Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in Chemical Engineering

Editor-in-Chief: Luss, Dan / Brauner, Neima

Editorial Board: Agar, David / Davis, Mark E. / Edgar, Thomas F. / Giorno, Lidietta / Joshi, J. B. / Khinast, Johannes / Kost, Joseph / Leal, L. Gary / Li, Jinghai / Mills, Patrick / Morbidelli, Massimo / Ng, Ka Ming / Schouten, Jaap C. / Seinfeld, John / Stitt, E. Hugh / Tronconi, Enrico / Vayenas, Constantinos G. / Zagoruiko, Andrey / Zondervan, Edwin

IMPACT FACTOR 2018: 4.200

CiteScore 2018: 4.96

SCImago Journal Rank (SJR) 2018: 1.016
Source Normalized Impact per Paper (SNIP) 2018: 1.572

See all formats and pricing
More options …
Volume 29, Issue 6


Polyphenylene sulfide (PPS): state of the art and applications

Ashok S. Rahate / Kailash Rambhau Nemade / Sandeep A. Waghuley
Published Online: 2013-09-21 | DOI: https://doi.org/10.1515/revce-2012-0021


Polyphenylene sulfide (PPS) is a versatile material that gives extruded and molded components the ability to meet exceptionally demanding criteria. This semicrystalline engineering thermoplastic has outstanding thermal stability, superior toughness, inherent flame resistance, and excellent chemical resistance. It also has high mechanical strength, impact resistance, and dimensional stability as well as good electrical properties. The present review outlines the synthesis methods, characterizations, and electrical and dielectric properties of PPS composite. Its structural and morphological characteristics, studied for advanced applications such as photovoltaic cells, gas sensors, and supercapacitors, are in prospect. In the composite phase, the electric and dielectric properties of PPS are found to be improved.

Keywords: polyphenylene sulfide; synthetic metal; transport properties


  • Akhtar S, White JL. Phase morphology and mechanical properties of blends of poly(p-phenylene sulfide) and polyamides. Polym Eng Sci 1992; 32: 690–698.CrossrefGoogle Scholar

  • Anagreha N, Dornb L, Krause CB. Low-pressure plasma pretreatment of polyphenylene sulfide (PPS) surfaces for adhesive bonding. Int J Adhes Adhes 2007; 28: 16–22.Google Scholar

  • Bertinelli F, Bizzarri PC, Casa CD, Saltini S. Poly(m-phenylene disulfide): antimony pentafluoride doping and infrared spectroscopy. J Polymer Sci Part B: Polymer Phys 1986; 24: 2197–2208.CrossrefGoogle Scholar

  • Brandy DG. Synthesis and exchange properties of sulfonated poly(phenylene sulfide) with alkali metal Ions in organic Solvents. J Appl Polym Sci 1981; 36: 231.Google Scholar

  • Brady DG. SME Conference on Fabricating Composites, June, 1985.Google Scholar

  • Brady DG, Murtha TP, Walker JH, Ma CC. Long-fiber-reinforced polyphenylene sulfide – a new dimension in toughness. SPE ANTEC Proc 1984; 42: 690.Google Scholar

  • Brochure R, Phillips C. The Woodlands, Texas. Available at: http://www.ryton.com. Accessed February, 2008.

  • Cambell RW, Edmonds JT. U.S. Patent 4038259 (1975). Chem Abstr 1977; 87: 1028.Google Scholar

  • Chance RR, Bredas JL, Silbey R. Bipolaron transport in doped conjugated polymers. Phys Rev B: Condens Matter 1984; 29: 4491–4495.CrossrefGoogle Scholar

  • Chen Z, Li T, Yang Y, Liu X, Lv R. Mechanical and tribological properties of PA/PPS blends. Wear 2004; 257: 696–707.CrossrefGoogle Scholar

  • Chung DDL. Materials for thermal conduction. Appl Therm Eng 2001; 21: 1593–1605.CrossrefGoogle Scholar

  • Davies DP, Adcock PL, Turpin M, Rowen SJ. Bipolar plate materials for solid polymer fuel cells. J Appl Electrochem 2000; 30: 101–105.CrossrefGoogle Scholar

  • De Andres A, Garcia-Hernandez M, Martinez JL, Prieto C. Low-temperature magnetoresistance in polycrystalline manganites: connectivity versus grain size. Appl Phys Lett 1999; 74: 3884–3887.CrossrefGoogle Scholar

  • Diez-Pascual AM, Guan J, Simard B, Gómez-Fatou MA. Poly(phenylene sulphide) and poly(ether ether ketone) composites reinforced with single-walled carbon nanotube buckypaper. Part I: Structure and thermal properties. Composites Part A 2012a; 43: 997–1006.CrossrefGoogle Scholar

  • Díez-Pascual AM, Guan J, Simard B, Gómez-Fatou MA. Poly(phenylene sulphide) and poly(ether ether ketone) composites reinforced with single-walled carbon nanotube buckypaper: II – Mechanical properties, electrical and thermal conductivity. Composites Part A 2012b; 43: 1007–1015.CrossrefGoogle Scholar

  • Edmonds JT, Hill HW. U.S. Patent 3354129 (1967). Chem Abstr 1968; 68: 13598.Google Scholar

  • Ehlers GF, Fisch KR, Powell WR. Thermal degradation of polymers with phenylene units in the chain. II. Sulfur-containing polyarylenes. J Polym Sci Part A-1 1969; 7: 2955–2967.Google Scholar

  • Elias HG. An introduction to plastics, 2nd ed., Weinheim: Wiley-VCH GmbH & Co. KGaA, 2003.Google Scholar

  • Elsenbaumer RL, Shacklette LW, Sowa JW, Baughman RH. Electrically conducting polyaromatic sulfides. Mol Cryst Liq Cryst 1982; 83: 229–238.CrossrefGoogle Scholar

  • Favaloro MR. High performance plastics. ACS Nano. 2012; 27: 9596–9605.Google Scholar

  • Filler TJ, Dobulis TB. U.S. patent application 20060177718 to General Motors Corp., August 10, 2006.Google Scholar

  • Fisher JE, Zhou W, Vavro J, Llaguno MC, Guthy C, Haggenmueller R, Casavant MJ, Walters DE, Smalley RE. Magnetically aligned single wall carbon nanotube films: preferred orientation and anisotropic transport properties. J Appl Phys 2003; 93: 2157–2163.CrossrefGoogle Scholar

  • Garbassi F, Po R. Engineering thermoplastics. In: John Wiley and Sons (2004), editor. Kirk-Othmer encyclopedia of chemical technology, Vol. 10, 5th ed., Hoboken, NJ: Wiley Interscience, 2005: 200–201.Google Scholar

  • Gaure A, Varma GD. Improved magnetotransport in LCMO-polymer (PPS) composite. Solid State Commun 2007; 144: 138–143.CrossrefGoogle Scholar

  • Geibel JF, Leland JE. Defining and comparing PPS types. Encycl Chem Technol 1996; 19: 904–908.Google Scholar

  • Goyal RK, Kadam A. Polyphenylene sulphide/graphite composites for EMI shielding applications. Adv Mater Lett 2010; 2: 143–147.CrossrefGoogle Scholar

  • Goyal RK, Kambale KR, Nene SS, Selukar BS, Arbuj S, Mulik UP. Fabrication, thermal and electrical properties of polyphenylene sulphide/copper composites. Mater Chem Phys 2011; 128: 114–120.CrossrefGoogle Scholar

  • Gurunathan K, VadivelMurugan A, Marimuthu R, Mulik UP, Amalnerkar DP. Electrochemically synthesised conducting polymeric materials for applications towards technology in electronics, optoelectronics and energy storage devices. Mater Chem Phys 1999; 61: 173–191.CrossrefGoogle Scholar

  • Han MS, Lee YK, Lee HS, Yun CH, Kim WN. Electrical, morphological and rheological properties of carbon nanotube composites with polyethylene and poly(phenylene sulfide) by melt mixing. Chem Eng Sci 2009; 64: 4649–4656.CrossrefGoogle Scholar

  • Handlovit CE. Preparation of poly(phenylene sulfide). Macromol Synth 1968; 3: 131.Google Scholar

  • Hay JN, Luck DA. The conformation of crystalline poly(phenylene sulphide). Polymer 2001; 42: 8297–8301.CrossrefGoogle Scholar

  • Heo SI, Yun JC, Oh KS, Han KS. Influence of particle size and shape on electrical and mechanical properties of graphite reinforced conductive polymer composites for the bipolar plate of PEM fuel cells. Adv Compos Mater 2006; 5: 115–126.CrossrefGoogle Scholar

  • Hickner A. New group of conducting polymers uncovered. Chem Eng News 1980; 58: 36–37.Google Scholar

  • Hill HW. Aromatic condensation polymers for membrane materials. J Ind Eng Chem Prod Res Dev 1979a; 18: 252–256.CrossrefGoogle Scholar

  • Hill HW. Polyphenylene sulfide: stability and long-term behavior. ACS Symp Ser 1979b; 95: 183–197.CrossrefGoogle Scholar

  • Hill R. A theory of the yielding and plastic flow of anisotropic metals. Proc. Roy. Soc. 1948; 193: 281–297.Google Scholar

  • Huang J, Baird DG, McGrath JE. Development of fuel cell bipolar plates from graphite filled wet-lay thermoplastic composite materials. J Power Sources 2005; 150: 110–119.CrossrefGoogle Scholar

  • Ishigure Y, Iijima S, Ito H, Ota T, Unuma H, Takahashi M, Hikichi Y, Suzuki HJ. Electrical and elastic properties of conductor-polymer composites. Mater Sci 1999; 34: 2979–2985.CrossrefGoogle Scholar

  • Joo J, Epstein AJ. Electromagnetic radiation shielding by intrinsically conducting polymers. Appl Phys Lett 2004; 65: 2278.Google Scholar

  • Kanade KG, Hawaldar RR, Pasricha R, Radhakrishnan S, Seth T, Mulik UP, Kale BB, Amalnerkar DP. Novel polymer-inorganic solid-state reaction for the synthesis of CdS nanocrystallites. Mater Lett 2005; 59: 554–559.CrossrefGoogle Scholar

  • Kispert LD, Files LA, Frommer JE, Shacklette LW, Chance RR. An EPR study of the reaction between poly(p-phenylene sulfide) and electron-acceptor dopants. J Chem Phys 1983; 78: 4858–4862.CrossrefGoogle Scholar

  • Koch M, Heitz W. Models and mechanism of the formation of poly(thio-1,4-phenylene). Makromol Chem 1983; 184: 779–792.Google Scholar

  • Lenz RW, Handlovits CE. Phenylene sulfide polymers. II. Structure of polymers obtained by the Macallum polymerization. J Polym Sci 1960; 43: 167–181.CrossrefGoogle Scholar

  • Lenze RW, Handlovits CE, Carrington WK. Phenylene sulfide polymers. I. Mechanism of the macallum polymerization. J Polym Sci 1959; 43: 333–358.CrossrefGoogle Scholar

  • Lenz RW, Handlovits CE, Smith HA. Phenylene sulfide polymers. III. The synthesis of linear polyphenylene sulfide. J Polym Sci 1962; 58: 351–367.CrossrefGoogle Scholar

  • Longo C, Savaris M, Zeni M, Brandalise RN, Grisa AMC. Degradation study of polypropylene (PP) and bioriented polypropylene (BOPP) in the environment. Mater Res 2011; 14.CrossrefGoogle Scholar

  • Lovinger AJ, Davis DD. Electron microscopic investigation of the morphology of a melt crystallized polyaryletherketone. J Appl Phys 1985; 58: 2843–2854.CrossrefGoogle Scholar

  • Lucas EF, Soares BG, Monteriro E. Caracterização de polímeros. Rio de Janeiro: e-papers, 2001.Google Scholar

  • Macallum AD. A dry synthesis of aromatic sulfides: phenylene sulfide resins. J Org Chem 1949; 13: 154–159.Google Scholar

  • O’Connor JE, Lou AY, Brady DG. ASC Conf Compos Mater Oct. 1986.Google Scholar

  • Panwar V, Park JO, Park SH, Kumar S, Mehra RM. Electrical, dielectric, and electromagnetic shielding properties of polypropylene-graphite composites. J Appl Polym Sci 2010; 115: 1306–1310.CrossrefGoogle Scholar

  • Park JG, Smithyman J, Lin C-Y, Cooke A, Kismarahardja AW, Li S, Liang R, Brooks JS, Zhang C, Wang B. Effects of surfactants and alignment on the physical properties of single walled carbon nanotube buckypaper. J Appl Phys 2009; 106: 104310–104316.CrossrefGoogle Scholar

  • Pham GT, Park Y-B, Wang S, Liang Z, Wang B, Zhang C. Mechanical and electrical properties of polycarbonate nanotube buckypaper composite sheets. Nanotechnology 2008; 19: 325705–12.CrossrefPubMedGoogle Scholar

  • Piaggio P, Cuniberti C, Dellepiane G, Campani E, Gorini G, Masetti G, Novi M, Petrillo G. Vibrational spectra and assignment of poly-(p-phenylene sulfide) and its oligomers. Spectrosc Acta 1989; 45: 347–350.Google Scholar

  • Port AB, Still RH. Synthesis and characterization of poly(phenylene sulfide), poly(2-methylphenylene sulfide), and poly(2,6-dimethylphenylene sulfide). J Appl Polym Sci 1979; 24: 1145–1164.CrossrefGoogle Scholar

  • Qixian WU, Yongrong C, Zuowan Z. Synthesis and morphological structure of poly (phenylene sulfide amide). Chin J Polym Sci 1995; 13: 136–143.Google Scholar

  • Rahate AS, Nemade KR, Waghuley SA. Synthesis of poly(phenylene sulfide) through chemical route. Int J Basic Appl Res 2012; Special issue: 45–47.Google Scholar

  • Ramasubramaniam R, Chen J, Liu H. Homogeneous carbon nanotube/polymer composites for electrical applications. Appl Phys Lett 2003; 83: 2928.CrossrefGoogle Scholar

  • Sandler J, Shaffer MSP, Prasse T, Bauhofer W, Schulte K, Windle AH. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 1999; 40: 5967–5971. CrossrefGoogle Scholar

  • Shacklette LW, Elsenbaumer RL, Chance RR, Eckhardt H, Formmer JE, Baughman RH. Conducting complexes of polyphenylene sulfides. J Phys Chem 1981; 75: 1919.CrossrefGoogle Scholar

  • Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J Chem Soc D 1977; 18: 578–580.Google Scholar

  • Singh NK, Kumar P, Kumar H, Rai R. Structural and dielectric properties of Dy2(Ba0.5R0.5)2O7 (R=W, Mo) ceramics. Adv Mater Lett 2010; 1: 79–82.Google Scholar

  • Smith HA, Handovit CE. Phenylene sulphide polymer ASD-TDR 62-322. Part I and II. Dow Chemical Company, 1962.Google Scholar

  • Son W, Kim SH, Park S. Synthesis and exchange properties of sulfonated poly(phenylene sulfide) with alkali metal ions in organic solvents. Bull Korean Chem Soc 2001; 22: 53–58.Google Scholar

  • Steijkal J, Gilbert RG. Polyaniline. Preparation of a conducting polymer. J Pure Appl Chem 2002; 74: 857–867.CrossrefGoogle Scholar

  • Tabor BJ. The crystal structure of poly-p-phenylene sulphide. Eur Polym J 1971; 20: 2541–2548.Google Scholar

  • Tanthapanichakoon W, Furuuchia M, Nitta K, Hata M, Otania SEY. Degradation of semi-crystalline PPS bag-filter materials by NO and O2 at high temperature. Polym Degrad Stabil 2006; 91: 1637.Google Scholar

  • Tsuchida E, Yamamoto K, Nishide H, Yoshida S. Poly(p-phenylene sulfide)-yielding polymerization of diphenyl disulfide by S-S bond cleavage with a Lewis acid. Macromolecules 1987; 20: 2030–2031.CrossrefGoogle Scholar

  • Tsuchida E, Yamamoto K, Nishide H, Yoshida S, Jikei M. Preparation of poly(phenylene sulfide)s: polymerization of aromatic disulfides with Lewis acids. Macromolecules 1990; 23: 1136.Google Scholar

  • Tsunawaki S, Prince CC. Preparation of poly(arylene sulfides). J Polym Sci A 1964; 2: 1511–1522.Google Scholar

  • Vardeny Z, Ehrenfreund E, Brafman O, Horovitz B. Amplitude and phase modes in transpolyacetylene: resonant Raman scattering and induced infrared activity. Phys Rev Lett 1985; 54: 1535–1553.Google Scholar

  • Wegner G. Contemporary topics in polymer science. New York: Plenum Press, 1984.Google Scholar

  • Wu T, Zheng YP, Huang ZH. Processing and structure of open-celled amorphous metal foams. J Mater Sci Eng 2005; 23: 196–199.Google Scholar

  • XiaoChun G, GuiFang D, Yong Q. Electrical bistable characteristics of poly(phenylenesulfide) thin film deposited by thermal evaporation. Chinese Sci Bull 2007; 52: 732–735.Google Scholar

  • Xia L, Li A, Wang W, Yin Q, Lin H, Zhao Y. Effects of resin content and preparing conditions on the properties of polyphenylene sulfide resin/graphite composite for bipolar plate. J Power Sources 2008; 178: 363–367.CrossrefGoogle Scholar

  • Yamamoto K, Yoshida S, Nishide H, Tsuchida E. Branched-chain fatty acids. X. Synthesis of acids with branching methyl groups near the carboxyl. Bull Chem Soc Jpn 1989; 62: 3655–3660.CrossrefGoogle Scholar

  • Yang Y, Dudley D. Studies on electromagnetic interference shielding characteristics of metal nanoparticle- and carbon nanostructure-filled polymer composites in the Ku-band frequency. Micro Nano Lett 2007; 2: 85–89.CrossrefGoogle Scholar

  • Yu J, Asai S, Sumita M. Time-resolved FTIR study of crystallization behavior of melt-crystallized poly(phenylene sulfide). J Macromol Sci Part B: Phys 2000; 39: 279–296.CrossrefGoogle Scholar

  • Zhang CS, Ni Q, Fu S, Kurashiki K. Electromagnetic interference shielding effect of nanocomposites with carbon nanotube and shape memory polymer. Compos Sci Technol 2007; 67: 2973–2980.CrossrefGoogle Scholar

  • Zhao YF, Xiao M, Wang SJ, Ge XC, Meng YZ. Preparation and properties of electrically conductive PPS/expanded graphite nanocomposites. Compos Sci Technol 2007; 67: 2528–2534.CrossrefGoogle Scholar

About the article

Ashok S. Rahate

Ashok S. Rahate received his MSc degree in Physics from Rashtrasant Tukadoji Maharaj Nagpur University, India, in 1983. He worked as Associate Professor and head in the Department of Applied Physics in Babasaheb Naik College of Engineering, Pusad, India. He is currently pursuing a PhD in Physics at the Sant Gadge Baba Amravati University, Amravati, India under the direction of Dr. S. A. Waghuley. His current research is on conducting polymers.

Kailash Rambhau Nemade

Kailash Rambhau Nemade received MSc degree in physics from Sant Gadge Baba Amravati University, Amravati, India, in 2011. He had qualified the PAT eligibility tests required for research fellowship and has received M.N. Kale Scholarship. He is currently pursuing a PhD in physics (materials science) at the Sant Gadge Baba Amravati University under the direction of Dr. S.A. Waghuley. His current research topics are graphene composites, quantum dots, and gas sensors.

Sandeep A. Waghuley

Sandeep Anandrao Waghuley received a PhD in Physics from Sant Gadge Baba Amravati University, Amravati, India, in 2008. He worked as Assistant Professor in Physics in the Department of Physics, Sant Gadge Baba Amravati University. He has been actively engaged in research since 2002. He is a member of many national/international professional bodies. Since 2012, he has been coordinator of the Fabrication Laboratory (FABLAB) of the same university. He has published more than 85 refereed journal articles and book chapters in the fields of Physics, Chemistry, and Materials Science. His current research interests include conducting polymers, nanocomposites, sensors, conducting glasses, thin films, quantum dots, carbon-based materials, and acoustical properties of nanofluids.

Corresponding author: Sandeep A. Waghuley, Department of Physics, Sant Gadge Baba Amravati University, Amravati 444 602, India, e-mail:

Received: 2012-11-08

Accepted: 2013-08-09

Published Online: 2013-09-21

Published in Print: 2013-12-01

Citation Information: Reviews in Chemical Engineering, Volume 29, Issue 6, Pages 471–489, ISSN (Online) 2191-0235, ISSN (Print) 0167-8299, DOI: https://doi.org/10.1515/revce-2012-0021.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Victor B. Ivanov, Vladimir V. Bitt, Elena V. Solina, and Alexander V. Samoryadov
Polymers, 2019, Volume 11, Number 10, Page 1579
Chen Zhang, Kenta Yamanaka, Huakang Bian, and Akihiko Chiba
npj Materials Degradation, 2019, Volume 3, Number 1
Yu Nakamura, Yoshihiro Miyata, Keisuke Uchida, Suguru Yoshida, and Takamitsu Hosoya
Organic Letters, 2019, Volume 21, Number 13, Page 5252
Junchen Liu, Jiaxiang Qin, Yudi Mo, Shuanjin Wang, Dongmei Han, Min Xiao, and Yuezhong Meng
Journal of The Electrochemical Society, 2019, Volume 166, Number 8, Page A1644
Chongjiang Lv, Huaiyuan Wang, Zhanjian Liu, Chijia Wang, Wenbo Zhang, Meiling Li, and Yanji Zhu
Progress in Organic Coatings, 2019, Volume 134, Page 1
Kazuya Kanemoto, Suguru Yoshida, and Takamitsu Hosoya
Organic Letters, 2019, Volume 21, Number 9, Page 3172
Gang Zhou, Jianfei Ding, Jian Sun, and Yuying Wang
Journal of Applied Polymer Science, 2019, Volume 136, Number 31, Page 47819
Zuo-Ze Fan, Hong-Wei He, Xu Yan, Ren-Hai Zhao, Yun-Ze Long, and Xin Ning
Polymers, 2019, Volume 11, Number 3, Page 530
Xiaoping Yu, Huan Wang, Yafei Guo, and Tianlong Deng
Journal of Solution Chemistry, 2019, Volume 48, Number 4, Page 515
I. V. Volgin, S. V. Larin, and S. V. Lyulin
Polymer Science, Series C, 2018, Volume 60, Number S1, Page 122
Tsubasa Matsuzawa, Suguru Yoshida, and Takamitsu Hosoya
Tetrahedron Letters, 2018
Marvin J. Böhm, Christopher Golz, Isabelle Rüter, and Manuel Alcarazo
Chemistry - A European Journal, 2018
V. V. Tcherdyntsev, L. K. Olifirov, S. D. Kaloshkin, M. Yu. Zadorozhnyy, and V. D. Danilov
Journal of Materials Science, 2018
Yao Liu, Guohua Fan, Yunpeng Qu, Peitao Xie, Zhongyang Wang, Zidong Zhang, Runhua Fan, and Xiaowei Yin
Journal of Materials Science: Materials in Electronics, 2018
Dan Luo, Meng Chen, Jing Xu, Xianze Yin, Jing Wu, Shaohua Chen, Luoxin Wang, and Hua Wang
Composites Science and Technology, 2018
Kazuya Kanemoto, Suguru Yoshida, and Takamitsu Hosoya
Chemistry Letters, 2018, Volume 47, Number 1, Page 85
Myounguk Kim, Jungmin Lee, Hyun-gyoo Roh, Dahyun Kim, Juhee Byeon, and Jongshin Park
Polymers, 2017, Volume 9, Number 10, Page 460
Kazuya Kanemoto, Yasuyuki Sugimura, Shigeomi Shimizu, Suguru Yoshida, and Takamitsu Hosoya
Chem. Commun., 2017
Bin Liu, Chern-Hooi Lim, and GARRET MIYAKE
Journal of the American Chemical Society, 2017
Zhong Lian, Benjamin N. Bhawal, Peng Yu, and Bill Morandi
Science, 2017, Volume 356, Number 6342, Page 1059
Renbo Wei, Fei Jin, Cheng Long, and Xiaobo Liu
High Performance Polymers, 2017, Volume 29, Number 4, Page 441
Yan Jing, Yanliang Liang, Saman Gheytani, and Yan Yao
Nano Energy, 2017, Volume 37, Page 46
Estefanía Sierra, Alfonso Miranda-Molina, Edmundo Castillo, Hailin Hu, and Marcela Ayala
Journal of Chemical Technology & Biotechnology, 2017
Tae Jong Yoo, Eun-Byeol Hwang, and Young Gyu Jeong
Composites Part A: Applied Science and Manufacturing, 2016, Volume 91, Page 77
Dustin Veazey, Tim Hsu, and Enrique D. Gomez
Journal of Applied Polymer Science, 2017, Volume 134, Number 6
Niklas B. Heine and Armido Studer
Macromolecular Rapid Communications, 2016, Volume 37, Number 18, Page 1494
Niklas Zwettler, Jakob S. Engbæk, Rasmus Lundsgaard, Irena Paranowska, Tina E. Nielsen, Stuart Clyens, Jens Christiansen, and Morten Ø. Andersen
Reactive and Functional Polymers, 2015, Volume 88, Page 47

Comments (0)

Please log in or register to comment.
Log in