polack, F.; Lagarde, B.; Chubar, O.; Giogetta, J. L.; Lefrançois, S. Synchrotron infrared microscopy at the French Synchrotron Facility SOLEIL. Infrared Phys. Technol. 2006, 49, 152–160.Google Scholar

  • Dumas, P.; Sockalingum, G. D.; Sulé-Suso, J. Adding synchrotron radiation to infrared microspectroscopy: what’s new in biomedical applications? Trends Biotechnol. 2007, 25, 40–44.Google Scholar

  • Fabian, H.; Naumann, D. Methods to study protein folding by stopped-flow FT-IR. Methods 2004, 34, 28–40.Google Scholar

  • Fabian, H.; Choo, L.-P.; Szendrei, G.; Jackson, M.; Halliday, W.; Otvos, L.; Mantsch, H. Infrared spectroscopic characterization of Alzheimer plaques. Appl. Spectrosc. 1993, 47, 1513–1518.Google Scholar

  • Fändrich, M. On the structural definition of amyloid fibrils and other polypeptide aggregates. Cell. Mol. Life Sci. 2007, 64, 2066–2078.Google Scholar

  • Goedert, M.; Spillantini, M. G. Lewy body diseases and multiple system atrophy as alpha-synucleinopathies. Mol. Psychiatry 1998, 3, 462–465.Google Scholar

  • Goormaghtigh, E.; Raussens, V.; Ruysschaert, J. M. Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes. Biochim. Biophys. Acta 1999, 1422, 105–185.Google Scholar

  • Goormaghtigh, E.; Gasper, R.; Bénard, A.; Goldsztein, A.; Raussens V. Protein secondary structure content in solution, films and tissues: redundancy and complementarity of the information content in circular dichroism, transmission and ATR FTIR spectra. Biochim. Biophys. Acta 2009, 1794, 1332–1343.Google Scholar

  • Grundke-Iqbal, I.; Iqbal, K.; Tung, Y. C.; Quinlan, M.; Wisniewski, H. M.; Binder, L. I. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. USA 1986, 83, 4913–4917.Google Scholar

  • Haris, P. I. Probing protein-protein interaction in biomembranes using Fourier transform infrared spectroscopy. Biochim. Biophys. Acta 2013, 1828, 2265–2271.Google Scholar

  • Hiramatsu, H.; Kitagawa, T. FT-IR approaches on amyloid fibril structure. Biochim. Biophys. Acta 2005, 1753, 100–107.Google Scholar

  • Hiramatsu, H.; Goto, Y.; Naiki, H.; Kitagawa, T. Core structure of amyloid fibril proposed from IR-microscope linear dichroism. J. Am. Chem. Soc. 2004, 126, 3008–3009.Google Scholar

  • Hirsch, T. Z.; Hernandez-Rapp, J.; Martin-Lannerée, S.; Launay, J. M.; Mouillet-Richard, S. PrP(C) signalling in neurons: from basics to clinical challenges. Biochimie 2014, 104C, 2–11.Google Scholar

  • Hoffner, G.; Djian, P. Protein aggregation in Huntington’s disease. Biochimie 2002, 84, 273–278.Google Scholar

  • Hoffner, G.; Djian, P. Monomeric, oligomeric and polymeric proteins in Huntington disease and other diseases of polyglutamine expansion. Brain Sci. 2014, 4, 91–122.Google Scholar

  • Hoffner, G.; Kahlem, P.; Djian, P. Perinuclear localization of huntingtin as a consequence of its binding to microtubules through an interaction with beta-tubulin: relevance to Huntington’s disease. J. Cell Sci. 2002, 115, 941–948.Google Scholar

  • Hoffner, G.; Island, M.; Djian, P. Purification of neuronal inclusions of patients with Huntington’s disease reveals a broad range of N-terminal fragments of expanded huntingtin and insoluble polymers. J. Neurochem. 2005, 95, 125–136.Google Scholar

  • Huang, T. H.; Yang, D. S.; Plaskos, N. P.; Go, S.; Yip, C. M.; Fraser, P. E.; Chakrabartty, A. Structural studies of soluble oligomers of the Alzheimer beta-amyloid peptide. J. Mol. Biol. 2000, 297, 73–87.Google Scholar

  • Jackson, M.; Mantsch, H. H. The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit. Rev. Biochem. Mol. Biol. 1995, 30, 95–120.Google Scholar

  • Kang, J.; Lemaire, H. G.; Unterbeck, A.; Salbaum, J. M.; Masters, C. L.; Grzeschik, K. H.; Multhaup, G.; Beyreuther, K.; Müller-Hill, B. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 1987, 325, 733–736.Google Scholar

  • Kneipp, J.; Miller, L. M.; Joncic, M.; Kittel, M.; Lasch, P.; Beekes, M.; Naumann, D. In situ identification of protein structural changes in prion-infected tissue. Biochim. Biophys. Acta 2003, 1639, 152–158.Google Scholar

  • Kohler, A.; Sulé-Suso, J.; Sockalingum, G. D.; Tobin, M.; Bahrami, F.; Yang, Y.; Pijanka, J.; Dumas, P.; Cotte, M.; van Pittius, D. G.; Parkes, G.; Martens, H. Estimating and correcting mie scattering in synchrotron-based microscopic Fourier transform infrared spectra by extended multiplicative signal correction. Appl. Spectrosc. 2008, 62, 259–266.Google Scholar

  • Kosik, K. S.; Joachim, C. L.; Selkoe, D. J. Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc. Natl. Acad. Sci. USA 1986, 83, 4044–4048.Google Scholar

  • Kowalewski, T.; Holtzman, D. M. In situ atomic force microscopy study of Alzheimer’s beta-amyloid peptide on different substrates: new insights into mechanism of beta-sheet formation. Proc. Natl. Acad. Sci. USA 1999, 96, 3688–3693.Google Scholar

  • Kretlow, A.; Wang, Q.; Kneipp, J.; Lasch, P.; Beekes, M.; Miller, L.; Naumann, D. FTIR-microspectroscopy of prion-infected nervous tissue. Biochim. Biophys. Acta 2006, 1758, 948–959.Google Scholar

  • Kretlow, A.; Wang, Q.; Beekes, M.; Naumann, D.; Miller, L. M. Changes in protein structure and distribution observed at pre-clinical stages of scrapie pathogenesis. Biochim. Biophys. Acta 2008, 1782, 559–565.Google Scholar

  • Landles, C.; Sathasivam, K.; Weiss, A.; Woodman, B.; Moffitt, H.; Finkbeiner, S.; Sun, B.; Gafni, J.; Ellerby, L. M.; Trottier, Y.; Richards, W. G.; Osmand, A.; Paganetti, P.; Bates, G. P. Proteolysis of mutant huntingtin produces an exon 1 fragment that accumulates as an aggregated protein in neuronal nuclei in Huntington disease. J. Biol. Chem. 2010, 285, 8808–8823.Google Scholar

  • Lansbury, P. T. In pursuit of the molecular structure of amyloid plaque, new technology provides unexpected and critical information. Biochemistry 1992, 31, 6865–6870.Google Scholar

  • Lennox, G.; Lowe, J.; Morrell, K.; Landon, M.; Mayer, R. J. Anti-ubiquitin immunocytochemistry is more sensitive than conventional techniques in the detection of diffuse Lewy body disease. J. Neurol. Neurosurg. Psychiatry 1989, 52, 67–71.Google Scholar

  • Lewy, F. H. Paralysis agitans. 1. Pathologische anatomie. In Handbuch der Neurologie. Lewandowsky, M., editor. Julius Springer: Berlin, 1912; Vol 3, pp 920–933.Google Scholar

  • Liao, C. R.; Rak, M.; Lund, J.; Unger, M.; Platt, E.; Albensi, B. C.; Hirschmugl, C. J.; Gough, K. M. Synchrotron FTIR reveals lipid around and within amyloid plaques in transgenic mice and Alzheimer’s disease brain. Analyst 2013, 138, 3991–3997.Google Scholar

  • Maury, C. P. Molecular pathogenesis of beta-amyloidosis in Alzheimer’s disease and other cerebral amyloidoses. Lab. Invest. 1995, 72, 4–16.Google Scholar

  • Miller, L. M.; Dumas, P. From structure to cellular mechanism with infrared microspectroscopy. Curr. Opin. Struct. Biol. 2010, 20, 649–656.Google Scholar

  • Miller, L.; Wang, Q.; Telivala, T.; Smith, R.; Lanzirotti, A.; Miklossy, J. Synchrotron-based infrared and X-ray imaging shows focalized accumulation of Cu and Zn co-localized with beta-amyloid deposits in Alzheimer’s disease. J. Struct. Biol. 2006, 155, 30–37.Google Scholar

  • Miller, L. M.; Bourassa, M. W.; Smith, R. J. FTIR spectroscopic imaging of protein aggregation in living cells. Biochim. Biophys. Acta 2013, 1828, 2339–2346.Google Scholar

  • Mohlenhoff, B.; Romeo, M.; Diem, M.; Wood, B. R. Mie-type scattering and non-Beer-Lambert absorption behavior of human cells in infrared microspectroscopy. Biophys. J. 2005, 88, 3635–3640.Google Scholar

  • Nekooki-Machida, Y.; Kurosawa, M.; Nukina, N.; Ito, K.; Oda, T.; Tanaka, M. Distinct conformations of in vitro and in vivo amyloids of huntingtin-exon1 show different cytotoxicity. Proc. Natl. Acad. Sci. USA 2009, 106, 9679–9684.Google Scholar

  • Nichols, M. R.; Moss, M. A.; Reed, D. K.; Hoh, J. H.; Rosenberry, T. L. Rapid assembly of amyloid-beta peptide at a liquid/liquid interface produces unstable beta-sheet fibers. Biochemistry 2005, 44, 165–173.Google Scholar

  • Nilsson, M. R. Techniques to study amyloid fibril formation in vitro. Methods 2004, 34, 151–160.Google Scholar

  • Oddo, S.; Caccamo, A.; Kitazawa, M.; Tseng, B. P.; LaFerla, F. M. Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol. Aging 2003, 24, 1063–1070.Google Scholar

  • Oztug Durer, Z. A.; Cohlberg, J. A.; Dinh, P.; Padua, S.; Ehrenclou, K.; Downes, S.; Tan, J. K.; Nakano, Y.; Bowman, C. J.; Hoskins, J. L.; Kwon, C.; Mason, A. Z.; Rodriguez, J. A.; Doucette, P. A.; Shaw, B. F.; Valentine, J. S. Loss of metal ions, disulfide reduction and mutations related to familial ALS promote formation of amyloid-like aggregates from superoxide dismutase. PLoS One 2009, 4, e5004.Google Scholar

  • Pan, K. M.; Baldwin, M.; Nguyen, J.; Gasset, M.; Serban, A.; Groth, D.; Mehlhorn, I.; Huang, Z.; Fletterick, R. J.; Cohen, F. E. Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc. Natl. Acad. Sci. USA 1993, 90, 10962–10966.Google Scholar

  • Prusiner, S. B. Novel proteinaceous infectious particles cause scrapie. Science 1982, 216, 136–144.Google Scholar

  • Rak, M.; Del Bigio, M. R.; Mai, S.; Westaway, D.; Gough, K. Dense-core and diffuse Abeta plaques in TgCRND8 mice studied with synchrotron FTIR microspectroscopy. Biopolymers 2007, 87, 207–217.Google Scholar

  • Roach, P.; Farrar, D.; Perry, C. C. Interpretation of protein adsorption: surface-induced conformational changes. J. Am. Chem. Soc. 2005, 127, 8168–8173.Google Scholar

  • Rosen, D. R.; Siddique, T.; Patterson, D.; Figlewicz, D. A.; Sapp, P.; Hentati, A.; Donaldson, D.; Goto, J.; O’Regan, J. P.; Deng, H. X. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993, 362, 59–62.PubMedGoogle Scholar

  • Rosenblum, W. I.; Ghatak, N. R. Lewy bodies in the presence of Alzheimer’s disease. Arch. Neurol. 1979, 36, 170–171.Google Scholar

  • Sarroukh, R.; Goormaghtigh, E.; Ruysschaert, J. M.; Raussens, V. ATR-FTIR: a “rejuvenated” tool to investigate amyloid proteins. Biochim. Biophys. Acta 2013, 1828, 2328–2338.Google Scholar

  • Saudou, F.; Finkbeiner, S.; Devys, D.; Greenberg, M. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 1998, 95, 55–66.Google Scholar

  • Shaw, B. F.; Lelie, H. L.; Durazo, A.; Nersissian, A. M.; Xu, G.; Chan, P. K.; Gralla, E. B.; Tiwari, A.; Hayward, L. J.; Borchelt, D. R.; Valentine, J. S.; Whitelegge, J. P. Detergent-insoluble aggregates associated with amyotrophic lateral sclerosis in transgenic mice contain primarily full-length, unmodified superoxide dismutase-1. J. Biol. Chem. 2008, 283, 8340–8350.Google Scholar

  • Shivu, B.; Seshadri, S.; Li, J.; Oberg, K. A.; Uversky, V. N.; Fink, A. L. Distinct β-sheet structure in protein aggregates determined by ATR-FTIR spectroscopy. Biochemistry 2013, 52, 5176–5183.Google Scholar

  • Somerville, R. A. TSE agent strains and PrP: reconciling structure and function. Trends Biochem. Sci. 2002, 27, 606–612.Google Scholar

  • Souillac, P. O.; Middaugh, C. R.; Rytting, J. H. Investigation of protein/carbohydrate interactions in the dried state. 2. Diffuse reflectance FTIR studies. Int. J. Pharm. 2002, 235, 207–218.Google Scholar

  • Spillantini, M. G.; Schmidt, M. L.; Lee, V. M.; Trojanowski, J. Q.; Jakes, R.; Goedert, M. Alpha-synuclein in Lewy bodies. Nature 1997, 388, 839–840.Google Scholar

  • Spillantini, M. G.; Crowther, R. A.; Jakes, R.; Cairns, N. J.; Lantos, P. L.; Goedert, M. Filamentous alpha-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci. Lett. 1998, 251, 205–208.Google Scholar

  • Stefani, M. Structural features and cytotoxicity of amyloid oligomers: implications in Alzheimer’s disease and other diseases with amyloid deposits. Prog. Neurobiol. 2012, 99, 226–245.Google Scholar

  • Susi, H.; Byler, D. M. Fourier transform infrared study of proteins with parallel beta-chains. Arch. Biochem. Biophys. 1987, 258, 465–469.Google Scholar

  • Szczerbowska-Boruchowska, M.; Dumas, P.; Kastyak, M. Z.; Chwiej, J.; Lankosz, M.; Adamek, D.; Krygowska-Wajs, A. Biomolecular investigation of human substantia nigra in Parkinson’s disease by synchrotron radiation Fourier transform infrared microspectroscopy. Arch. Biochem. Biophys. 2007, 459, 241–248.Google Scholar

  • The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993, 72, 971–983.Google Scholar

  • Thomzig, A.; Spassov, S.; Friedrich, M.; Naumann, D.; Beekes, M. Discriminating scrapie and bovine spongiform encephalopathy isolates by infrared spectroscopy of pathological prion protein. J. Biol. Chem. 2004, 279, 33847–33854.Google Scholar

  • Tonoki, A.; Kuranaga, E.; Ito, N.; Nekooki-Machida, Y.; Tanaka, M.; Miura, M. Aging causes distinct characteristics of polyglutamine amyloids in vivo. Genes. Cells. 2011, 16, 557–564.Google Scholar

  • Vallée, A.; Humblot, V.; Méthivier, C.; Dumas, P.; Pradier, C. M. Modifying protein adsorption by layers of glutathione pre-adsorbed on Au(111). J. Phys. Condens. Matter. 2011, 23, 484002.Google Scholar

  • Vonsattel, J. P.; Myers, R. H.; Stevens, T. J.; Ferrante, R. J.; Bird, E. D.; Richardson, E. P. Neuropathological classification of Huntington’s disease. J. Neuropathol. Exp. Neurol. 1985, 44, 559–577.Google Scholar

  • Wang, Q.; Kretlow, A.; Beekes, M.; Naumann, D.; Miller, L. In situ characterization of prion protein structure and metal accumulation in scrapie-infected cells by synchrotron infrared and X-ray imaging. Vib. Spectrosc. 2005, 38, 61–69.Google Scholar

  • Yamaguchi, H.; Hirai, S.; Morimatsu, M.; Shoji, M.; Harigaya, Y. Diffuse type of senile plaques in the brains of Alzheimer-type dementia. Acta Neuropathol. 1988, 77, 113–119.Google Scholar

  • Zandomeneghi, G.; Krebs, M.; McCammon, M.; Fändrich, M. FTIR reveals structural differences between native beta-sheet proteins and amyloid fibrils. Protein Sci. 2004, 13, 3314–3321.Google Scholar

About the article

Guylaine Hoffner

Guylaine Hoffner obtained her PhD at the Denis Diderot University (Paris, France) on the study of the interaction of huntingtin with microtubules and its aggregation in Huntington disease. She worked as a postdoctoral fellow at Ecole Polytechnique (Palaiseau, France), where she developed a mass spectrometric method for the quantification of a potential biomarker in neurological diseases. She is now an INSERM research scientist working at the Paris Descartes University (France), where she studies protein aggregation in Huntington disease by biochemical and biophysical techniques.

William André

William André obtained his PhD from Université Paris Descartes in 2012. He studied the structural polymorphism of the protein aggregates associated with Huntington’s disease. He also characterized the substrates of cerebral transglutaminase, which are Ca2+-dependent enzymes possibly involved in Huntington’s disease. He now holds a postdoctoral position at SOLEIL synchrotron on the infrared beam line, where he studies the effect of the cellular environment on the development of pulmonary arterial hypertension.

Christophe Sandt

Christophe Sandt holds a PhD in biophysics from the Reims University, France, on the identification of pathogenic microorganisms by FTIR microspectroscopy. He worked as a postdoc in the Chemistry Department of Montréal and of Saint Francis Xavier Universities, Canada, on the penetration of biocides in bacterial biofilms by FTIR-ATR spectroscopy and FTIR imaging and on bacterial biofilms composition using Raman microspectroscopy. He is now a scientist at the infrared beamline SMIS at synchrotron SOLEIL, and his main line of work is developing FTIR microspectroscopy for cellular biology applications.

Philippe Djian

Philippe Djian obtained an MD degree from the Université de Nice, France. He was a postdoctoral fellow in the department of Cell Biology at Harvard Medical School. He then became Directeur de Recherche at the CNRS in Paris. He was director of the Neuroscience Institute and of the laboratory of genetic regulation and genetic diseases at the Université Paris Descartes from 2000 to 2013. His research interests include diseases of polyglutamine expansion and the study of zinc finger proteins in development.

Corresponding authors: Guylaine Hoffner and Philippe Djian, Brain Physiology Laboratory, Centre National de la Recherche Scientifique, Paris Descartes University, 45 rue des Saints Pères, 75006 Paris, France, e-mail: ;

Received: 2014-06-03

Accepted: 2014-10-12

Published Online: 2014-11-11

Published in Print: 2014-12-01

Citation Information: Reviews in Analytical Chemistry, Volume 33, Issue 4, Pages 231–243, ISSN (Online) 2191-0189, ISSN (Print) 0793-0135, DOI: https://doi.org/10.1515/revac-2014-0016.

Export Citation

©2014 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

G. Birarda, A. Ravasio, M. Suryana, S. Maniam, H.-Y. N. Holman, and G. Grenci
Lab Chip, 2016, Volume 16, Number 9, Page 1644

Comments (0)

Please log in or register to comment.
Log in