Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in Chemical Engineering

Editor-in-Chief: Luss, Dan / Brauner, Neima

Editorial Board: Agar, David / Davis, Mark E. / Edgar, Thomas F. / Giorno, Lidietta / Joshi, J. B. / Khinast, Johannes / Kost, Joseph / Leal, L. Gary / Li, Jinghai / Mills, Patrick / Morbidelli, Massimo / Ng, Ka Ming / Schouten, Jaap C. / Seinfeld, John / Stitt, E. Hugh / Tronconi, Enrico / Vayenas, Constantinos G. / Zagoruiko, Andrey


IMPACT FACTOR 2018: 4.200

CiteScore 2018: 4.96

SCImago Journal Rank (SJR) 2018: 1.016
Source Normalized Impact per Paper (SNIP) 2018: 1.572

Online
ISSN
2191-0235
See all formats and pricing
More options …
Volume 29, Issue 6

Issues

N-Substituted carbazole heterocycles and derivatives as multipurpose chemical species: at the interface of chemical engineering, polymer and materials science

Jean-Paul Lellouche
  • Corresponding author
  • Department of Chemistry, Nanomaterials Research Center, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rik Rani Koner / Subrata Ghosh
Published Online: 2013-09-07 | DOI: https://doi.org/10.1515/revce-2013-0023

Abstract

Due to recent progress in synthetics, the ready obtainment of various N-substituted carbazole heterocycles opened a wide window of scientific and industrial opportunities in different R&D domains. As summarized in this review article, such attractive R&D domains concern (a) electrochemically grown functional polycarbazole films for (bio/chemo)sensing, covalent grafting of biomolecules, nanomaterial fabrication (polycarbazole-containing nanorings and dendrimers), and surface patterning/engineering (biochip fabrication), and (b) oxidatively grown materials containing a polycarbazole phase (template or non-templated liquid oxidation polymerizations). This last general approach led to numerous developments in the fabrication of various composite materials incorporating single/multiwalled carbon nanotubes, graphene oxide, and magnetic magnetite-based nanoparticles for the ultrasensitive detection of DNA hybridization for example. Some liquid-phase oxidative polymerizations of UV-sensitive carbazole-containing species also afforded corresponding polymeric UV-reactive microspheres for UV surface patterning and functionalization/structuration. All these novel polycarbazole-containing species generally possess interesting optical properties useful for sensing and photoelectronic/photovoltaic applications. In summary, the already proven rich organic chemistry and corresponding (electro/chemical) polymerization properties of such specific carbazole heterocycles are expected to generate even more wider output applications far beyond current knowledge in the field (combinatorial polymeric engineering, biocompatible medical devices/materials, for example).

Keywords: carbazole; engineered materials; functional polymer; polymerization

References

  • Adhikari RM, Shah BK, Palayangoda SS, Neckers DC. Solvent dependant optical switching in carbazole-based fluorescent nanoparticles. Langmuir 2009; 25: 2402–2406.CrossrefGoogle Scholar

  • Ajayan PM. Nanotubes from carbon. Chem Rev 1999; 99: 1787–1800.CrossrefPubMedGoogle Scholar

  • Albrecht K, Yamamoto K. Dendritic structure having a potential gradient: new synthesis and properties of carbazole dendrimers. J Am Chem Soc 2009; 131: 2244–2251.Google Scholar

  • Ambrose JF, Nelson RF. Anodic oxidation pathways of carbazoles: I. Carbazole and N-substituted derivatives. J Electrochem Soc 1968; 115: 1159–1164.CrossrefGoogle Scholar

  • Ambrose JF, Carpenter LL, Nelson RF. Electrochemical and spectroscopic properties of cation radicals. III. Reaction pathways of carbazolium radical ions. J Electrochem Soc 1975; 122: 876–894.CrossrefGoogle Scholar

  • Anzenbacher P Jr. Pyrrole-based anion sensors, Part I: Colorimetric sensors. Top Heterocycl Chem 2010; 24: 205–235.Google Scholar

  • Ates M, Sarac AS. Conducting polymer coated carbon surfaces and biosensor applications. Prog Org Coat 2009; 66: 337–358.CrossrefGoogle Scholar

  • Bao Y, Liu B, Wang H, Du F, Bai R. A highly sensitive and selective ratiometric Cd2+ fluorescent sensor for distinguishing Cd2+ from Zn2+ based on both fluorescence intensity and emission shift. Anal Methods 2011; 3: 1274–1276.CrossrefGoogle Scholar

  • Baughman RH, Zakhidov AA, Heer WAD. Improved selectivity in discriminating handedness and diameter of single-walled carbon nanotubes with N-substituted 3,6-carbazolylene-bridged chiral diporphyrin nanotweezers. Science 2002; 297: 787.Google Scholar

  • Berry CC, Curtis ASG. Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 2003; 36: R198–R206.CrossrefGoogle Scholar

  • Blouin N, Leclerc M. Poly(2,7-carbazole)s: structure-property relationships. Acc Chem Res 2008; 41: 1110–1119.PubMedCrossrefGoogle Scholar

  • Boas U, Heegaard PMH. Dendrimers in drug research. Chem Soc Rev 2004; 33: 43–63.PubMedCrossrefGoogle Scholar

  • Boudreault P-LT, Morin J-F, Leclerc M. Synthesis of poly(2,7-carbazole)s and derivatives. In: Leclerc M, Morin J-F, editors. Design and synthesis of conjugated polymers. Weinheim: Wiley-VCH, 2010a: 205–226.Google Scholar

  • Boudreault PT, Beaupre S, Leclerc M. Polycarbazoles for plastic electronics. Polym Chem 2010b; 1: 127–136.CrossrefGoogle Scholar

  • Burnworth M, Rowan SJ, Weder C. Fluorescent sensors for the detection of chemical warfare agents. Chem Eur J 2007; 13: 7828–7836.CrossrefGoogle Scholar

  • Butterworth MD, Bell SA, Armes SP, Simpson AW. Synthesis and characterization of polypyrrole-magnetite-silica particles. J Colloid Interface Sci 1996; 183: 91–99.Google Scholar

  • Cadogan JIG, Todd MJ. Reduction of nitro- and nitroso-compounds by tervalent phosphorus reagents. Part IV. Mechanistic aspects of the reduction of 2,4,6-trimethyl-2′-nitrobiphenyl, 2-nitrobiphenyl, and nitrobenzene. J. Chem. Soc 1969; 2808–2813.Google Scholar

  • Cadogan JIG, Cameron-Wood M, Mackie RK, Searle RJG. The reactivity of organophosphorus compounds. Part XIX. Reduction of nitro-compounds by triethyl phosphite: a convenient new route to carbazoles, indoles, indazoles, triazoles, and related compounds. J Chem Soc 1965; 4831–4837.Google Scholar

  • Caminade A-M, Servin P, Laurent R, Majoral J-P. Dendrimeric phosphines in asymmetric catalysis. Chem Soc Rev 2008; 37: 56–67.CrossrefPubMedGoogle Scholar

  • Chen J, Reed MA, Rawlett AM, Tour J. Large on-off ratios and negative differential resistance in a molecular electronic device. Science 1999; 286: 1550–1552.Google Scholar

  • Cosnier S, Le Pellec A, Marks RS, Périé K, Lellouche J-P. A permselective biotinylated polydicarbazole film for the fabrication of amperometric enzyme electrodes. Electrochem Commun 2003; 5: 973–977.CrossrefGoogle Scholar

  • Cosnier S, Marks RS, Lellouche J-P, Périé K, Fologea D, Szunerits S. Electrogenerated poly(chiral dicarbazole) films for the reagentless grafting of enzymes. Electroanalysis 2000; 12: 1107–1112.CrossrefGoogle Scholar

  • Cosnier S, Szunerits S, Marks RS, Lellouche J-P, Périé K. Mediated electrochemical detection of catechol by tyrosinase-based poly(dicarbazole) electrodes. J Biochem Biophys Methods 2001; 50: 65–77.CrossrefPubMedGoogle Scholar

  • Deng J, Ding X, Zhang W, Peng Y, Wang J, Long X, Li P, Chan ASC. Magnetic and conducting Fe3O4-cross-linked polyaniline nanoparticles with core-shell structure. Polymer 2002; 43: 2179–2184.CrossrefGoogle Scholar

  • Ding J, Lü J, Cheng Y, Xie Z, Wang L, Jing X, Wang F. Effect of ancillary ligands on the properties of heteroleptic green iridium dendrimers functionalized with carbazole dendrons. J Organomet Chem 2009; 694: 2700–2704.Google Scholar

  • Duan H, Liu L, Meng X, Qin D, Wang X, Du X, Wang C, Tian J. Study on a novel photorefractive polymer containing carbazole and phthalocyanine (I) synthesis and characterization. Synth Met 2009; 159: 1512–1516.Google Scholar

  • Elming N, Clauson-Kaas N. The preparation of pyrroles from furans. Acta Chem Scand 1952; 6: 867–874.CrossrefGoogle Scholar

  • Flitton R, Johal J, Maeda S, Armes SP. Synthesis of colloidal dispersions of polypyrrole-silica nanocomposites using ‘stringy’ silica particle. J Colloid Interface Sci 1995; 173: 135–142.CrossrefGoogle Scholar

  • Gale PA. Synthetic indole, carbazole, biindole and indolocarbazole-based receptors: applications in anion complexation and sensing. Chem Commun 2008; 38: 4525–4540.CrossrefGoogle Scholar

  • Goldman D, Lellouche J-P. An easy method for the production of functional polypyrrole/MWCNT and polycarbazole/MWCNT composites using nucleophilic multi-walled carbon nanotubes. Carbon 2010; 48: 4170–4177.CrossrefGoogle Scholar

  • Goldman D, Girshevitz O, Lellouche J-P. AFM characterization of polydicarbazole-multi-walled carbon nanotube composites. J Adv Microsc Res 2011; 6: 215–222.CrossrefGoogle Scholar

  • Govindaraji S, Nakache P, Marks V, Pomerantz Z, Zaban A, Lellouche J-P. Novel carboxylated pyrrole- and carbazole-based monomers. synthesis and electro-oxidation features. J Org Chem 2006; 71: 9139–9143.CrossrefPubMedGoogle Scholar

  • Grazulevicius JV, Strohriegl P, Pielichowski J, Pielichowski K. Synthesis of diblock copolymers containing poly(N-vinylcarbazole) by reversible addition-fragmentation chain transfer polymerization. Prog Polym Sci 2003; 28: 1297–1353.CrossrefGoogle Scholar

  • Ho C-L, Chi L-C, Hung W-Y, Chen W-J, Lin Y-C, Wu H, Mondal E, Zhou G-J, Wong K-T Wong W-Y. Carbazole-based coplanar molecule (CmInF) as a universal host for multi-color electrophosphorescent devices. J Mater Chem 2012; 22: 215–224.CrossrefGoogle Scholar

  • Huang Y, Duan X, Wei Q, Lieber CM. Directed assembly of one-dimensional nanostructures into functional networks. Science 2001; 291: 630–633.Google Scholar

  • Huczko A. Template-based synthesis of nanomaterials. Appl Phys A 2000; 70: 365–376.CrossrefGoogle Scholar

  • Jain KK. Nanodiagnostics: application of nanotechnology in molecular diagnostics. Exp Rev Mol Diagn 2003; 3: 153–161.CrossrefGoogle Scholar

  • Jang J. Conducting polymer nanomaterials and their applications. Adv Polym Sci 2006; 199: 189–259.CrossrefGoogle Scholar

  • Jegadesan S, Sindhu S, Advincula RC, Valiyaveettil S. Direct electrochemical nanopatterning of polycarbazole monomer and precursor polymer films: ambient formation of thermally stable conducting nanopatterns. Langmuir 2006; 22: 780–786.PubMedCrossrefGoogle Scholar

  • Jiang H, Sun J, Zhang J. A review on synthesis of carbazole-based chromophores as organic light-emitting materials. Curr Org Chem 2012; 16: 2014–2025.CrossrefGoogle Scholar

  • Juwarker H, Suk J, Jeong KS. Indoles and related heterocycles. Top Heterocycl Chem 2010; 24: 177–204.Google Scholar

  • Kaewtong C, Jiang G, Felipe MJ, Pulpoka B, Advincula R. Self-assembly and electrochemical oxidation of polyamidoamine-carbazole dendron surfmer complexes: nanoring formation. ACS Nano 2008; 2: 1533–1542.PubMedCrossrefGoogle Scholar

  • Kertesz M, Choi CH, Yang S. Conjugated polymers and aromaticity. Chem Rev 2005; 105: 3448–3481.CrossrefPubMedGoogle Scholar

  • Kim HN, Guo Z, Zhu W, Yoon J, Tian H. Recent progress on polymer-based fluorescent and colorimetric chemosensors. Chem Soc Rev 2011; 40: 79–93.CrossrefPubMedGoogle Scholar

  • Kim HN, Ren WX, Kim S, Yoon J. Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem Soc Rev 2012; 41: 3210–3244.PubMedCrossrefGoogle Scholar

  • Knölker H-J, Reddy KR. Isolation and synthesis of biologically active carbazole alkaloids. Chem Rev 2002; 102: 4303–4428.CrossrefPubMedGoogle Scholar

  • Kumar N, Abbott NL, Kim E, Biebuyck HA, Whitesides GM. Patterned self-assembled monolayers and meso-scale phenomena. Acc Chem Res 1995; 28: 219–226.CrossrefGoogle Scholar

  • Lee SB, Mitchell DT, Trofin L, Nevanen TK, Söderlund H, Martin CR. Antibody-based bio-nanotube membranes for enantiomeric drug separations. Science 2002; 296: 2198–2200.Google Scholar

  • Lellouche J-P, Govindaraji S, Joseph A, Buzhansky L, Bruce I, Bauminger ER, Schlesinger J. Magnetically responsive carboxylated magnetite-polydipyrrole/polydicarbazole nanocomposites of core-shell morphology. preparation, characterization, and use in DNA hybridization. J Am Chem Soc 2005a; 127: 11998–12006.Google Scholar

  • Lellouche J-P, Govindaraji S, Joseph A, Jang J, Lee KJ. Polydipyrrole- and polydicarbazole-nanorods as new nanosized supports for DNA hybridization. Chem Commun 2005b; 4357–4359.Google Scholar

  • Lellouche J-P, Perlman N, Joseph A, Govindaraji S, Buzhansky L, Yakir A, Bruce I. New magnetically responsive polydicarbazole-magnetite nanoparticles. Chem Commun 2004; 560–561.Google Scholar

  • Lellouche J-P, Pomerantz Z, Ghosh S. Towards hybrid carbazole/pyrrole-based carboxylated monomers: chemical synthesis, characterisation and electro-oxidation properties. Tetrahedron Lett 2011a; 52: 6903–6907.CrossrefGoogle Scholar

  • Lellouche J-P, Pomerantz Z, Persky R, Gottlieb HE, Ghosh S. Star-shaped dendritic molecules based on carboxylated carbazole and pyrrole as peripheral oxidizable units. Synth Met 2011b; 161: 2378–2383.Google Scholar

  • Lemasson F, Berton N, Tittmann J, Henrich F, Kappes MM, Mayor M. Polymer library comprising fluorene and carbazole homo- and copolymers for selective single-walled carbon nanotubes extraction. Macromolecules 2012; 45: 713–722.CrossrefGoogle Scholar

  • Lemasson FA, Strunk T, Gerstel P, Hennrich F, Lebedkin S, Barner-Kowollik C, Wenzel W, Kappes MM, Mayor M. Selective dispersion of single-walled carbon nanotubes with specific chiral indices by poly(N-decyl-2,7-carbazole). J Am Chem Soc 2011; 133: 652–655.Google Scholar

  • Li J, Grimsdale AC. Carbazole-based polymers for organic photovoltaic devices. Chem. Soc. Rev 2010; 39: 2399–2410.CrossrefPubMedGoogle Scholar

  • Lin Y-H, Wu H-H, Wong K-T, Hsieh C-C, Lin Y-C, Chou P-T. Modulate photoinduced electron transfer efficiency of bipolar dendritic systems. Org Lett 2008; 10: 3211–3214.CrossrefPubMedGoogle Scholar

  • Liu J, He W, Zhang L, Zhang Z, Zhu J, Yuan L, Chen H, Cheng Z, Zhu X. Bifunctional nanoparticles with fluorescence and magnetism via surface-initiated AGET ATRP mediated by an iron catalyst. Langmuir 2011; 27: 12684–12692.PubMedCrossrefGoogle Scholar

  • Liu J, Zhang L, Shi S, Chen S, Zhou N, Zhang Z, Cheng Z, Zhu X. A novel and universal route to SIO2-supported organic/inorganic hybrid noble metal nanomaterials via surface RAFT polymerization. Langmuir 2010; 26: 14806–14813.PubMedCrossrefGoogle Scholar

  • Lo S-C, Namdas EB, Shipley CP, Markham JPJ, Anthopolous TD, Burn PL, Samuel IDW. The synthesis and properties of iridium cored dendrimers with carbazole dendrons. Org Electron 2006; 7: 85–98.CrossrefGoogle Scholar

  • Loiseau F, Campagna S, Hameurlaine A, Dehaen W. Dendrimers made of porphyrin cores and carbazole chromophores as peripheral units. Absorption spectra, luminescence properties, and oxidation behavior. J Am Chem Soc 2005; 127: 11352–11363.PubMedCrossrefGoogle Scholar

  • Mahapatra AK, Roy J, Sahoo P. Fluorescent carbazolyldithiane as a highly selective chemodosimeter via protection/deprotection functional groups: a ratiometric fluorescent probe for Cd(II). Tetrahedron Lett 2011; 52: 2965–2968.CrossrefGoogle Scholar

  • Malenovska M, Litschauer M, Neouze M-A, Schubert U, Peled A, Lellouche J-P. Multi-component hybrid inorganic-organic-inorganic particles with various metal oxide outer shells. J Organomet Chem 2009; 694: 1076–1080.Google Scholar

  • Malenovska M, Neouze M-A, Schubert U, Peled A, Lellouche J-P. Multi-component hybrid organic-inorganic particles with highly dispersed silver nanoparticles in the external shell. Dalton Trans 2008; 4647–4651.PubMedGoogle Scholar

  • Manickam M, Iqbal P, Belloni M, Kumar S, Preece JA. A brief review of carbazole-based photorefractive liquid crystalline materials. Israel J. Chem 2012; 52: 917–934.Google Scholar

  • Martin CR. Nanomaterials: a membrane-based synthetic approach. Science 1994; 266: 1961–1966.Google Scholar

  • McClenaghan ND, Passalacqua R, Loiseau F, Campagna S, Verheyde B, Hameurlaine A, Dehaen W. Ruthenium (II) dendrimers containing carbazole-based chromophores as branches. J Am Chem Soc 2003; 125: 5356–5365.PubMedCrossrefGoogle Scholar

  • Morin J-F, Leclerc M. Syntheses of conjugated polymers derived from N-alkyl-2,7-carbazoles. Macromolecules 2001; 34: 4680–4682.CrossrefGoogle Scholar

  • Morin J-F, Leclerc M, Adés D, Siove A. Polycarbazoles: 25 years of progress. Macromol Rapid Commun 2005; 26: 761–778.CrossrefGoogle Scholar

  • Mornet S, Vasseur S, Grasse F, Duguet E. Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 2004; 14: 2161–2175.CrossrefGoogle Scholar

  • Naddaka M, Mondal E, Lellouche J-P. Oxidative fabrication of spherical polycarbazole-based. Mater Lett 2011a; 65: 1165–1167.CrossrefGoogle Scholar

  • Naddaka M, Mondal E, Lellouche J-P. Preparation of novel photoreactive polycarbazole-based microparticles: reactivity features. J Polym Sci Part A Polym Chem 2011b; 49: 4687–4693.CrossrefGoogle Scholar

  • Nakabayashi K, Mori H. Novel complex polymers with carbazole functionality by controlled radical polymerization. Int. J. Polym. Sci 2012;ID 170912: 18.Google Scholar

  • Omer KM, Ku S-Y, Chen Y-C, Wong K-T, Bard AJ. Electrochemical behavior and electrogenerated chemiluminescence of star-shaped D-A compounds with a 1,3,5-triazine core and substituted fluorene arms. J Am Chem Soc 2010; 132: 10944–10952.CrossrefPubMedGoogle Scholar

  • Ozawa H, Fujigaya T, Song S, Suh H, Nakashima N. Different chiral selective recognition/extraction of (n,m) single-walled carbon nanotubes using copolymers carrying a carbazole or fluorene moiety. Chem Lett 2011; 40: 470–472.CrossrefGoogle Scholar

  • Palayangoda SS, Cai X, Adhikari RM, Neckers DC. Carbazole-based donor-acceptor compounds: highly fluorescent organic nanoparticles. Org Lett 2008; 10: 281–284.PubMedCrossrefGoogle Scholar

  • Pankhurst QA, Connolly J, Jones SK Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 2003; 36: R167–R181.CrossrefGoogle Scholar

  • Panthi K, Adhikari RM, Kinstle TH. Carbazole donor-carbazole linker-based compounds: preparation, photophysical properties, and formation of fluorescent nanoparticles. J Phys Chem A 2010; 114: 4550–4557.CrossrefPubMedGoogle Scholar

  • Payne AG. Using immunomagnetic technology and other means to facilitate stem cell homing. Med Hypotheses 2004; 62: 718–720.PubMedCrossrefGoogle Scholar

  • Peled A, Kotlyar V, Lellouche J-P. A new method for the preparation of silica-polycarbazole composite particles of a core-shell morphology. J Mater Chem 2009; 19: 268–273.CrossrefGoogle Scholar

  • Périé K, Marks R, Szunerits S, Cosnier S, Lellouche J-P. Novel electro-oxidizable chiral N-substituted dicarbazoles and resulting electroactive films for covalent attachment of proteins. Tetrahedron Lett, 2000; 41: 3725–3729.CrossrefGoogle Scholar

  • Poncharal P, Wang ZL, Ugarte D, de Heer WA. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 1999; 283: 1513–1516.Google Scholar

  • Pron A, Gawrys P, Zagorska M, Djurado D, Demadrille R. Electroactive materials for organic electronics: preparation strategies, structural aspects and characterization techniques. Chem Soc Rev 2010; 39: 2577–2632.CrossrefPubMedGoogle Scholar

  • Radhakrishnan B, Ranjan R, Brittain W. Surface initiated polymerizations from silica nanoparticles. J Soft Matter 2006; 2: 386–396.CrossrefGoogle Scholar

  • Rahman AFMM, Wang F, Matsuda K, Kimura T, Komatsu N. Diameter-based separation of single-walled carbon nanotubes through selective extraction with dipyrene nanotweezers. Chem Sci 2011; 2: 862–867.CrossrefGoogle Scholar

  • Ravindranath R, Ajikumar PK, Bahulayan S, Hanafiah NBM, Baba A, Advincula RC, Knoll W, Valiyaveettil S. Ultrathin conjugated polymer network films of carbazole functionalized poly(p-phenylenes) via electropolymerization. J Phys Chem B 2007; 111: 6336–6343.PubMedCrossrefGoogle Scholar

  • Roncali J. Electrogenerated functional conjugated polymers as advanced electrode materials. J Mater Chem 1999; 9: 1875–1893.CrossrefGoogle Scholar

  • Roy J, Jana AK, Mal D. Recent trends in the synthesis of carbazoles: an update. Tetrahedron 2012; 68: 6099–6121.CrossrefGoogle Scholar

  • Sadki S, Schottland P, Brodie N, Sabouraud G. The mechanisms of pyrrole electropolymerization. Chem Soc Rev 2000; 29: 283–293.Google Scholar

  • Santos CM, Tria MCR, Vergara RAMV, Ahmed F, Advincula RC, Rodrigues DF. Antimicrobial graphene polymer (PVK-GO) nanocomposite films. Chem Commun 2011; 47: 8892–8894.CrossrefGoogle Scholar

  • Sinha S, Kumar S, Koner RR, Mathew J, Nandi CK, Ghosh S. Carboxylated ‘locking unit’ directed ratiometric probe design, synthesis and application in selective recognition of Fe3+/Cu2+. RSC Adv 2013; 3: 6271–6277.CrossrefGoogle Scholar

  • Talham DR. Conducting and magnetic Langmuir-Blodgett films. Chem. Rev 2004; 104: 5479–5502.PubMedCrossrefGoogle Scholar

  • Tao Y, Yang C, Qin J. Organic host materials for phosphorescent organic light-emitting diodes. Chem Soc Rev 2011; 40: 2943–2970.CrossrefPubMedGoogle Scholar

  • Taranekar P, Fulghum T, Patton D, Ponnapati R, Clyde G, Advincula R. Investigating carbazole jacketed precursor dendrimers: sonochemical synthesis, characterization, and electrochemical crosslinking properties. J Am Chem Soc 2007; 129: 12537–12548.Google Scholar

  • Tran-Van F, Henri T, Chevrot C. Synthesis and electrochemical properties of mixed ionic and electronic modified polycarbazole. Electrochim Acta 2002; 47: 2927–2936.CrossrefGoogle Scholar

  • Upamali KAN, Estrada LA, De PK, Cai X, Krause JA, Neckers DC. Carbazole-based cyano-stilbene highly fluorescent microcrystals. Langmuir 2011; 27: 1573–1580.CrossrefPubMedGoogle Scholar

  • Wakim S, Aïch BR, Tao Y, Leclerc M. Charge transport, photovoltaic, and thermoelectric properties of poly(2,7-Carbazole) and poly(Indolo[3,2-b]carbazole) derivatives. Polym Rev 2008; 48: 432–462.CrossrefGoogle Scholar

  • Walter MV, Malkoch M. Simplifying the synthesis of dendrimers: accelerated approaches. Chem Soc Rev 2012; 41: 4593–4609.CrossrefPubMedGoogle Scholar

  • Wang F, Matsuda K, Rahman AFMM, Kimura T, Komatsu N. Improved selectivity in discriminating handedness and diameter of single-walled carbon nanotubes with N-substituted 3,6-carbazolylene-bridged chiral diporphyrin nanotweezers. Nanoscale 2011; 3: 4117–4124.PubMedCrossrefGoogle Scholar

  • Wharton SI, Henry JB, McNab H, Mount AR. The production and characterisation of novel conducting redox-active oligomeric thin films from electrooxidised indolo[3,2,1-jk]carbazole. Chem Eur J 2009; 15: 5482–5490.CrossrefGoogle Scholar

  • Wong K-T, Lin Y-H, Wu H-H, Fungo F. Synthesis and properties of dumbbell-shaped dendrimers containing 9-phenylcarbazole dendrons. Org Lett 2007; 9: 4531–4534.CrossrefPubMedGoogle Scholar

  • Xu T, Lu R, Liu X, Zheng X, Qiu X, Zhao Y. Phosphorus(V) porphyrins with axial carbazole-based dendritic substituents. Org Lett 2007; 9: 797–800.CrossrefPubMedGoogle Scholar

  • Yang J, Ye T, Ma D, Zhang Q. “Click” chemistry synthesis of carbazole dendrimer as host material for electrophosphorescent device. Synth Met 2011; 161: 330–334.Google Scholar

  • Yang P, Gai S, Lin J. Functionalized mesoporous silica materials for controlled drug delivery. Chem Soc Rev 2012; 41: 3679–3698.CrossrefPubMedGoogle Scholar

  • You J, Li G, Wang Z. Dendrimers with tetraphenylsilane core and 9-phenylcarbazole-based dendrons: synthesis, photophysics, and electrochemical behavior. RSC Adv 2012; 2: 9488–9494.CrossrefGoogle Scholar

  • Zhou L, Yuan J, Yuan W, Zhou M, Wu S, Li Z, Xing X, Shen D. Synthesis and characterization of multi-functional hybrid magnetite nanoparticles with biodegradability, superparamagnetism, and fluorescence. Mater Lett 2009; 63: 1567–1570.CrossrefGoogle Scholar

  • Zhou L, Cai Z, Yuan J, Kang Y, Yuan W, Shen D. Multifunctional hybrid magnetite nanoparticles with pH-responsivity, superparamagnetism and fluorescence. Polym Int 2011; 60: 1303–1308.Google Scholar

About the article

Jean-Paul Lellouche

Jean-Paul (Moshe) Lellouche earned his PhD degree in 1981 (radio-isotopic chemistry, La Doua Faculty, Lyon, France). Then in October 2000 he joined the Department of Chemistry/Institute of Nanotechnology & Advanced Materials of Bar-Ilan University (Israel) and since July 2008 has been a full professor in organic chemistry/nano(bio)technology. His main research interests focus on the development of conducting polymers (CPs)/related nanocomposites as well as on functional nanoscale colloids for diverse materials (carbon nanotube/graphene-CP composites – solar/fuel cells), bio/immunosensing applications (nanoscale systems for siRNA/microRNA delivery, and photo-reactive catalyst nanoparticles (renewable energies). He has authored 105 peer-reviewed papers, 14 patents, and 3 book chapters.

Rik Rani Koner

Rik Rani Koner obtained her PhD degree from the Department of Chemistry, Indian Institute of Technology Guwahati (IITG) under the supervision of Professor Manabendra Ray. She then moved to Professor Tochtrop’s research group at Case Western Reserve University, USA, for postdoctoral studies. Next, she moved to Professor Krautscheid’s lab located at the Department of Chemistry, University of Leipzig, Germany, for postdoctoral studies. Currently, she is working as a Young Scientist in the IIT Mandi. Her main research interests are to develop porous materials as next-generation energy storage and chiral metal-organic framework.

Subrata Ghosh

After receiving his PhD degree from IITG under the supervision of Professor A.T. Khan in 2006, Subrata Ghosh moved to Professor Lellouche’s group at Bar-Ilan University (Israel) for postdoctoral studies. He then joined Professor Tochtrop’s group at Case Western Reserve University (USA) as a postdoctoral fellow in 2008. In the meantime, he was awarded the Alexander von Humboldt fellowship and joined Professor Schneider’s group at University of Leipzig as Humboldt fellow to pursue postdoctoral studies in 2009. Currently, he is working as an assistant professor in IIT Mandi. His research interests include organic electronics, chemo-/biosensors and energetic materials.


Corresponding authors: Jean-Paul Lellouche, Department of Chemistry, Nanomaterials Research Center, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel, e-mail: ; and Subrata Ghosh, School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175001, India, e-mail:


Received: 2013-06-24

Accepted: 2013-08-08

Published Online: 2013-09-07

Published in Print: 2013-12-01


Citation Information: Reviews in Chemical Engineering, Volume 29, Issue 6, Pages 413–437, ISSN (Online) 2191-0235, ISSN (Print) 0167-8299, DOI: https://doi.org/10.1515/revce-2013-0023.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Yuiki Kawada, Shunsuke Ohmura, Misaki Kobayashi, Wataru Nojo, Masaki Kondo, Yuka Matsuda, Junpei Matsuoka, Shinsuke Inuki, Shinya Oishi, Chao Wang, Tatsuo Saito, Masanobu Uchiyama, Takanori Suzuki, and Hiroaki Ohno
Chemical Science, 2018
[5]
Feng Yu, Dan Li, Yu Wei, Rui-Ming Kang, and Qi-Xiang Guo
Tetrahedron, 2018
[6]
Robert Schroot, Ulrich S. Schubert, and Michael Jäger
Macromolecules, 2017, Volume 50, Number 4, Page 1319
[7]
Robert Schroot, Ulrich S. Schubert, and Michael Jäger
Macromolecules, 2016, Volume 49, Number 23, Page 8801
[9]
Jacob R. Stepherson, Caitlan E. Ayala, Thomas H. Tugwell, Jeffrey L. Henry, Frank R. Fronczek, and Rendy Kartika
Organic Letters, 2016, Volume 18, Number 12, Page 3002
[10]
Masamitsu Taguchi, Yusuke Tokimizu, Shinya Oishi, Nobutaka Fujii, and Hiroaki Ohno
Organic Letters, 2015, Volume 17, Number 24, Page 6250
[11]
Reza B. Moghaddam and Peter G. Pickup
Electrochimica Acta, 2014, Volume 130, Page 577
[12]
Joyeeta Roy and Dipakranjan Mal
European Journal of Organic Chemistry, 2014, Volume 2014, Number 9, Page 1873

Comments (0)

Please log in or register to comment.
Log in