Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in Analytical Chemistry

Editor-in-Chief: Schechter, Israel

Editorial Board: Pauw, Edwin / Vries, Mattanjah / Grushka, Eli / Laserna, J. / Licht, Stuart / Lubman, David / Mandler, Daniel / Palleschi, Vincenzo / Sigman, Michael / Whitesides, George

IMPACT FACTOR 2017: 2.111

CiteScore 2017: 1.67

SCImago Journal Rank (SJR) 2017: 0.505
Source Normalized Impact per Paper (SNIP) 2017: 0.590

See all formats and pricing
More options …
Volume 36, Issue 1


Bioelectrochemistry of nucleic acids for early cancer diagnostics – analysis of DNA methylation and detection of microRNAs

Martin Bartosik
  • Corresponding author
  • Regional Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Roman Hrstka
  • Regional Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-12-21 | DOI: https://doi.org/10.1515/revac-2016-0022


Dysregulation of gene expression mechanisms has been observed in many tumors, making their analysis of utmost importance. These mechanisms include DNA methylation, an epigenetic mechanism in which 5-carbon of cytosine becomes methylated, leading to gene silencing, and action of short RNA molecules called microRNAs, which regulate protein synthesis at post-transcriptional level by binding to mRNAs. In this review, we describe major roles of both mechanisms in carcinogenesis, offer an overview of currently used methods for their analysis, and summarize most recent advances in electrochemical-based assays and strategies. Advantages of electrochemistry, including favorable cost, time of experiment, or simple instrumentation, are highlighted, along with current challenges that need to be addressed prior to successful application into clinical routine.

Keywords: cancer diagnostics; DNA methylation; electrochemistry; microRNA; molecular oncology


  • Aqeilan, R. I.; Calin, G. A.; Croce, C. M. MiR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death. Differ. 2009, 17, 215–220.Google Scholar

  • Badal, V.; Chuang, L. S. H.; Tan, E. H. H.; Badal, S.; Villa, L. L.; Wheeler, C. A.; Li, B. F. L.; Bernard, H. U. CpG methylation of human papillomavirus type 16 DNA in cervical cancer cell lines and in clinical specimens: genomic hypomethylation correlates with carcinogenic progression. J. Virol. 2003, 77, 6227–6234.Google Scholar

  • Baldwin, R. L.; Nemeth, E.; Tran, H.; Shvartsman, H.; Cass, I.; Narod, S.; Karlan, B. Y. BRCA1 promoter region hypermethylation in ovarian carcinoma: a population-based study. Cancer Res. 2000, 60, 5329–5333.Google Scholar

  • Balintova, J.; Spacek, J.; Pohl, R.; Brazdova, M.; Havran, L.; Fojta, M.; Hocek, M. Azidophenyl as a click-transformable redox label of DNA suitable for electrochemical detection of DNA-protein interactions. Chem. Sci. 2015, 6, 575–587.Google Scholar

  • Banzhaf-Strathmann, J.; Edbauer, D. Good guy or bad guy: the opposing roles of microRNA 125b in cancer. Cell Commun. Signal 2014, 12, 30.Google Scholar

  • Barh, D.; Malhotra, R.; Ravi, B.; Sindhurani, P. MicroRNA let-7: an emerging next-generation cancer therapeutic. Curr. Oncol. 2010, 17, 70–80.Google Scholar

  • Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 2009, 136, 215–233.Google Scholar

  • Bartosik, M.; Durikova, H.; Vojtesek, B.; Anton, M.; Jandakova, E.; Hrstka, R. Electrochemical chip-based genomagnetic assay for detection of high-risk human papillomavirus DNA. Biosens. Bioelectron. 2016, 83, 300–305.Google Scholar

  • Bartosik, M.; Hrstka, R.; Palecek, E.; Vojtesek, B. Adsorptive transfer stripping for quick electrochemical determination of microRNAs in total RNA samples. Electroanalysis 2014a, 26, 2558–2562.Google Scholar

  • Bartosik, M.;Hrstka, R.;Palecek, E.; Vojtesek, B. Magnetic bead-based hybridization assay for electrochemical detection of microRNA. Anal. Chim. Acta2014b, 813, 35–40.Google Scholar

  • Bartosik, M.; Koubkova, L.; Karban, J.; Stastna, L. C.; Hodik, T.; Lamac, M.; Pinkas, J.; Hrstka, R. Electrochemical analysis of a novel ferrocene derivative as a potential antitumor drug. Analyst 2015, 140, 5864–5867.Google Scholar

  • Bartosik, M.; Trefulka, M.; Hrstka, R.; Vojtesek, B.; Palecek, E. Os(VI)bipy-based electrochemical assay for detection of specific microRNAs as potential cancer biomarkers. Electrochem. Commun. 2013, 33, 55–58.Google Scholar

  • Belinsky, S. A.; Nikula, K. J.; Palmisano, W. A.; Michels, R.; Saccomanno, G.; Gabrielson, E.; Baylin, S. B.; Herman, J. G. Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc. Natl. Acad. Sci. USA 1998, 95, 11891–11896.Google Scholar

  • Berdasco, M. A.; Fraga, M. F.; Esteller, M. In DNA Methylation: Methods and Protocols. Humana Press: Totowa, 2009; pp. 23–34.Google Scholar

  • Bertok, T.; Katrlik, J.; Gemeiner, P.; Tkac, J. Electrochemical lectin based biosensors as a label-free tool in glycomics. Microchim. Acta 2013, 180, 1–13.Google Scholar

  • Bertoli, G.; Cava, C.; Castiglioni, I. MicroRNAs: new biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics 2015, 5, 1122–1143.Google Scholar

  • Boeri, M.; Verri, C.; Conte, D.; Roz, L.; Modena, P.; Facchinetti, F.; Calabrò, E.; Croce, C. M.; Pastorino, U.; Sozzi, G. MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proc. Natl. Acad. Sci. USA 2011, 108, 3713–3718.Google Scholar

  • Brotons, A.; Vidal-Iglesias, F. J.; Solla-Gullon, J.; Iniesta, J. Carbon materials for the electrooxidation of nucleobases, nucleosides and nucleotides toward cytosine methylation detection: a review. Anal. Meth. 2016, 8, 702–715.Google Scholar

  • Bruce, S.; Hannula-Jouppi, K.; Lindgren, C. M.; Lipsanen-Nyman, M.; Kere, J. Restriction site-specific methylation studies of imprinted genes with quantitative real-time PCR. Clin. Chem. 2008, 54, 491–499.Google Scholar

  • Calin, G. A.; Dumitru, C. D.; Shimizu, M.; Bichi, R.; Zupo, S.; Noch, E.; Aldler, H.; Rattan, S.; Keating, M.; Rai, K.; Rassenti, L.; Kipps, T.; Negrini, M.; Bullrich, F.; Croce, C. M. Frequent deletions and down-regulation of microRNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA 2002, 99, 15524–15529.Google Scholar

  • Campuzano, S.; Kuralay, F.; Lobo-Castanon, M. J.; Bartosik, M.; Vyavahare, K.; Palecek, E.; Haake, D. A.; Wang, J. Ternary monolayers as DNA recognition interfaces for direct and sensitive electrochemical detection in untreated clinical samples. Biosens. Bioelectron. 2011, 26, 3577–3583.Google Scholar

  • Campuzano, S.; Pedrero, M.; Pingarron, J. M. Electrochemical genosensors for the detection of cancer-related miRNAs. Anal. Bioanal. Chem. 2014a, 406, 27–33.Google Scholar

  • Campuzano, S.; Torrente-Rodriguez, R. M.; Lopez-Hernandez, E.; Conzuelo, F.; Granados, R.; Sanchez-Puelles, J. M.; Pingarron, J. M. Magnetobiosensors based on viral protein p19 for microRNA determination in cancer cells and tissues. Angew. Chem. Int. Ed. 2014b, 53, 6168–6171.Google Scholar

  • Chen, C.; Ridzon, D. A.; Broomer, A. J.; Zhou, Z.; Lee, D. H.; Nguyen, J. T.; Barbisin, M.; Xu, N. L.; Mahuvakar, V. R.; Andersen, M. R.; Lao, K. Q.; Livak, K. J.; Guegler, K. J. Real-time quantification of microRNAs by stem–loop RT–PCR. Nucleic Acids Res. 2005, 33, e179.CrossrefGoogle Scholar

  • Chen, W.-X.; Hu, Q.; Qiu, M.-T.; Zhong, S.-L.; Xu, J.-J.; Tang, J.-H.; Zhao, J.-H. miR-221/222: promising biomarkers for breast cancer. Tumor Biol. 2013, 34, 1361–1370.Google Scholar

  • Cheng, F.-F.; Zhang, J.-J.; He, T.-T.; Shi, J.-J.; Abdel-Halim, E. S.; Zhu, J.-J. Bimetallic Pd-Pt supported graphene promoted enzymatic redox cycling for ultrasensitive electrochemical quantification of microRNA from cell lysates. Analyst 2014, 139, 3860–3865.Google Scholar

  • Deng, H.; Shen, W.; Ren, Y.; Gao, Z. A highly sensitive microRNA biosensor based on hybridized microRNA-guided deposition of polyaniline. Biosens. Bioelectron. 2014a, 60, 195–200.Google Scholar

  • Deng, H.; Yang, X.; Yeo, S. P. X.; Gao, Z. Highly sensitive electrochemical methyltransferase activity assay. Anal. Chem. 2014b, 86, 2117–2123.Google Scholar

  • Dong, H.; Lei, J.; Ding, L.; Wen, Y.; Ju, H.; Zhang, X. MicroRNA: function, detection, and bioanalysis. Chem. Rev. 2013, 113, 6207–6233.Google Scholar

  • Duan, D.; Zheng, K.-X.; Shen, Y.; Cao, R.; Jiang, L.; Lu, Z.; Yan, X.; Li, J. Label-free high-throughput microRNA expression profiling from total RNA. Nucleic Acids Res. 2011, 39, e154.CrossrefGoogle Scholar

  • Eads, C. A.; Danenberg, K. D.; Kawakami, K.; Saltz, L. B.; Blake, C.; Shibata, D.; Danenberg, P. V.; Laird, P. W. MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res. 2000, 28, e32.CrossrefGoogle Scholar

  • Ehrlich, M. DNA methylation in cancer: too much, but also too little. Oncogene 2002, 21, 5400–5413.Google Scholar

  • Esteller, M.; Corn, P. G.; Urena, J. M.; Gabrielson, E.; Baylin, S. B.; Herman, J. G. Inactivation of glutathione S-transferase P1 gene by promoter hypermethylation in human neoplasia. Cancer Res. 1998, 58, 4515–4518.Google Scholar

  • Esteller, M.; Hamilton, S. R.; Burger, P. C.; Baylin, S. B.; Herman, J. G. Inactivation of the DNA repair gene O-6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res. 1999, 59, 793–797.Google Scholar

  • Esteller, M.; Silva, J. M.; Dominguez, G.; Bonilla, F.; Matias-Guiu, X.; Lerma, E.; Bussaglia, E.; Prat, J.; Harkes, I. C.; Repasky, E. A.; Gabrielson, E.; Schutte, M.; Baylin, S. B.; Herman, J. G. Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J. Natl. Cancer Inst. 2000, 92, 564–569.Google Scholar

  • Evanko, D. Hybridization chain reaction. Nat. Meth. 2004, 1, 186–187.Google Scholar

  • Furst, A. L.; Barton, J. K. DNA electrochemistry shows DNMT1 methyltransferase hyperactivity in colorectal tumors. Chem. Biol. 2015, 22, 938–945.Google Scholar

  • Furst, A. L.; Muren, N. B.; Hill, M. G.; Barton, J. K. Label-free electrochemical detection of human methyltransferase from tumors. Proc. Natl. Acad. Sci. USA 2014, 111, 14985–14989.Google Scholar

  • Ge, Z.; Lin, M.; Wang, P.; Pei, H.; Yan, J.; Sho, J.; Huang, Q.; He, D.; Fan, C.; Zuo, X. Hybridization chain reaction amplification of microRNA detection with a tetrahedral DNA nanostructure-based electrochemical biosensor. Anal. Chem. 2014, 86, 2124–2130.Google Scholar

  • Goedecke, S.; Muehlisch, J.; Hempel, G.; Fruehwald, M. C.; Wuensch, B. Quantitative analysis of DNA methylation in the promoter region of the methylguanine-O-6-DNA-methyltransferase gene by COBRA and subsequent native capillary gel electrophoresis. Electrophoresis 2015, 36, 2939–2950.Google Scholar

  • Goetze, S.; Feldhaus, V.; Traska, T.; Wolter, M.; Reifenberger, G.; Tannapfel, A.; Kuhnen, C.; Martin, D.; Mueller, O.; Sievers, S. ECRG4 is a candidate tumor suppressor gene frequently hypermethylated in colorectal carcinoma and glioma. BMC Cancer 2009, 9, 447.Google Scholar

  • Goto, K.; Kato, D.; Sekioka, N.; Ueda, A.; Hirono, S.; Niwa, O. Direct electrochemical detection of DNA methylation for retinoblastoma and CpG fragments using a nanocarbon film. Anal. Biochem. 2010, 405, 59–66.Google Scholar

  • Hamidi-Asl, E.; Palchetti, I.; Hasheminejad, E.; Mascini, M. A review on the electrochemical biosensors for determination of microRNAs. Talanta 2013, 115, 74–83.Google Scholar

  • Harris, R. A.; Wang, T.; Coarfa, C.; Nagarajan, R. P.; Hong, C.; Downey, S. L.; Johnson, B. E.; Fouse, S. D.; Delaney, A.; Zhao, Y.; Olshen, A.; Ballinger, T.; Zhou, X.; Forsberg, K. J.; Gu, J.; Echipare, L.; O’Geen, H.; Lister, R.; Pelizzola, M.; Xi, Y.; Epstein, C. B.; Bernstein, B. E.; Hawkins, R. D.; Ren, B.; Chung, W.-Y.; Gu, H.; Bock, C.; Gnirke, A.; Zhang, M. Q.; Haussler, D.; Ecker, J. R.; Li, W.; Farnham, P. J.; Waterland, R. A.; Meissner, A.; Marra, M. A.; Hirst, M.; Milosavljevic, A.; Costello, J. F. Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat. Biotech 2010, 28, 1097–1105.Google Scholar

  • Hegi, M. E.; Diserens, A.; Gorlia, T.; Hamou, M.; de Tribolet, N.; Weller, M.; Kros, J. M.; Hainfellner, J. A.; Mason, W.; Mariani, L.; Bromberg, J. E. C.; Hau, P.; Mirimanoff, R. O.; Cairncross, J. G.; Janzer, R. C.; Stupp, R. MGMT gene silencing and benefit from temozolomide in glioblastoma. New Engl. J. Med. 2005, 352, 997–1003.Google Scholar

  • Herman, J. G.; Baylin, S. B. Mechanisms of disease: gene silencing in cancer in association with promoter hypermethylation. New Engl. J. Med. 2003, 349, 2042–2054.Google Scholar

  • Herman, J. G.; Graff, J. R.; Myohanen, S.; Nelkin, B. D.; Baylin, S. B. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. USA 1996, 93, 9821–9826.Google Scholar

  • Hocek, M.; Fojta, M. Nucleobase modification as redox DNA labelling for electrochemical detection. Chem. Soc. Rev. 2011, 40, 5802–5814.Google Scholar

  • Homig-Holzel, C.; Savola, S. Multiplex ligation-dependent probe amplification (MLPA) in tumor diagnostics and prognostics. Diagn. Mol. Pathol. 2012, 21, 189–206.Google Scholar

  • Hublarova, P.; Hrstka, R.; Rotterova, P.; Rotter, L.; Coupkova, M.; Badal, V.; Nenutil, R.; Vojtesek, B. Prediction of human papillomavirus 16 E6 gene expression and cervical intraepithelial neoplasia progression by methylation status. Int. J. Gynecol. Cancer 2009, 19, 321–325.Google Scholar

  • Hunt, E. A.; Broyles, D.; Head, T.; Deo, S. K. MicroRNA detection: current technology and research strategies. Annu. Rev. Anal. Chem. 2015, 8, 217–237.Google Scholar

  • Iorio, M. V.; Croce, C. M. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol. Med. 2012, 4, 143–159.Google Scholar

  • Keshavarz, M.; Behpour, M.; Rafiee-pour, H.-A. Recent trends in electrochemical microRNA biosensors for early detection of cancer. RSC Adv. 2015, 5, 35651–35660.Google Scholar

  • Kroh, E. M.; Parkin, R. K.; Mitchell, P. S.; Tewari, M. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods 2010, 50, 298–301.Google Scholar

  • Kuang, S.-Q.; Bai, H.; Fang, Z.-H.; Lopez, G.; Yang, H.; Tong, W.; Wang, Z. Z.; Garcia-Manero, G. Aberrant DNA methylation and epigenetic inactivation of Eph receptor tyrosine kinases and ephrin ligands in acute lymphoblastic leukemia. Blood 2010, 115, 2412–2419.Google Scholar

  • Labib, M.; Berezovski, M. V. Electrochemical sensing of microRNAs: avenues and paradigms. Biosens. Bioelectron. 2015, 68, 83–94.Google Scholar

  • Labib, M.; Khan, N.; Ghobadloo, S. M.; Cheng, J.; Pezacki, J. P.; Berezovski, M. V. Three-mode electrochemical sensing of ultralow microRNA levels. J. Am. Chem. Soc. 2013, 135, 3027–3038.Google Scholar

  • Lautner, G.; Gyurcsanyi, R. E. Electrochemical detection of miRNAs. Electroanalysis 2014, 26, 1224–1235.Google Scholar

  • Lee, J. M.; Cho, H.; Jung, Y. Fabrication of a structure-specific RNA binder for array detection of label-free microRNA. Angew. Chem. Int. Ed. 2010, 49, 8662–8665.Google Scholar

  • Lee, P. E.; Demple, B.; Barton, J. K. DNA-mediated redox signaling for transcriptional activation of SoxR. Proc. Natl. Acad. Sci. USA 2009, 106, 13164–13168.Google Scholar

  • Lee, R. C.; Feinbaum, R. L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75, 843–854.Google Scholar

  • Li, W.; Liu, X.; Hou, T.; Li, H.; Li, F. Ultrasensitive homogeneous electrochemical strategy for DNA methyltransferase activity assay based on autonomous exonuclease III-assisted isothermal cycling signal amplification. Biosens. Bioelectron. 2015, 70, 304–309.Google Scholar

  • Li, W.; Wu, P.; Zhang, H.; Cai, C. Signal amplification of graphene oxide combining with restriction endonuclease for site-specific determination of DNA methylation and assay of methyltransferase activity. Anal. Chem. 2012, 84, 7583–7590.Google Scholar

  • Lin, S.; Gregory, R. I. MicroRNA biogenesis pathways in cancer. Nat. Rev. Cancer 2015, 15, 321–333.Google Scholar

  • Liu, B.; Wu, X.; Liu, B.; Wang, C.; Liu, Y.; Zhou, Q.; Xu, K. MiR-26a enhances metastasis potential of lung cancer cells via AKT pathway by targeting PTEN. Biochim Biophys Acta 2012, 1822, 1692–1704.Google Scholar

  • Lu, J.; Getz, G.; Miska, E. A.; Alvarez-Saavedra, E.; Lamb, J.; Peck, D.; Sweet-Cordero, A.; Ebert, B. L.; Mak, R. H.; Ferrando, A. A.; Downing, J. R.; Jacks, T.; Horvitz, H. R.; Golub, T. R. MicroRNA expression profiles classify human cancers. Nature 2005, 435, 834–838.Google Scholar

  • Ma, W.; Situ, B.; Lv, W.; Li, B.; Yin, X.; Vadgama, P.; Zheng, L.; Wang, W. Electrochemical determination of microRNAs based on isothermal strand-displacement polymerase reaction coupled with multienzyme functionalized magnetic micro-carriers. Biosens. Bioelectron. 2016, 80, 344–351.Google Scholar

  • Marsit, C. J.; Houseman, E. A.; Christensen, B. C.; Gagne, L.; Wrensch, M. R.; Nelson, H. H.; Wiemels, J.; Zheng, S.; Wiencke, J. K.; Andrew, A. S.; Schned, A. R.; Karagas, M. R.; Kelsey, K. T. Identification of methylated genes associated with aggressive bladder cancer. PLoS One 2010, 5, e12334.CrossrefGoogle Scholar

  • Mattiske, S.; Suetani, R. J.; Neilsen, P. M.; Callen, D. F. The oncogenic role of miR-155 in breast cancer. Cancer Epidemiol. Biomarkers Prev. 2012, 21, 1236–1243.Google Scholar

  • Meng, F.; Henson, R.; Lang, M.; Wehbe, H.; Maheshwari, S.; Mendell, J. T.; Jiang, J.; Schmittgen, T. D.; Patel, T. Involvement of human microRNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 2006, 130, 2113–2129.Google Scholar

  • Misso, G.; Di Martino, M. T.; De Rosa, G.; Farooqi, A. A.; Lombardi, A.; Campani, V.; Zarone, M. R.; Gulla, A.; Tagliaferri, P.; Tassone, P.; Caraglia, M. Mir-34: a new weapon against cancer? Mol. Ther. Nucleic Acids 2014, 3, e194.Google Scholar

  • Muren, N. B.; Barton, J. K. Electrochemical assay for the signal-on detection of human DNA methyltransferase activity. J. Am. Chem. Soc. 2013, 135, 16632–16640.Google Scholar

  • Nelson, P. T.; Baldwin, D. A.; Scearce, L. M.; Oberholtzer, J. C.; Tobias, J. W.; Mourelatos, Z. Microarray-based, high-throughput gene expression profiling of microRNAs. Nat. Methods 2004, 1, 155–161.Google Scholar

  • Olkhov-Mitsel, E.; Zdravic, D.; Kron, K.; van der Kwast, T.; Fleshner, N.; Bapat, B. Novel multiplex MethyLight protocol for detection of DNA methylation in patient tissues and bodily fluids. Sci. Rep. 2014, 4, 4432.Google Scholar

  • Palecek, E.; Bartosik, M. Electrochemistry of nucleic acids. Chem. Rev. 2012, 112, 3427–3481.Google Scholar

  • Palecek, E.; Doskocil, J. Pulse-polarographic analysis of double-stranded RNA. Anal. Biochem. 1974, 60, 518–530.Google Scholar

  • Palecek, E.; Fojta, M. Differential-pulse voltammetric determination of RNA at the picomole level in the presence of DNA and nucleic acid. Anal. Chem. 1994, 66, 1566–1571.Google Scholar

  • Palecek, E.; Tkac, J.; Bartosik, M.; Bertok, T.; Ostatna, V.; Palecek, J. Electrochemistry of nonconjugated proteins and glycoproteins. Toward sensors for biomedicine and glycomics. Chem. Rev. 2015, 115, 2045–2108.Google Scholar

  • Qin, A.-Y.; Zhang, X.-W.; Liu, L.; Yu, J.-P.; Li, H.; Emily Wang, S.-Z.; Ren, X.-B.; Cao, S. MiR-205 in cancer: an angel or a devil? Eur. J. Cell Biol. 2013, 92, 54–60.Google Scholar

  • Rosario, R.; Mutharasan, R. Nucleic acid electrochemical and electromechanical biosensors: a review of techniques and developments. Rev. Anal. Chem. 2014, 33, 213.Google Scholar

  • Rusling, J. F. Multiplexed electrochemical protein detection and translation to personalized cancer diagnostics. Anal. Chem. 2013, 85, 5304–5310.Google Scholar

  • Shi, R.; Sun, Y.-H.; Zhang, X.-H.; Chiang, V. L. In next-generation microRNA expression profiling technology: methods and protocols. Humana Press: Totowa, 2012; pp. 53–66.Google Scholar

  • Sontz, P. A.; Muren, N. B.; Barton, J. K. DNA charge transport for sensing and signaling. Acc. Chem. Res. 2012, 45, 1792–1800.Google Scholar

  • Stach, D.; Schmitz, O. J.; Stilgenbauer, S.; Benner, A.; Döhner, H.;Wiessler, M.; Lyko, F. Capillary electrophoretic analysis of genomic DNA methylation levels. Nucleic Acids Res. 2003, 31, E2.Google Scholar

  • Suzuki, H.; Maruyama, R.; Yamamoto, E.; Kai, M. DNA methylation and microRNA dysregulation in cancer. Mol. Oncol.2012, 6, 567–578.Google Scholar

  • Torrente-Rodriguez, R. M.; Campuzano, S.; Lopez-Hernandez, E.; Granados, R.; Sanchez-Puelles, J. M.; Pingarron, J. M. Direct determination of mir-21 in total RNA extracted from breast cancer samples using magnetosensing platforms and the p19 viral protein as detector bioreceptor. Electroanalysis 2014, 26, 2080–2087.Google Scholar

  • Torrente-Rodriguez, R. M.; Campuzano, S.; Lopez-Hernandez, E.; Montiel, V. R.-V.; Barderas, R.; Granados, R.; Sanchez-Puelles, J. M.; Pingarron, J. M. Simultaneous detection of two breast cancer-related miRNAs in tumor tissues using p19-based disposable amperometric magnetobiosensing platforms. Biosens. Bioelectron. 2015, 66, 385–391.Google Scholar

  • Tost, J.; Gut, I. G. DNA methylation analysis by pyrosequencing. Nat. Protoc. 2007, 2, 2265–2275.Google Scholar

  • Válóczi, A.; Hornyik, C.;Varga, N.; Burgyán, J.; Kauppinen, S.; Havelda, Z. Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res. 2004, 32, e175.CrossrefGoogle Scholar

  • Virginija, J.; Thomas, T. MicroRNA-21: From cancer to cardiovascular disease. Curr. Drug Targets 2010, 11, 926–935.Google Scholar

  • von Kaenel, T.; Huber, A. R. DNA methylation analysis. Swiss. Med Wkly. 2013, 143, 1–16.Google Scholar

  • Wang, J.; Cai, X. H.; Wang, J. Y.; Jonsson, C.; Palecek, E. Trace measurements of RNA by potentiometric stripping analysis at carbon paste electrodes. Anal. Chem. 1995, 67, 4065–4070.Google Scholar

  • Wang, P.; Han, P.; Dong, L.; Miao, X. Direct potential resolution and simultaneous detection of cytosine and 5-methylcytosine based on the construction of polypyrrole functionalized graphene nanowall interface. Electrochem. Commun. 2015, 61, 36–39.Google Scholar

  • Wang, Z.; Zhang, J.; Guo, Y.; Wu, X.; Yang, W.; Xu, L.; Chen, J.; Fu, F. A novel electrically magnetic-controllable electrochemical biosensor for the ultra sensitive and specific detection of attomolar level oral cancer-related microRNA. Biosens. Bioelectron. 2013, 45, 108–113.Google Scholar

  • Wu, H.; Liu, S.; Jiang, J.; Shen, G.; Yu, R. A sensitive electrochemical biosensor for detection of DNA methyltransferase activity by combining DNA methylation-sensitive cleavage and terminal transferase-mediated extension. Chem. Commun. 2012, 48, 6280–6282.Google Scholar

  • Wu, W.; Gong, P.; Li, J.; Yang, J.; Zhang, G.; Li, H.; Yang, Z.; Zhang, X. Simple and nonradioactive detection of microRNAs using digoxigenin (DIG)-labeled probes with high sensitivity. RNA 2014, 20, 580–584.Google Scholar

  • Xiong, Z. G.; Laird, P. W. COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res. 1997, 25, 2532–2534.Google Scholar

  • Yan, L. X.; Wu, Q. N.; Zhang, Y.; Li, Y. Y.; Liao, D. Z.; Hou, J. H.; Fu, J.; Zeng, M. S.; Yun, J. P.; Wu, Q. L.; Zeng, Y. X.; Shao, J. Y. Knockdown of miR-21 in human breast cancer cell lines inhibits proliferation, in vitro migration and in vivotumor growth. Breast Cancer Res. 2011, 13, 1–14.Google Scholar

  • Yin, H.; Zhou, Y.; Zhang, H.; Meng, X.; Ai, S. Electrochemical determination of microRNA-21 based on graphene, LNA integrated molecular beacon, AuNPs and biotin multifunctional bio bar codes and enzymatic assay system. Biosens. Bioelectron. 2012, 33, 247–253.Google Scholar

  • Zhang, J.; Wu, D.-Z.; Cai, S.-X.; Chen, M.; Xia, Y.-K.; Wu, F.; Chen, J.-H. An immobilization-free electrochemical impedance biosensor based on duplex-specific nuclease assisted target recycling for amplified detection of microRNA. Biosens. Bioelectron. 2016, 75, 452–457.Google Scholar

  • Zhang, L.; Wei, M.; Gao, C.; Wei, W.; Zhang, Y.; Liu, S. Label-free electrochemical detection of methyltransferase activity and inhibitor screening based on endonuclease HpaII and the deposition of polyaniline. Biosens. Bioelectron. 2015, 73, 188–194.Google Scholar

  • Zhao, J.-J.; Lin, J.; Yang, H.; Kong, W.; He, L.; Ma, X.; Coppola, D.; Cheng, J. Q. MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. J. Biol. Chem. 2008, 283, 31079–31086.Google Scholar

  • Zhu, C.; Ren, C.; Han, J.; Ding, Y.; Du, J.; Dai, N.; Dai, J.; Ma, H.; Hu, Z.; Shen, H.; Xu, Y.; Jin, G. A five-microRNA panel in plasma was identified as potential biomarker for early detection of gastric cancer. Br. J. Cancer 2014a, 110, 2291–2299.Google Scholar

  • Zhu, W.; Su, X.; Gao, X.; Dai, Z.; Zou, X. A label-free and PCR-free electrochemical assay for multiplexed microRNA profiles by ligase chain reaction coupling with quantum dots barcodes. Biosens. Bioelectron. 2014b, 53, 414–419.Google Scholar

About the article

Martin Bartosik

Martin Bartosik received his PhD in Biophysics at Masaryk University in Brno, Czech Republic, in 2012. He worked at the Institute of Biophysics (Brno), where he studied the behavior of nucleic acids and proteins on electrode surfaces. Currently, he works as a junior scientist at the Masaryk Memorial Cancer Institute (Brno), where he develops electrochemical bioassays for detection of various cancer biomarkers, including microRNAs or DNA methylation. His doctoral and postdoctoral stays include the Department of Nanoengineering at the University of California, San Diego, where he was engaged in the construction of DNA hybridization chips and arrays, and Departamento de Química Analítica at Universidad Complutense de Madrid, where he participated at the project of microRNA detection.

Roman Hrstka

Roman Hrstka received his PhD in Cellular and Molecular Biology at Masaryk University in Brno, Czech Republic, in 2005. Since 2001, he has been working at the Masaryk Memorial Cancer Institute in Brno. His work is focused predominately on the role of anterior gradient proteins in the biology of cancer cells. His doctoral and postdoctoral stays include Ninewells Hospital, University of Dundee, where he participated at the project focused on detection of p53 isoforms and CR UK, University of Edinburgh, where he contributed to the study of alternative transcription of DAPK-1. He also received EMBO fellowship at Institut de Génétique Moleculaire in Paris where he was engaged in the project dealing with regulation of p53 translation.

Received: 2016-06-20

Accepted: 2016-10-20

Published Online: 2016-12-21

Published in Print: 2017-03-01

Citation Information: Reviews in Analytical Chemistry, Volume 36, Issue 1, 20160022, ISSN (Online) 2191-0189, ISSN (Print) 0793-0135, DOI: https://doi.org/10.1515/revac-2016-0022.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Emil Paleček and Vlastimil Dorčák
Applied Materials Today, 2017, Volume 9, Page 434

Comments (0)

Please log in or register to comment.
Log in