Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in Chemical Engineering

Editor-in-Chief: Luss, Dan / Brauner, Neima

Editorial Board: Agar, David / Davis, Mark E. / Edgar, Thomas F. / Giorno, Lidietta / Joshi, J. B. / Khinast, Johannes / Kost, Joseph / Leal, L. Gary / Li, Jinghai / Mills, Patrick / Morbidelli, Massimo / Ng, Ka Ming / Schouten, Jaap C. / Seinfeld, John / Stitt, E. Hugh / Tronconi, Enrico / Vayenas, Constantinos G. / Zagoruiko, Andrey


IMPACT FACTOR 2018: 4.200

CiteScore 2018: 4.96

SCImago Journal Rank (SJR) 2018: 1.016
Source Normalized Impact per Paper (SNIP) 2018: 1.572

Online
ISSN
2191-0235
See all formats and pricing
More options …
Volume 29, Issue 6

Issues

Present technologies for hydrogen sulfide removal from gaseous mixtures

Ahmed Daham Wiheeb
  • School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
  • Department of Chemical Engineering, College of Engineering, University of Tikrit, Salah ad Din, Iraq
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ili Khairunnisa Shamsudin
  • School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohd Azmier Ahmad
  • School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Muhamad Nazri Murat
  • School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jinsoo Kim
  • Corresponding author
  • Department of Chemical Engineering, Kyung Hee University, Global campus, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohd Roslee Othman
  • Corresponding author
  • School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
  • Department of Chemical Engineering, Kyung Hee University, Global campus, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-09-17 | DOI: https://doi.org/10.1515/revce-2013-0017

Abstract

Natural gas, refinery gas, and coal gas contain acid gases such as hydrogen sulfide (H2S) and carbon dioxide that must be removed from the gas stream due to the toxicity of H2S and to prevent corrosion to piping and production facility caused by the acid gases. In this article, current technologies for the acid gas removal are selected and reviewed. The review includes absorption, adsorption, conversion of H2S into elemental sulfur, and membrane reactor for H2S decomposition and desulfurization. Recently, hollow fiber membrane contactor has been in the limelight of research in H2S absorption from gaseous mixture due to its potential to overcome problems such as foaming and loading. Recent trends on Claus tail gas cleanup technologies are highlighted due to the recent progress in membrane technology. The article also suggests current research on the acid gas removal technology using catalytic membrane reactor. The interest on finding suitable active component and support and studying the membrane structure for enhanced removal of acid gases is likely to be rekindled in the near future.

Keywords: cleaner production; corrosion; energy; membrane; natural gas; separation

References

  • Abbasian J, Slimane RB. A regenerable copper-based sorbent for H2S removal from coal gases. Ind Eng Chem Res 1998; 37: 2775–2782.CrossrefGoogle Scholar

  • Abbasian J, Rehmat A, Leppin D, Banerjee DD. An advanced coal gasification desulfurization process. Chicago, IL: Institute of Gas Technology, 1990.Google Scholar

  • Adib F, Bagreev A, Bandosz TJ. Effect of pH and surface chemistry on the mechanism of H2S removal by activated carbons. J Colloid Interf Sci 1999; 216: 360–369.CrossrefGoogle Scholar

  • Adib F, Bagreev A, Bandosz TJ. Adsorption/oxidation of hydrogen sulfide on nitrogen-containing activated carbons. Langmuir 2000; 16: 1980–1986.CrossrefGoogle Scholar

  • Akamatsu K, Nakane M, Sugawara T, Hattori T, Nakao SI. Development of a membrane reactor for decomposing hydrogen sulfide into hydrogen using a high-performance amorphous silica membrane. J Membr Sci 2008; 325: 16–19.CrossrefGoogle Scholar

  • Al-Marzouqi M, El-Naas M, Marzouk S, Abdullatif N. Modeling of chemical absorption of CO2 in membrane contactors. Sep Purif Technol 2008; 62: 499–506.Google Scholar

  • Alonso L, Palacios JM, García E, Moliner R. Characterization of Mn and Cu oxides as regenerable sorbents for hot coal gas desulfurization. Fuel Process Technol 2000; 62: 31–44.CrossrefGoogle Scholar

  • Atchariyawut S, Jiraratananon R, Wang R. Separation of CO2 from CH4 by using gas-liquid membrane contacting process. J Membr Sci 2007; 304: 163–172.Google Scholar

  • Baehr H. Gas purification by the IG alkacid process and sulfur recovery by the IG Clauss process. Refiner Natural Gas Manuf 1938; 17: 237.Google Scholar

  • Bagreev A, Bandosz TJ. Study of hydrogen sulfide adsorption on activated carbons using inverse gas chromatography at infinite dilution. J Phys Chem B 2000; 104: 8841–8847.CrossrefGoogle Scholar

  • Bagreev A, Bandosz TJ. A role of sodium hydroxide in the process of hydrogen sulfide adsorption/oxidation on caustic-impregnated activated carbons. Ind Eng Chem Res 2002; 41: 672–679.CrossrefGoogle Scholar

  • Bagreev A, Bandosz T. Carbonaceous materials for gas phase desulfurization: role of surface heterogeneity. Prepr Pap-Am Chem Soc Div Fuel Chem 2004; 49: 817–821.Google Scholar

  • Bagreev A, Adib F, Bandosz TJ. pH of activated carbon surface as an indication of its suitability for H2S removal from moist air streams. Carbon 2001; 39: 1897–1905.CrossrefGoogle Scholar

  • Bagreev A, Katikaneni S, Parab S, Bandosz TJ. Desulfurization of digester gas: prediction of activated carbon bed performance at low concentrations of hydrogen sulfide. Catal Today 2005; 99: 329–337.CrossrefGoogle Scholar

  • Bandosz TJ. Effect of pore structure and surface chemistry of virgin activated carbons on removal of hydrogen sulfide. Carbon 1999; 37: 483–491.CrossrefGoogle Scholar

  • Bandosz TJ. Activated carbon surfaces in environmental remediation. New York: Academic Press, Elsevier Ltd., 2006.Google Scholar

  • Bandel G, Willing W. In the doxosulfreen Claus tail gas process-meeting enhanced sulfur emission standard. Sulphur 2000; 96.Google Scholar

  • Bansal RC, Donnet JB, Stoeckli F. Active carbon. M. Dekker, New York, 1988; 25–118.Google Scholar

  • Bashkova S, Baker FS, Wu X, Armstrong TR, Schwartz V. Activated carbon catalyst for selective oxidation of hydrogen sulphide: on the influence of pore structure, surface characteristics, and catalytically-active nitrogen. Carbon 2007; 45: 1354–1363.CrossrefGoogle Scholar

  • Bashkova S, Armstrong TR, Schwartz V. Selective catalytic oxidation of hydrogen sulfide on activated carbons impregnated with sodium hydroxide. Energ Fuel 2009; 23: 1674–1682.CrossrefGoogle Scholar

  • Basu R, Clausen E, Gaddy J. Biological conversion of hydrogen sulfide into elemental sulfur. Environ Prog 1996; 15: 234–238.CrossrefGoogle Scholar

  • Battersby S, Teixeira PW, Beltramini J, Duke MC, Rudolph V, Diniz da Costa JC. An analysis of the Peclet and Damkohler numbers for dehydrogenation reactions using molecular sieve silica (MSS) membrane reactors. Catal Today 2006; 116: 12–17.CrossrefGoogle Scholar

  • Berben PH, Geus JW. Catalyst for the selective oxidation of sulfur containing compounds to elemental sulfur. US Patent 1989; 4,818,740.Google Scholar

  • Bineesh KV, Kim DK, Kim DW, Cho HJ, Park DW. Selective catalytic oxidation of H2S to elemental sulfur over V2O5/Zr-pillared montmorillonite clay. Energy Environ Sci 2010; 3: 302–310.CrossrefGoogle Scholar

  • Bineesh KV, Kim DK, Kim MIL, Park DW. Selective catalytic oxidation of H2S over V2O5 supported on TiO2-pillared clay catalysts in the presence of water and ammonia. Appl Clay Sci 2011; 53: 204–211.Google Scholar

  • Boucif N, Favre E, Roizard D, Belloul M. Hollow fiber membrane contactor for hydrogen sulfide odor control. AIChE J 2008; 54: 122–131.CrossrefGoogle Scholar

  • Bontozoglou V, Karabelas AJ. Simultaneous absorption of H2S and CO2 in NaOH solutions: experimental and numerical study of the performance of a short-time contactor. Ind Eng Chem Res 1993; 32: 165–172.CrossrefGoogle Scholar

  • Borgwardt RH, Bruce KR, Blake J. An investigation of product-layer diffusivity for calcium oxide sulfation. Ind Eng Chem Res 1987; 26: 1993–1998.CrossrefGoogle Scholar

  • Brettschneider O, Thiele R, Faber R, Thielert H, Wozny G. Experimental investigation and simulation of the chemical absorption in a packed column for the system NH3-CO2-H2S-NaOH-H2O. Sep Purif Technol 2004; 39: 139–159.CrossrefGoogle Scholar

  • Cal M, Strickler B, Lizzio A. High temperature hydrogen sulfide adsorption on activated carbon: I. Effects of gas composition and metal addition. Carbon 2000; 38: 1757–1765.CrossrefGoogle Scholar

  • Chan PPY, Vanidjee K, Adesina AA, Rogers PL. Modeling and simulation of non-isothermal catalytic packed bed membrane reactor for H2S decomposition. Catal Today 2000; 63: 379–385.CrossrefGoogle Scholar

  • Cho DR, Kim SY, Park DW, Mutin PH. Selective catalytic oxidation of H2S using nonhydrolytic vanadia-titania xerogels. Korean J Chem Eng 2009; 26: 377–381.CrossrefGoogle Scholar

  • Chou CHSJ. Hydrogen sulfide: Human health aspects. Geneva: World Health Organization, 2003.Google Scholar

  • Chun SW, Jang JY, Park DW, Woo HC, Chung JS. Selective oxidation of H2S to elemental sulfur over TiO2/SiO2 catalysts. Appl Catal B Environ 1998; 16: 235–243.Google Scholar

  • Claus CF. British Patent 1883; 5958.Google Scholar

  • DeBerry D. Chemical evolution of liquid redox processes. Environ Prog 1997; 16: 193–199.CrossrefGoogle Scholar

  • Delgado JA, Uguina MA, Sotelo JL, Águeda VI, Sanz A. Simulation of CO2 absorption into aqueous DEA using a hollow fiber membrane contactor: evaluation of contactor performance. Chem Eng J 2009; 152: 396–405.CrossrefGoogle Scholar

  • Dindore VY, Brilman DWF, Versteeg GF. Modelling of cross-flow membrane contactors: mass transfer with chemical reactions. J Membr Sci 2005; 255: 275–289.Google Scholar

  • Dolan MD, Ilyushechkin AY, McLennan KG, Sharma SD. Sulfur removal from coal-derived syngas: thermodynamic considerations and review. Asia Pac J Chem Eng 2012; 7: 1–13.CrossrefGoogle Scholar

  • Dubois L, Thomas D. Comparison of various alkaline solutions for H2S/CO2 selective absorption applied to biogas purification. Chem Eng Technol 2010; 33: 1601–1609.CrossrefGoogle Scholar

  • Edlund D. A membrane reactor for H2S decomposition. USDOE Morgantown Energy Technology Center, West Virginia (United States), 1996. In proceed. Advanced coal-fired power systems review meeting.Google Scholar

  • Edlund DJ, Pledger WA. Catalytic platinum-based membrane reactor for removal of H2S from natural gas streams. J Membr Sci 1994; 94: 111–119.CrossrefGoogle Scholar

  • Eow JS. Recovery of sulfur from sour acid gas: a review of the technology. Environ Prog 2002; 21: 143–162.CrossrefGoogle Scholar

  • Faiz R, Al-Marzouqi M. Mathematical modeling for the simultaneous absorption of CO2 and H2S using MEA in hollow fiber membrane contactors. J Membr Sci 2009; 342: 269–278.Google Scholar

  • Faiz R, Al-Marzouqi M. H2S absorption via carbonate solution in membrane contactors: Effect of species concentrations. J Membr Sci 2010; 350: 200–210.CrossrefGoogle Scholar

  • Faiz R, Al-Marzouqi M. Insights on natural gas purification: Simultaneous absorption of CO2 and H2S using membrane contactors. Sep Purif Technol 2011; 76: 351–361.CrossrefGoogle Scholar

  • Feng W, Kwon S, Borguet E, Vidic R. Adsorption of hydrogen sulfide onto activated carbon fibers: effect of pore structure and surface chemistry. Environ Sci Technol 2005; 39: 9744–9749.PubMedCrossrefGoogle Scholar

  • Fenouil LA, Lynn S. Study of calcium-based sorbents for high-temperature H2S removal. 3. Comparison of calcium-based sorbents for coal gas desulfurization. Ind Eng Chem Res 1995; 34: 2343–2348.CrossrefGoogle Scholar

  • Franken A, Nolten J, Mulder M, Bargeman D, Smolders C. Wetting criteria for the applicability of membrane distillation. J Membr Sci 1987; 33: 315–328.CrossrefGoogle Scholar

  • Gabelman A, Hwang ST. Hollow fiber membrane contactors. J Membr Sci 1999; 159: 61–106.CrossrefGoogle Scholar

  • Garcia-Arriaga V, Alvarez-Ramirez J, Amaya M, Sosa E. H2S and O2 influence on the corrosion of carbon steel immersed in a solution containing 3 M diethanolamine. Corros Sci 2010; 52: 2268–2279.CrossrefGoogle Scholar

  • Gasper-Galvin LD, Atimtay AT, Gupta RP. Zeolite-supported metal oxide sorbents for hot-gas desulfurization. Ind Eng Chem Res 1998; 37: 4157–4166.CrossrefGoogle Scholar

  • George Z. Effect of catalyst basicity for COS-SO2 and COS hydrolysis reactions. J Catal 1974; 35: 218–224.CrossrefGoogle Scholar

  • Godini HR, Mowla D. Selectivity study of H2S and CO2 absorption from gaseous mixtures by MEA in packed beds. Chem Eng Res Des 2008; 86: 401–409.CrossrefGoogle Scholar

  • Govind R, Atnoor D. Development of a composite palladium membrane for selective hydrogen separation at high temperature. Ind Eng Chem Res 1991; 30: 591–594.CrossrefGoogle Scholar

  • Graham JR, Cheng JY. Activated carbon for odor control and method for making same. US Patent 2005. 6,858,192.Google Scholar

  • Gupta PK, Turk BS, Vierheilig AA. Desulfurization sorbents for transport-bed application, in: Advanced Coal-Based Power and Environmental Systems ‘98 Conference,” Morgantown, WV, USA, July 21–23, 1998.Google Scholar

  • Hawboldt K, Monnery W, Svrcek W. New experimental data and kinetic rate expression for H2S pyrolysis and re-association. Chem Eng Sci 2000; 55: 957–966.CrossrefGoogle Scholar

  • Heguy DL, Nagl GJ. Consider optimized iron-redox processes to remove sulfur. Hydrocarb Process 2003; 82: 53–57.Google Scholar

  • Hendrickson RG, Chang A, Hamilton RJ. Co-worker fatalities from hydrogen sulfide. Am J Ind Med 2004; 45: 346–350.CrossrefPubMedGoogle Scholar

  • Hua GX, McManus D, Woollins JD. The evolution, chemistry and applications of homogeneous liquid redox sulfur recovery techniques. Comment Inorg Chem 2001; 22: 327–351.CrossrefGoogle Scholar

  • Itoh N. A membrane reactor using palladium. AlChE J 1987; 33: 1576–1578.CrossrefGoogle Scholar

  • Itoh N, Tamura E, Hara S, Takahashi T, Shono A, Satoh K, Namba T. Hydrogen recovery from cyclohexane as a chemical hydrogen carrier using a palladium membrane reactor. Catal Today 2003; 82: 119–125.CrossrefGoogle Scholar

  • Jalan V, Ryu J. Continuous sulfur removal process. US Patent 1994; 5,306,476.Google Scholar

  • Jefferson B, Nazareno C, Georgaki S, Gostelow P, Stuetz RM, Longhurst P, Robinson T. Membrane gas absorbers for H2S removal, design, operation and technology integration into existing odour treatment strategies. Environ Technol 2005; 26: 793–804.PubMedCrossrefGoogle Scholar

  • Jensen AB, Webb C. Treatment of H2S-containing gases: A review of microbiological alternatives. Enzyme Microb Technol 1995; 17: 2–10.CrossrefGoogle Scholar

  • Jose AR, Amitesh M. Adsorption and decomposition of H2S on MgO(100), NiMgO(100), and ZnO(0001) surfaces: a first-principles density functional study. J Phys Chem B 2000; 104: 3630–3638.Google Scholar

  • Jun HK, Lee TJ, Ryu SO, Kim JC. A study of Zn-Ti-based H2S removal sorbents promoted with cobalt oxides. Ind Eng Chem Res 2001; 40: 3547–3556.CrossrefGoogle Scholar

  • Kaloidas VE, Papayannakos NG. Kinetics of thermal, non-catalytic decomposition of hydrogen sulphide. Chem Eng Sci 1989; 44: 2493.CrossrefGoogle Scholar

  • Kameyama T, Dokiya M, Fujishige M, Yokokawa H, Fukuda K. Production of hydrogen from hydrogen sulfide by means of selective diffusion membranes. Int J Hydrogen Energ 1983; 8: 5–13.CrossrefGoogle Scholar

  • Keller N, Pham-Huu C, Crouzet C, Ledoux MJ, Savin-Poncet S, Nougayrede JB, Bousquet J. Direct oxidation of H2S into S: new catalysts and processes based on SiC support. Catal Today 1999; 53: 535–542.CrossrefGoogle Scholar

  • Keller N, Pham-Huu C, Ledoux MJ. Continuous process for selective oxidation of H2S over SiC-supported iron catalysts into elemental sulfur above its dew point. Appl Catal A Gen 2001; 217: 205–217.CrossrefGoogle Scholar

  • Kim BS, Harriott P. Critical entry pressure for liquids in hydrophobic membranes. J Colloid Interf Sci 1987; 115: 1–8.CrossrefGoogle Scholar

  • Ko TH, Chu H, Chaung LK, Tseng TK. High temperature removal of hydrogen sulfide using an N-150 sorbent. J Hazard Mater 2004; 114: 145–152.Google Scholar

  • Ko TH, Chu H, Chaung L. The sorption of hydrogen sulfide from hot syngas by metal oxides over supports. Chemosphere 2005; 58: 467–474.CrossrefPubMedGoogle Scholar

  • Konshenko E, Balaev A, Ismagilov F, Spivak S, Safin R. Direct catalytic oxidation of hydrogen sulfide. Chem Tech Fuels Oil 2001; 37: 212–218.CrossrefGoogle Scholar

  • Lagas JA, Borboom J, Berben PH, Geus JW. A process for recovering sulfur from sulfur-containing gases. European Patent 1988; 0,242,006.Google Scholar

  • Lampert J. Selective catalytic oxidation: a new catalytic approach to the desulfurization of natural gas and liquid petroleum gas for fuel cell reformer applications. J Power Sources 2004; 131: 27–34.CrossrefGoogle Scholar

  • Landau M, Molyneux A, Houghton R. In Laboratory and plant evaluation of catalysts for sulfur recovery from lean H2S gas streams. London, UK: Symp. Ser. No. 27, Institution of Chemical Engineers, 1968: 228.Google Scholar

  • Laperdrix E, Justin I, Costentin G, Saur O, Lavalley J, Aboulayt A, Ray J, Nedez C. Comparative study of CS2 hydrolysis catalyzed by alumina and titania. Appl Catal B Environ 1998; 17: 167–173.CrossrefGoogle Scholar

  • Laperdrix E, Sahibed-dine A, Costentin G, Bensitel M, Lavalley JC. Evidence of the reverse Claus reaction on metal oxides: influence of their acid-base properties. Appl Catal B Environ 2000; 27: 137–142.CrossrefGoogle Scholar

  • Ledoux MJ, Pham-Huu C, Keller N, Nougayrède JB, Savin-Poncet S, Bousquet J. Selective oxidation of H2S in Claus tail-gas over SiC supported NiS2 catalyst. Catal Today 2000; 61: 157–163.CrossrefGoogle Scholar

  • Lee EK, Jung KD, Joo OS, Shul YG. Selective oxidation of hydrogen sulfide to elemental sulfur with Fe/MgO catalysts in a slurry reactor. B Kor Chem Soc 2005a; 26: 281–284.Google Scholar

  • Lee JD, Jun JH, Park NK, Ryu SO, Lee TJ. A study on selective oxidation of hydrogen sulfide over zeolite-NaX and-KX catalysts. Korean J Chem Eng 2005b; 22: 36–41.CrossrefGoogle Scholar

  • Lee JD, Han GB, Park NK, Ryu SO, Lee TJ. The selective oxidation of H2S on V2O5/zeolite-X catalysts in an IGCC system. J Ind Eng Chem 2006; 12: 80–85.Google Scholar

  • Leon CAL, In LRR, Thrower PA. Chemistry and physics of carbon. New York, 1992; 24: 213.Google Scholar

  • Li JL, Chen BH. Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors. Sep Purif Technol 2005; 41: 109–122.CrossrefGoogle Scholar

  • Li K, Wang D, Koe CC, Teo WK. Use of asymmetric hollow fibre modules for elimination of H2S from gas streams via a membrane absorption method. Chem Eng Sci 1998; 53: 1111–1119.CrossrefGoogle Scholar

  • Li K, Kong JF, Wang D, Teo WK. Tailor-made asymmetric PVDF hollow fibers for soluble gas removal. AIChE J 1999; 45: 1211–1219.CrossrefGoogle Scholar

  • Li K, Kong J, Tan X. Design of hollow fibre membrane modules for soluble gas removal. Chem Eng Sci 2000; 55: 5579–5588.CrossrefGoogle Scholar

  • Lu JG, Zheng YF, He DL. Selective absorption of H2S from gas mixtures into aqueous solutions of blended amines of methyldiethanolamine and 2-tertiarybutylamino-2-ethoxyethanol in a packed column. Sep Purif Technol 2006; 52: 209–217.CrossrefGoogle Scholar

  • Lu JG, Zheng YF, Cheng MD. Wetting mechanism in mass transfer process of hydrophobic membrane gas absorption. J Membr Sci 2008; 308: 180–190.Google Scholar

  • Lu Y, Yu X, Tu ST, Yan J, Dahlquist E. Wetting of polypropylene hollow fiber membrane contactors. J Membr Sci 2010; 362: 444–452.Google Scholar

  • Ma G, Yan H, Shi J, Zong X, Lei Z, Li C. Direct splitting of H2S into H2 and S on CdS-based photocatalyst under visible light irradiation. J Catal 2008; 260: 134–140.CrossrefGoogle Scholar

  • Malek A, Li K, Teo W. Modeling of microporous hollow fiber membrane modules operated under partially wetted conditions. Ind Eng Chem Res 1997; 36: 784–793.CrossrefGoogle Scholar

  • Mamrosh D, Beitler C, Fisher K. Consider improved scrubbing designs for acid gases: Better application of process chemistry enables efficient sulfur abatement. Hydrocarb Process 2008; 69–74.Google Scholar

  • Manahan S. Fundamentals of aquatic chemistry. Environmental chemistry. 6th edition. Boca Raton, FL: CRC Press, 1994: 47–86.Google Scholar

  • Mandal B, Bandyopadhyay S. Simultaneous absorption of carbon dioxide and hydrogen sulfide into aqueous blends of 2-amino-2-methyl-1-propanol and diethanolamine. Chem Eng Sci 2005; 60: 6438–6451.CrossrefGoogle Scholar

  • Mansourizadeh A, Ismail AF. Hollow fiber gas-liquid membrane contactors for acid gas capture: a review. J Hazard Mater 2009; 171: 38–53.CrossrefPubMedGoogle Scholar

  • Mansourizadeh A, Ismail A, Matsuura T. Effect of operating conditions on the physical and chemical CO2 absorption through the PVDF hollow fiber membrane contactor. J Membr Sci 2010; 353: 192–200.Google Scholar

  • Marcano JGS, Tsotsis TT, Wiley J. Catalytic membranes and membrane reactors. Weimheim: Wiley-VCH, 2002.Google Scholar

  • Mavroudi M, Kaldis SP, Sakellaropoulos GP. A study of mass transfer resistance in membrane gas-liquid contacting processes. J Membr Sci 2006; 272: 103–115.CrossrefGoogle Scholar

  • Mojtahedi W, Abbasian J. H2S removal from coal gas at elevated temperature and pressure in fluidized bed with zinc titanate sorbents. 1. Cyclic tests. Energ Fuel 1995; 9: 429–434.Google Scholar

  • Monnery WD, Svrcek WY, Behie LA. Modelling the modified Claus process reaction furnace and the implications on plant design and recovery. Can J Chem Eng 1993; 71: 711–724.CrossrefGoogle Scholar

  • Monnery W, Hawboldt K, Pollock A, Svrcek W. New experimental data and kinetic rate expression for the Claus reaction. Chem Eng Sci 2000; 55: 5141–5148.CrossrefGoogle Scholar

  • Mora RL. Sulphur condensation influence in Claus catalyst performance. J Hazard Mater 2000; 79: 103–115.CrossrefPubMedGoogle Scholar

  • Nasato LV, Karan K, Mehrotra AK, Behie LA. Modeling reaction quench times in the waste heat boiler of a Claus plant. Ind Eng Chem Res 1994; 33: 7–13.CrossrefGoogle Scholar

  • Neomagus H, van Swaaij W, Versteeg G. The catalytic oxidation of H2S in a stainless steel membrane reactor with separate feed of reactants. J Membr Sci 1998; 148: 147–160.CrossrefGoogle Scholar

  • Nguyen TD, Bandosz TJ. Activated carbons with metal containing bentonite binders as adsorbents of hydrogen sulfide. Carbon 2005; 43: 359–367.CrossrefGoogle Scholar

  • Nguyen P, Nhut JM, Edouard D, Pham C, Ledoux MJ, Pham-Huu C. Fe2O3/β-SiC: a new high efficient catalyst for the selective oxidation of H2S into elemental sulfur. Catal Today 2009; 141: 397–402.CrossrefGoogle Scholar

  • Ni JQ, Heber AJ, Diehl CA, Lim TL. Ammonia, hydrogen sulfide and carbon dioxide release from pig manure in under-floor deep pits. J Agric Eng Res 2000; 77: 53–66.CrossrefGoogle Scholar

  • Nomura M, Seshimo M, Aida H, Nakatani K, Gopalakrishnan S, Sugawara T, Ishikawa T, Kawamura M, Nakao S. Preparation of a catalyst composite silica membrane reactor for steam reforming reaction by using a counterdiffusion CVD method. Ind Eng Chem Res 2006; 45: 3950–3954.CrossrefGoogle Scholar

  • Ohashi H, Ohya H, Aihara M, Negishi Y, Semenova SI. Hydrogen production from hydrogen sulfide using membrane reactor integrated with porous membrane having thermal and corrosion resistance. J Membr Sci 1998; 146: 39–52.CrossrefGoogle Scholar

  • Ohashi H, Ohya H, Aihara M, Takeuchi T, Negishi Y, Fan J, Semenova SI. Analysis of a two-stage membrane reactor integrated with porous membrane having Knudsen diffusion characteristics for the thermal decomposition of hydrogen sulfide. J Membr Sci 2000; 166: 239–247.CrossrefGoogle Scholar

  • Paik SC, Chung JS. Selective catalytic reduction of sulfur dioxide with hydrogen to elemental sulfur over Co-Mo/Al2O3. Appl Catal B Environ 1995; 5: 233–243.CrossrefGoogle Scholar

  • Park DW, Park BK, Park DK, Woo HC. Vanadium-antimony mixed oxide catalysts for the selective oxidation of H2S containing excess water and ammonia. Appl Catal A Gen 2002; 223: 215–224.CrossrefGoogle Scholar

  • Park DW, Hwang BH, Ju WD, Kim MI, Kim KH, Woo HC. Selective oxidation of hydrogen sulfide containing excess water and ammonia over Bi-V-Sb-O catalysts. Korean J Chem Eng 2005a; 22: 190–195.CrossrefGoogle Scholar

  • Park NK, Lee DH, Lee JD, Chang W, Ryu SO, Lee TJ. Effects of reduction of metal oxide sorbents on reactivity and physical properties during hot gas desulphurization in IGCC. Fuel 2005b; 84: 2158–2164.CrossrefGoogle Scholar

  • Pi JH, Lee DH, Lee JD, Jun JH, Park NK, Ryu SO, Lee TJ. The study on the selective oxidation of H2S over the mixture zeolite NaX-WO3 catalysts. Korean J Chem Eng 2004; 21: 126–131.CrossrefGoogle Scholar

  • Pillai KC, Chung SJ, Raju T, Moon IS. Experimental aspects of combined NOx and SO2 removal from flue-gas mixture in an integrated wet scrubber-electrochemical cell system. Chemosphere 2009; 76: 657–664.CrossrefGoogle Scholar

  • Przepiorski J, Oya A. K2CO3-loaded deodorizing activated carbon fibre against H2S gas: factors influencing the deodorizing efficiency and the regeneration method. J Mater Sci Lett 1998; 17: 679–682.Google Scholar

  • Puchyr DMJ, Mehrotra AK, Behie LA, Kalogerakis N. Hydrodynamic and kinetic modelling of circulating fluidized bed reactors applied to a modified Claus plant. Chem Eng Sci 1996; 51: 5251–5262.CrossrefGoogle Scholar

  • Rajabzadeh S, Yoshimoto S, Teramoto M, Al-Marzouqi M, Matsuyama H. CO2 absorption by using PVDF hollow fiber membrane contactors with various membrane structures. Sep Purif Technol 2009; 69: 210–220.CrossrefGoogle Scholar

  • Ryu CK, Lee JB, D.H. DH, Kim JJ, Yi CK. Highly attrition resistant zinc oxide-based sorbents for H2S removal by spray drying technique. In: Presented at Fifth International Symposium on Gas Cleaning at High Temperatures, Morgantown, West Virginia, 2002.Google Scholar

  • Sassi M, Gupta AK. Sulfur recovery from acid gas using the Claus process and high temperature air combustion (HiTAC) technology. Am J Environ Sci 2008; 4: 502–511.Google Scholar

  • Seredych M, Bandosz TJ. Adsorption of hydrogen sulfide on graphite derived materials modified by incorporation of nitrogen. Mater Chem Phys 2009; 113: 946–952.CrossrefGoogle Scholar

  • Shahid M, Faisal M. Effect of hydrogen sulfide gas concentration on the corrosion behavior of “ASTM A-106 grade-A” carbon steel in 14% diethanol amine solution. Arab J Sci Eng 2009; 34: 179–186.Google Scholar

  • Slimane RB, Abbasian J. Regenerable mixed metal oxide sorbents for coal gas desulfurization at moderate temperatures. Adv Environ Res 2000; 4: 147–162.CrossrefGoogle Scholar

  • Sloot H, Versteeg G, Van Swaaij W. A non-permselective membrane reactor for chemical processes normally requiring strict stoichiometric feed rates of reactants. Chem Eng Sci 1990; 45: 2415–2421.CrossrefGoogle Scholar

  • Su H, Wang S, Niu H, Pan L, Wang A, Hu Y. Mass transfer characteristics of H2S absorption from gaseous mixture into methyldiethanolamine solution in a T-junction microchannel. Sep Purif Technol 2010; 72: 326–334.CrossrefGoogle Scholar

  • Trujillo FJ, Hardiman KM, Adesina AA. Catalytic decomposition of H2S in a double-pipe packed bed membrane reactor: numerical simulation studies. Chem Eng J 2008; 143: 273–281.CrossrefGoogle Scholar

  • Tsai JH, Tsai CL, Hsu YC, Chiang HL. Adsorption of hydrogen sulfide and methyl mercaptan mixture gas on alkaline activated carbon. J Chin Inst Environ Eng 1999; 9: 145–152.Google Scholar

  • Tsuru T, Yamaguchi K, Yoshioka T, Asaeda M. Methane steam reforming by microporous catalytic membrane reactors. AlChE J 2004; 50: 2794–2805.CrossrefGoogle Scholar

  • Turpin A, Couvert A, Laplanche A, Paillier A. Experimental study of mass transfer and H2S removal efficiency in a spray tower. Chem Eng Process Process Intensif 2008; 47: 886–892.CrossrefGoogle Scholar

  • Uhm JH, Shin MY, Zhidong J, Chung JS. Selective oxidation of H2S to elemental sulfur over chromium oxide catalysts. Appl Catal B Environ 1999; 22: 293–303.CrossrefGoogle Scholar

  • Wang D, Teo WK, Li K. Removal of H2S to ultra-low concentrations using an asymmetric hollow fibre membrane module. Sep Purif Technol 2002; 27: 33–40.CrossrefGoogle Scholar

  • Wang D, Teo WK, Li K. Selective removal of trace H2S from gas streams containing CO2 using hollow fibre membrane modules/contractors. Sep Purif Technol 2004a; 35: 125–131.CrossrefGoogle Scholar

  • Wang R, Li DF, Liang DT. Modeling of CO2 capture by three typical amine solutions in hollow fiber membrane contactors. Chem Eng Process 2004b; 43: 849–856.CrossrefGoogle Scholar

  • Wang R, Li D, Zhou C, Liu M, Liang D. Impact of DEA solutions with and without CO2 loading on porous polypropylene membranes intended for use as contactors. J Membr Sci 2004c; 229: 147–157.CrossrefGoogle Scholar

  • Wang R, Zhang HY, Feron PHM, Liang DT. Influence of membrane wetting on CO2 capture in microporous hollow fiber membrane contactors. Sep Purif Technol 2005; 46; 33–40.CrossrefGoogle Scholar

  • Wang L, Cao B, Wang S, Yuan Q. H2S catalytic oxidation on impregnated activated carbon: experiment and modelling. Chem Eng J 2006; 118: 133–139.CrossrefGoogle Scholar

  • Wu X, Schwartz V, Overbury SH, Armstrong TR. Desulfurization of gaseous fuels using activated carbons as catalysts for the selective oxidation of hydrogen sulfide. Energ Fuel 2005; 19: 1774–1782.CrossrefGoogle Scholar

  • Xie W, Chang L, Wang D, Xie K, Wall T, Yu J. Removal of sulfur at high temperatures using iron-based sorbents supported on fine coal ash. Fuel 2010; 89: 868–873.CrossrefGoogle Scholar

  • Xiao Y, Wang S, Wu D, Yuan Q. Catalytic oxidation of hydrogen sulfide over unmodified and impregnated activated carbon. Sep Purif Technol 2008; 59: 326–332.CrossrefGoogle Scholar

  • Yang X, Park DW, Kim MI. Selective oxidation of hydrogen sulfide over LaSrCoO4 and LaSrCoO3.6F0.4 mixed oxides. Ind Eng Chem Res 2007; 13: 265–271.Google Scholar

  • Zaman J, Chakma A. Production of hydrogen and sulfur from hydrogen sulfide. Fuel Process Technol 1995; 41: 159–198.CrossrefGoogle Scholar

  • Zhai LF, Song W, Tong ZH, Sun M. A fuel-cell-assisted iron redox process for simultaneous sulfur recovery and electricity production from synthetic sulfide wastewater. J Hazard Mater 2002; 243: 350–356.Google Scholar

  • Zhang J, Tong Z. Study on catalytic wet oxidation of H2S into sulfur on Fe/Cu catalyst. J Nat Gas Chem 2006; 15: 63–69.CrossrefGoogle Scholar

  • Zhang HY, Wang R, Liang DT, Tay JH. Modeling and experimental study of CO2 absorption in a hollow fiber membrane contactor. J Membr Sci 2006; 279: 301–310.Google Scholar

  • Zhang HY, Wang R, Liang DT, Tay JH. Theoretical and experimental studies of membrane wetting in the membrane gas-liquid contacting process for CO2 absorption. J Membr Sci 2008; 308: 162–170.Google Scholar

  • Zhang S, Osterman M, Shrivastava A, Kang R, Pecht MG. The influence of H2S exposure on immersion-silver-finished PCBs under mixed-flow gas testing. IEEE Trans Device Mater Reliab 2010; 10: 71–81.CrossrefGoogle Scholar

  • Zhao H, Zhang D, Wang F, Wu T, Gao J. Modification of ferrite-manganese oxide sorbent by doping with cerium oxide. Process Saf Environ 2008; 86: 448–454.CrossrefGoogle Scholar

  • Zhu B, Li H, Yang W. AgBiVMo oxide catalytic membrane for selective oxidation of propane to acrolein. Catal Today 2003; 82: 91–98.CrossrefGoogle Scholar

About the article

Ahmed Daham Wiheeb

Ahmed Daham Wiheeb is a PhD student at the School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia. He is also an Assistant Professor at the Department of Chemical Engineering, University of Tikrit, Iraq.

Ili Khairunnisa Shamsudin

Ili Khairunnisa Shamsudin is a PhD student at the School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia.

Mohd Azmier Ahmad

Mohd Azmier Ahmad (PhD) is an Associate Professor at the School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia.

Muhamad Nazri Murat

Muhamad Nazri Murat (PhD) is a Senior Lecturer at the School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia.

Jinsoo Kim

Jinsoo Kim (PhD) is a Professor at the Department of Chemical Engineering, College of Engineering, Kyung Hee University, Republic of Korea.

Mohd Roslee Othman

Mohd Roslee Othman (PhD) is an Associate Professor at the School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia.


Corresponding authors: Jinsoo Kim, Department of Chemical Engineering, Kyung Hee University, Global campus, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Republic of Korea, e-mail: ; and Mohd Roslee Othman, School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia, e-mail:


Received: 2013-05-19

Accepted: 2013-07-31

Published Online: 2013-09-17

Published in Print: 2013-12-01


Citation Information: Reviews in Chemical Engineering, Volume 29, Issue 6, Pages 449–470, ISSN (Online) 2191-0235, ISSN (Print) 0167-8299, DOI: https://doi.org/10.1515/revce-2013-0017.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Qiang Geng, Long-Jiang Wang, Chao Yang, Hong-Yan Zhang, Ying-Rui Zhao, Hui-Ling Fan, and Chao Huo
Fuel Processing Technology, 2019, Volume 185, Page 26
[2]
Zaheer Aslam, Ibnelwaleed A. Hussein, Reyad A. Shawabkeh, Mohammad Anwar Parvez, Waqar Ahmad, and Ihsanullah
Journal of the Air & Waste Management Association, 2018
[3]
Daniel V. Gonçalves, Mayara A.G. Paiva, José C.A. Oliveira, Moises Bastos-Neto, and Sebastião M.P. Lucena
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018
[4]
Tawfik A. Saleh, Saddam A. AL-Hammadi, Ibrahim Munkaila Abdullahi, and Mujahid Mustaqeem
Journal of Molecular Liquids, 2018
[5]
Dongjing Liu, Qian Wang, Jiang Wu, and Yangxian Liu
Environmental Chemistry Letters, 2018
[6]
Cuong Duong-Viet, Lam Nguyen-Dinh, Yuefeng Liu, Giulia Tuci, Giuliano Giambastiani, and Cuong Pham-Huu
Molecules, 2018, Volume 23, Number 7, Page 1528
[7]
Fenglian Zhang, Xin Zhang, Guoxia Jiang, Na Li, Zhengping Hao, and Siqiu Qu
Chemical Engineering Journal, 2018
[8]
Imran Ullah Khan, Mohd Hafiz Dzarfan Othman, Haslenda Hashim, Takeshi Matsuura, A.F. Ismail, M. Rezaei-DashtArzhandi, and I. Wan Azelee
Energy Conversion and Management, 2017, Volume 150, Page 277
[9]
Ming Yang, Xianfa Zhang, Xiaoli Cheng, Yingming Xu, Shan Gao, Hui Zhao, and Lihua Huo
ACS Applied Materials & Interfaces, 2017, Volume 9, Number 31, Page 26293
[10]
Mansi S. Shah, Michael Tsapatsis, and J. Ilja Siepmann
Chemical Reviews, 2017, Volume 117, Number 14, Page 9755
[11]
Xuemin Li, Yangzhi Zhao, Alice Brennan, Miranda McCeig, Colin A Wolden, and Yongan Yang
ChemSusChem, 2017, Volume 10, Number 14, Page 2904
[12]
Zhengfa Yu, Xuzhen Wang, Ya-Nan Hou, Xin Pan, Zongbin Zhao, and Jieshan Qiu
Carbon, 2017, Volume 117, Page 376
[13]
Xinpeng Liu, Junpeng Li, and Rui Wang
Chemical Engineering Journal, 2017, Volume 316, Page 171
[14]
Yun Gao, Jie Gao, Zhanbin Qin, Yi Sun, Hongjuan Li, and Zhiyan Wang
RSC Adv., 2016, Volume 6, Number 109, Page 107399
[15]
Hao Zhang, Xiaoming Hu, Zhichen Liu, Xiaoqin Yang, and Xiao Jin Yang
Journal of Cleaner Production, 2017, Volume 142, Page 3204
[16]
Kenji Koido, Yutaro Watanabe, Tomoyuki Ishiyama, Teppei Nunoura, and Kiyoshi Dowaki
Journal of Cleaner Production, 2017, Volume 141, Page 568
[17]
Mohammad Hassan Almasvandi, Masoud Rahimi, and Yaghoub Tagheie
Journal of Natural Gas Science and Engineering, 2016, Volume 34, Page 499
[19]
M.D. Soriano, A. Vidal-Moya, E. Rodríguez-Castellón, F.V. Melo, M.T. Blasco, and J.M. López Nieto
Catalysis Today, 2016, Volume 259, Page 237
[21]
Xuemin Li, Rachel M. Morrish, Yuan Yang, Colin A. Wolden, and Yongan Yang
ChemPlusChem, 2015, Volume 80, Number 10, Page 1508
[22]
Zhijie Li, Yanwu Huang, Shouchao Zhang, Weimei Chen, Zhong Kuang, Dongyi Ao, Wei Liu, and Yongqing Fu
Journal of Hazardous Materials, 2015, Volume 300, Page 167
[23]
Qie Sun, Hailong Li, Jinying Yan, Longcheng Liu, Zhixin Yu, and Xinhai Yu
Renewable and Sustainable Energy Reviews, 2015, Volume 51, Page 521
[24]
Zhi Guo, Guiqiu Chen, Guangming Zeng, Lingzhi Liu, and Chang Zhang
RSC Adv., 2015, Volume 5, Number 67, Page 54793
[25]
M.D. Soriano, J.A. Cecilia, A. Natoli, J. Jiménez-Jiménez, J.M. López Nieto, and E. Rodríguez-Castellón
Catalysis Today, 2015, Volume 254, Page 36
[26]
Xin Zhang, Yuyin Tang, Siqiu Qu, Jianwen Da, and Zhengping Hao
ACS Catalysis, 2015, Volume 5, Number 2, Page 1053

Comments (0)

Please log in or register to comment.
Log in