Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in Chemical Engineering

Editor-in-Chief: Luss, Dan / Brauner, Neima

Editorial Board: Agar, David / Davis, Mark E. / Edgar, Thomas F. / Giorno, Lidietta / Joshi, J. B. / Khinast, Johannes / Kost, Joseph / Leal, L. Gary / Li, Jinghai / Mills, Patrick / Morbidelli, Massimo / Ng, Ka Ming / Schouten, Jaap C. / Seinfeld, John / Stitt, E. Hugh / Tronconi, Enrico / Vayenas, Constantinos G. / Zagoruiko, Andrey


IMPACT FACTOR 2018: 4.200

CiteScore 2018: 4.96

SCImago Journal Rank (SJR) 2018: 1.016
Source Normalized Impact per Paper (SNIP) 2018: 1.572

Online
ISSN
2191-0235
See all formats and pricing
More options …
Volume 29, Issue 6

Issues

Fundamental kinetic modeling of catalytic hydrocarbon conversion processes

Gilbert F. Froment
  • Corresponding author
  • Department of Chemical Engineering, Texas A&M University 200 Jack E. Brown Building, 3122 TAMU, College Station, TX 77843-3122, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-10-22 | DOI: https://doi.org/10.1515/revce-2013-0019

Abstract

This review discusses a fundamental kinetic approach for the modeling of the conversion of complex hydrocarbon mixtures, called single-event approach. Based upon the transition state theory and statistical thermodynamics and combined with the linear free energy relationship of Evans and Polanyi, it significantly reduces the number of independent kinetic parameters. It is applied to the hydrocracking of vacuum gas oil and the methanol-to-olefin process, which is subject to rapid catalyst deactivation by coke formation. The approach considers a detailed composition of the complex feedstocks, made possible by modern analytical techniques and also by recently introduced computerized methods for the molecular reconstruction of oil fractions. The very large reaction networks should be generated by computer and this aspect is also reviewed. Finally, the application of the method of structural contributions in the reduction of the number of independent kinetic parameters of the hydrodesulfurization of oil fractions is also dealt with.

Keywords: design; kinetics; processes

References

  • Alwahabi SM, Froment GF. Single event kinetic modeling of the methanol-to-olefins process on SAPO-34. Ind Eng Chem Res 2004a; 43: 5098–5111.Google Scholar

  • Alwahabi SM, Froment GF. Conceptual reactor design for the methanol-to-olefins process on SAPO-34. Ind Eng Chem Res 2004b; 43: 5112–5122.Google Scholar

  • Baker J. An algorithm for the location of transition states. J Comp Chem 1986; 7: 385.CrossrefGoogle Scholar

  • Baltanas MA, Froment GF. Computer generation of reaction networks and calculation of product distributions in the hydroisomerization and hydrocracking of paraffins on Pt-containing bifunctional catalysts. Comput Chem Eng 1985; 1: 71–81.CrossrefGoogle Scholar

  • Baltanas MA, Van Raemdonck KK, Froment GF, Mohedas SR. Fundamental kinetic modeling of hydroisomerization and hydrocraking on noble-metal-loaded faujasites. Ind Eng Chem Res 1989; 28: 899–910.CrossrefGoogle Scholar

  • Bird RB, Stewart WE, Lightfoot EM. Transport phenomena, Chapter 18. John Wiley, 1960.Google Scholar

  • Biswas J, Bhaskar GV, Greensfield PF. Stratified flow model for two-phase pressure drop prediction in trickle beds. AIChE J 1988; 34: 510–517.CrossrefGoogle Scholar

  • Christensen G, Apelia MR, Hickey KJ, Jaffe SB. Future directions in modeling the FCC process. An emphasis on product quality. Chem Eng Sci 1999; 54: 2753–2764.CrossrefGoogle Scholar

  • Clymans PJ, Froment GF. Computer-generation of reaction paths and rate equations in the thermal cracking of normal and branched paraffins. Comput Chem Eng 1984; 8: 137–142.CrossrefGoogle Scholar

  • Cohen N, Benson SW. Estimation of heats of formation of organic compounds by additivity methods. Chem Rev 1993; 93: 2419–2438.CrossrefGoogle Scholar

  • Dewachtere NV, Santaella F, Froment GF. Application of a single event kinetic model in the simulation of an industrial riser reactor for the catalytic cracking of vacuum gas oil. Chem Eng Sci 1999; 54;3853–3660.Google Scholar

  • Fang J, Froment GF. Automatic generation of reaction network for complex processes. Comput Appl Chem 2013; 30: 1–7.Google Scholar

  • Feng W, Vynckier E, Froment GF. Single-event kinetics of catalytic cracking. Ind Eng Chem Res 1993; 32: 2997–3005.CrossrefGoogle Scholar

  • Fernandez-Ramos A, Ellingson BA, Meana-Paeda R, Marques JMC, Truhlar DG. Symmetry numbers and chemical reaction rates. Theor Chem Account 2007; 118: 813–826.CrossrefGoogle Scholar

  • Froment GF. Fundamental kinetic modeling of complex processes. In: Sapre AV, Krambeck FJ, editors. Chemical reactions in complex mixtures – the Mobil Workshop. New York: Van Nostrand-Reinhold, 1990: 77–100.Google Scholar

  • Froment GF. Kinetic modeling of acid-catalyzed oil refining processes. Catal Today 1999; 52: 153–163.CrossrefGoogle Scholar

  • Froment GF. Modeling in the development of hydrotreatment processes. Catal Today 2004; 98: 43–54.CrossrefGoogle Scholar

  • Froment GF. Single event kinetic modeling of complex catalytic processes. Catal Rev Sci Eng 2005; 1: 83–124.CrossrefGoogle Scholar

  • Froment GF. Kinetic modeling of hydrocarbon processing and the effect of catalyst deactivation by coke formation. Catal Rev Sci Eng 2008; 50: 1–18.CrossrefGoogle Scholar

  • Froment GF, Dehertog WJ, Marchi AJ. Zeolite catalysis in the conversion of methanol into olefins. Catalysis 1992; 9: 1.Google Scholar

  • Froment GF, DePauw GA, Vanrysselberghe V. Kinetic modeling and reactor simulation in hydrodesulfurization of oil fractions. Ind Eng Chem Res 1994; 33: 2975–2988.CrossrefGoogle Scholar

  • Froment GF, Castaneda LC, Marin RC. Kinetic modeling of the hydrotreatment of light cycle oil and heavy gas oil using the structural contributions approach. Catal Today 2008; 130: 446–454.CrossrefGoogle Scholar

  • Froment GF, Bischoff KB, De Wilde J. Chemical reactor analysis and design, 3rd ed., New York: Wiley, 2011.Google Scholar

  • Galtier P. Kinetic methods in petroleum process engineering. Adv Chem Eng 2007; 32: 259–304.Google Scholar

  • Guillaume D, Valéry E, Verstraete JJ, Surla K, GaltierP, Schweich D. Single event kinetic modeling without explicit generation of large networks: application to hydrocracking of long paraffins. Oil Gas Sci Technol – Rev. IFP Energie nouvelles 2011; 66: 399–422.CrossrefGoogle Scholar

  • Hillewaert LP, Dierickx JL, Froment GF. Computer generation of reaction schemes and rate equations for thermal cracking. AIChE J 1988; 34: 17–24.CrossrefGoogle Scholar

  • Hudebine D, Verstraete JJ. Molecular reconstruction of LCO gasoils from overall petroleum analyses. Chem Eng Sci 2004; 59: 4755–4763: 4763.CrossrefGoogle Scholar

  • Jacobs SM, Gross B, Voltz SE, Weeckman VW. A lumping and reaction scheme for catalytic cracking. AIChE J 1976; 22: 701.CrossrefGoogle Scholar

  • Korre SC, Klein MT. Development of temperature-independent quantitative structure/reactivity relationships for metal- and acid-catalyzed reactions. Catal Today 1996: 31: 79.CrossrefGoogle Scholar

  • Korre SC, Neurock M, Klein MT, Quann RJ. Hydrogenation of polynuclear aromatic hydrocarbons. 2. Quantitative structure/reactivity correlations. Chem Eng Sci 1994; 49: 4191.CrossrefGoogle Scholar

  • Korre SC, Klein MT, Quann RJ. Polynuclear aromatic hydrocarbons hydrogenation. 1. Experimental reaction pathways and kinetics. Ind Eng Chem Res 1995; 34: 101.CrossrefGoogle Scholar

  • Kumar H, Froment GF. A generalized mechanistic kinetic model for the hydroisomerization and hydrocracking of long chain paraffins. Ind Eng Chem Res 2007a; 46: 4075–4090.CrossrefGoogle Scholar

  • Kumar H, Froment GF. Mechanistic kinetic modeling of the hydrocracking of complex feedstocks such as vacuum gas oils. Ind Eng Chem Res 2007b; 46: 5881–5897.CrossrefGoogle Scholar

  • Larkins RP, White RR, Jeffrey DW. Two-phase concurrent flow in packed beds. AIChE J 1961; 7: 231.CrossrefGoogle Scholar

  • Liguras DK, Allen DT. Structural models for catalytic cracking: reactions of simulated oil mixtures. Ind Eng Chem Res 1989; 28: 674.CrossrefGoogle Scholar

  • Lozano-Blanco G, Thibaut JW, Surla K, Galtier P, Marin GB. Single-event microkinetic model for Fischer-Tropsch synthesis on iron-based catalyst. Ind Eng Chem Res 2008; 47: 5879–5891.CrossrefGoogle Scholar

  • Martens G, Froment GF. Kinetic modeling of paraffins hydrocracking based upon elementary steps and the single event concept. Stud Surf Sci Catal 1999; 122: 333–340.CrossrefGoogle Scholar

  • Martinis JM, Froment GF. Solid acid alkylation. Part I. Experimental investigation of catalyst deactivation. Ind Eng Chem Res 2006a; 45: 940–953.CrossrefGoogle Scholar

  • Martinis JM, Froment GF. Solid acid alkylation. Part II. Single-event kinetic modeling. Ind Eng Chem Res 2006b; 45: 954–967.CrossrefGoogle Scholar

  • Moustafa TM, Froment GF. Kinetic modeling of coke formation and deactivation in the catalytic cracking of vacuum gas oil. Ind Eng Chem Res 2003; 42: 14–25.CrossrefGoogle Scholar

  • Neurock M, Nigam A, Trauth D, Klein MT. Molecular representation of complex hydrocarbon feedstocks through efficient characterization and stochastic algorithms. Chem Eng Sci 1994; 49: 4153–4177.CrossrefGoogle Scholar

  • Park TY, Froment GF. Kinetic modeling of the methanol to olefins process. 1. Model formulation. Ind Eng Chem Res 2001a; 40: 4172–4186.CrossrefGoogle Scholar

  • Park TY, Froment GF. Kinetic modeling of the methanol to olefins process. 2. Experimental results, model discrimination and parameter estimation. Ind Eng Chem Res 2001b; 40: 4187–4196.CrossrefGoogle Scholar

  • Park TY, Froment GF. Reaction rates in the methanol-to-olefins process and their role in reactor design and operation. Ind Eng Chem Res 2004; 43: 682–689.CrossrefGoogle Scholar

  • Quann RJ, Jaffe SB. Structure oriented lumping: describing the chemistry of complex hydrocarbon mixtures. Ind Eng Chem Res 1992; 31: 2483.CrossrefGoogle Scholar

  • Quann RJ, Jaffe SB. Building useful models of complex reaction systems in petroleum refining. Chem Eng Sci 1996; 51: 1615–1635.CrossrefGoogle Scholar

  • Shannon CE. A mathematical theory of communication. Bell Syst Tech J 1948; 27: 379–423.CrossrefGoogle Scholar

  • Sotelo-Boyas R, Froment GF. Fundamental kinetic modeling of catalytic reforming. Ind Eng Chem Res 2009; 48: 1107–1109.CrossrefGoogle Scholar

  • Surla K. Guillaume D, Verstraete JJ, Galtier P. Kinetic modeling using single-event methodology: application to the isomerization of light paraffins. Oil Gas Sci Technol – Rev IFP Energie nouvelles 2011; 66: 343–365.CrossrefGoogle Scholar

  • Svoboda GD, Vynckier E, Debrabandere B, Froment GF. Single-event rate parameters for paraffin hydrocracking on a Pt/Us-Y zeolite. Ind Eng Chem Res 1995; 34: 3793–3800.CrossrefGoogle Scholar

  • Vanrysselberghe V, Froment GF. Hydrodesulfurization of dibenzothiophene on a CoMo/Al2O3 catalyst: reaction network and kinetics. Ind Eng Chem Res 1996; 25: 3311–3318.Google Scholar

  • Vanrysselberghe V, Froment GF. Kinetic modeling of hydrodesulfurization of oil fractions: light cycle oil. Ind Eng Chem Res 1998; 37: 4231–4240.CrossrefGoogle Scholar

  • Vanrysselberghe V, Froment GF. Catalytic hydrodesulfurization. Fundamentals, kinetics, reactor simulation and process schemes. In: Horvath I, Kline MT, editors. Encyclopedia of catalysis. New York: Wiley, 2002.Google Scholar

  • Vynckier E, Froment GF. Modeling of the kinetics of complex processes based upon elementary steps. In: Astarita G, Sandler SI, editors. Kinetic and thermodynamic lumping of multicomponent mixtures. Amsterdam: Elsevier, 1991: 131–161.Google Scholar

  • Walters WP, Yalkowsky SH. ESCHER – a computer program for the determination of external rotational symmetry numbers from molecular topology. J Chem Inf Comput Sci 1996; 36: 1015–1017.CrossrefGoogle Scholar

  • Wong HW, Li XG, Swihart MT, Broadbelt IJ. Detailed kinetic modeling of silicon nanoparticle formation chemistry via automated mechanism generation. J Phys Chem A 2004; 108: 10122–10132.CrossrefGoogle Scholar

About the article

Gilbert F. Froment

Gilbert Froment was a professor of chemical engineering at the University of Ghent, Ghent, Belgium, and became a research professor at Texas A&M University, College Station, TX, USA, in 1998. He received the R. H. Wilhelm Award from AIChE in 1978 and the Amundson Award from ISCRE Inc. in 2007. He is a foreign associate of the US National Academy of Engineering and a member of the Texas Academy of Medicine, Engineering and Science. He is a doctor honoris causa of the Technion in Haifa, Israel, and the University of Nancy, Nancy, France.


Corresponding author: Gilbert F. Froment, Department of Chemical Engineering, Texas A&M University 200 Jack E. Brown Building, 3122 TAMU, College Station, TX 77843-3122, USA, e-mail:


Received: 2013-05-28

Accepted: 2013-08-09

Published Online: 2013-10-22

Published in Print: 2013-12-01


Citation Information: Reviews in Chemical Engineering, Volume 29, Issue 6, Pages 385–412, ISSN (Online) 2191-0235, ISSN (Print) 0167-8299, DOI: https://doi.org/10.1515/revce-2013-0019.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
B. Liu, D. Slocombe, M. AlKinany, H. AlMegren, J. Wang, J. Arden, A. Vai, S. Gonzalez-Cortes, T. Xiao, V. Kuznetsov, and P. P. Edwards
Applied Petrochemical Research, 2016, Volume 6, Number 3, Page 209
[2]
Liping Zhou, Gilbert F. Froment, Yong Yang, and Yongwang Li
AIChE Journal, 2016, Volume 62, Number 5, Page 1668
[3]
Kenneth Toch, Joris W. Thybaut, and Guy B. Marin
AIChE Journal, 2015, Volume 61, Number 3, Page 880
[4]
Gilbert F Froment
Current Opinion in Chemical Engineering, 2014, Volume 5, Page 1

Comments (0)

Please log in or register to comment.
Log in