Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in Chemical Engineering

Editor-in-Chief: Luss, Dan / Brauner, Neima

Editorial Board: Agar, David / Davis, Mark E. / Edgar, Thomas F. / Giorno, Lidietta / Joshi, J. B. / Khinast, Johannes / Kost, Joseph / Leal, L. Gary / Li, Jinghai / Mills, Patrick / Morbidelli, Massimo / Ng, Ka Ming / Schouten, Jaap C. / Seinfeld, John / Stitt, E. Hugh / Tronconi, Enrico / Vayenas, Constantinos G. / Zagoruiko, Andrey / Zondervan, Edwin

IMPACT FACTOR 2018: 4.200

CiteScore 2018: 4.96

SCImago Journal Rank (SJR) 2018: 1.016
Source Normalized Impact per Paper (SNIP) 2018: 1.572

See all formats and pricing
More options …
Volume 30, Issue 1


Synthesis of zeolites in the absence of organic structure-directing agents: factors governing crystal selection and polymorphism

Matthew D. Oleksiak
  • Department of Chemical and Biomolecular Engineering, University of Houston, 4800 Calhoun Road, Houston, TX 77204-4004, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jeffrey D. Rimer
  • Corresponding author
  • Department of Chemical and Biomolecular Engineering, University of Houston, 4800 Calhoun Road, Houston, TX 77204-4004, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-10-22 | DOI: https://doi.org/10.1515/revce-2013-0020


Organic structure-directing agents (OSDAs) are commonly avoided in commercial zeolite synthesis because of the economic and environmental disadvantages associated with the synthesis and removal of organics occluded within zeolite micropores. Zeolite crystallization in OSDA-free media is the route by which microporous clays form in nature, and it is also the preferred method of producing zeolites in bulk for a wide range of applications. There are many synthesis parameters that influence zeolite crystallization, among which include the molar fractions of reagents (silica, alumina, and hydroxide ions), water content, temperature, synthesis aging and heating time, the selection of extraframework cations, the choice of silica and alumina sources, and the use of crystal seeds. In this review, we discuss zeolite framework types that form in OSDA-free solutions at these different synthesis conditions in an effort to highlight structure-property relationships while simultaneously emphasizing the areas where further studies are needed to optimize and/or discover new materials. Interestingly, fewer than 15% of the total reported zeolite structures have been prepared in the absence of OSDAs. For many of these structures, fundamental mechanisms governing their formation are not well understood. In addition, OSDA-free syntheses tend to be more susceptible to the formation of crystal polymorphs (or impurities) that can be generated through a series of structural transformations during the course of zeolite growth. Here we examine the driving forces for phase transitions and explore methods to control phase selection and polymorphism. In order to better facilitate comparisons among zeolite synthesis parameters, we have reinstituted the approach of using kinetic phase diagrams to identify conditions of phase stability.

Keywords: crystallization; kinetics; nanomaterials; nucleation; Ostwald step rule; polymorphism; structure-directing agent; synthesis; thermodynamics; zeolite


  • Addadi L, Joester D, Nudelman F, Weiner S. Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chem-Eur J 2006; 12: 981–987.Google Scholar

  • Agger JR, Shoaee M, Mistry M, Slater B. Crystal growth of analcime studied by AFM and atomistic simulation. J Cryst Growth 2006; 294: 78–82.Google Scholar

  • Aiello R, Barrer RM. Hydrothermal chemistry of silicates. Part. XIV. Zeolite crystallisation in presence of mixed bases. J Chem Soc A 1970; 1470–1475.Google Scholar

  • Aiello R, Crea F, Nastro A, Pellegrino C. Zeolite crystallization from high-silica monocationic or bicationic alkali (Li, Na, or K) gels in presence and in absence of TPA ions. Zeolites 1987; 7: 549–553.CrossrefGoogle Scholar

  • Alfaro S, Rodriguez C, Valenzuela MA, Bosch P. Aging time effect on the synthesis of small crystal LTA zeolites in the absence of organic template. Mater Lett 2007; 61: 4655–4658.CrossrefGoogle Scholar

  • Amos FF, Sharbaugh DM, Talham DR, Gower LB, Fricke M, Volkmer D. Formation of single-crystalline aragonite tablets/films via an amorphous precursor. Langmuir 2007; 23: 1988–1994.CrossrefPubMedGoogle Scholar

  • Andersen IGK, Andersen EK, Norby P, Colella C, Degennaro M. Synthesis and structure of an ABW type thallium aluminosilicate. Zeolites 1991; 11: 149–154.CrossrefGoogle Scholar

  • Andries KJ, Dewit B, Grobet PJ, Bosmans HJ. The synthesis and properties of synthetic zeolite Linde-Q. Zeolites 1991; 11: 116–123.CrossrefGoogle Scholar

  • Azizi SN, Yousefpour M. Synthesis of zeolites NaA and analcime using rice husk ash as silica source without using organic template. J Mater Sci 2010; 45: 5692–5697.CrossrefGoogle Scholar

  • Bajpai PK, Rao MS, Gokhale K. Synthesis of mordenite type zeolite. Ind Eng Chem Prod RD 1978; 17: 223–227.CrossrefGoogle Scholar

  • Bajpai PK, Rao MS, Gokhale K. Synthesis of mordenite type zeolite using silica from rice husk ash. Ind Eng Chem Prod RD 1981; 20: 721–726.CrossrefGoogle Scholar

  • Ban T, Saito H, Naito M, Ohya Y, Takahashi Y. Synthesis of zeolite L crystals with different shapes. J Porous Mat 2007; 14: 119–126.CrossrefGoogle Scholar

  • Barrer RM. Hydrothermal chemistry of zeolites. New York: Academic Press, 1982.Google Scholar

  • Barrer RM, Denny PJ. Hydrothermal chemistry of silicates. Part X. Partial study of field CaO-Al2O3-SiO2-H2O. J Chem Soc 1961; 983–1000.Google Scholar

  • Barrer RM, Mainwaring DE. Chemistry of Soil Minerals. Part XII. Transformations of metakaolinite with solutions containing barium hydroxide. J Chem Soc Dalton 1972; 1259–1265.Google Scholar

  • Barrer RM, Marcilly C. Hydrothermal chemistry of silicates. Part XV. Synthesis and nature of some salt-bearing aluminosilicates. J Chem Soc A 1970; 2735–2745.Google Scholar

  • Barrer RM, Marshall DJ. Hydrothermal chemistry of silicates. Part XII. Synthetic strontium aluminosilicates. J Chem Soc 1964a; 485–497.Google Scholar

  • Barrer RM, Marshall DJ. Hydrothermal chemistry of silicates. Part XIII. Synthetic barium aluminosilicates. J Chem Soc 1964b; 2296–2305.Google Scholar

  • Barrer RM, McCallum N. Hydrothermal chemistry of silicates. Part IV. Rubidium and coesium aluminosilicates. J Chem Soc 1953; 4029–4035.Google Scholar

  • Barrer RM, Sieber W. Hydrothermal chemistry of silicates. Part 22. Hydrated barium-sodium aluminosilicates. J Chem Soc Dalton 1978; 598–601.CrossrefGoogle Scholar

  • Barrer RM, White EAD. The hydrothermal chemistry of silicates. Part I. Synthetic lithium aluminosilicates. J Chem Soc 1951; 1267–1278.Google Scholar

  • Barrer RM, White EAD. The hydrothermal chemistry of silicates. Part II. Synthetic crystalline sodium aluminosilicates. J Chem Soc 1952; 1561–1571.Google Scholar

  • Barrer RM, Beaumont R, Collela C. Chemistry of soil minerals. Part XIV. Action of some basic solutions on metakaolinite and kaolinite. J Chem Soc Dalton 1974; 934–941.Google Scholar

  • Barrer RM, Barri S, Klinowski J. Zeolite RHO (Part I) synthesis and characterisation. Proceedings of the fifth international conference on zeolites, Naples, Italy, June 2–6, 1980.Google Scholar

  • Basaldella EI, Tara JC. Synthesis of LSX zeoltie in the Na/K system – influence of the Na/K ratio. Zeolites 1995; 15: 243–246.CrossrefGoogle Scholar

  • Beard WC. Linde type B zeolties an related mineral and synthetic phases. Adv Chem Ser 1971; 237–249.Google Scholar

  • Belhekar AA, Chandwadkar AJ, Hegde SG. Physicochemical characterization of a synthetic melinoite (Linde W-like) zeolite containing Na K, and Sr cations. Zeolites 1995; 15: 535–539.CrossrefGoogle Scholar

  • Bellussi G, Perego G, Carati A, Cornaro U, Fattore V. 5–1 SBU based zeolites from wholly inorganic systems. In: Grobet PJ, Mortier WJ, Vansant EF, Schulz-Ekloff G, editors. Innovation in zeolite materials science, Studies in Surface Science and Catalysis. Amsterdam, Netherlands: Elsevier, 1988: 37–44.Google Scholar

  • Bhat SD, Niphadkar PS, Gaydhankar TR, Awate SV, Belhekar AA, Joshi PN. High temperature hydrothermal crystallization, morphology and yield control of zeolite type K-LTL. Micropor Mesopor Mater 2004; 76: 81–89.CrossrefGoogle Scholar

  • Bhawe Y, Moliner-Marin M, Lunn JD, Liu Y, Malek A, Davis M. Effect of cage size on the selective conversion of methanol to light olefins. ACS Catal 2012; 2: 2490–2495.CrossrefGoogle Scholar

  • Bosnar S, Subotić B. Mechanism and kinetics of the growth of zeolite microcrystals – Part 1: influence of the alkalinity of the system on the growth kinetics of zeolite A microcrystals. Micropor Mesopor Mater 1999; 28: 483–493.Google Scholar

  • Bosnar S, Antonić T, Bronić J, Subotić B. Mechanism and kinetics of the growth of zeolite microcrystals. Part 2: influence of sodium ions concentration in the liquid phase on the growth kinetics of zeolite A microcrystals. Micropor Mesopor Mater 2004; 76: 157–165.CrossrefGoogle Scholar

  • Bosnar S, Bronić J, Krznarić I, Subotić B. Influence of the concentrations of aluminium and silicon in the liquid phase on the growth kinetics of zeolite A and X microcrystals. Croat Chem Acta 2005; 78: 1–8.Google Scholar

  • Bosnar S, Bronić J, Jelić TA, Subotić B. Anomalous nucleation events during crystallization of zeolite A under marginal alkalinities: a population balance analysis. Crystengcomm 2012; 14: 3069–3079.CrossrefGoogle Scholar

  • Breck DW. Crystalline zeolite S. US Patent 3054657, 1962.Google Scholar

  • Breck DW. Crystalline zeolite Y. US Patent 3130007, 1964.Google Scholar

  • Breck DW, Acara NA. Crystalline zeolite T. US Patent 2950952, 1960a.Google Scholar

  • Breck DW, Acara NA. Crystalline zeolite E. US Patent 2962355, 1960b.Google Scholar

  • Breck DW, Acara NA. Crystalline zeolite J. US Patent 3011869, 1961a.Google Scholar

  • Breck DW, Acara NA. Crystalline zeolite M. US Patent 2995423, 1961b.Google Scholar

  • Breck DW, Flanigen EM. Molecular sieves: papers read at the conference held at the school of pharmacy. Society of Chemical Industry, 1968.Google Scholar

  • Brent R, Lobo AJW, Lewis DW, Anderson MW. Modifying the crystal habit of zeolite L by addition of an organic space filler. J Phys Chem C 2010; 114: 18240–18246.CrossrefGoogle Scholar

  • Bronić J, Palčić A, Subotić B, Itani L, Valtchev V. Influence of alkalinity of the starting system on size and morphology of the zeolite A crystals. Mater Chem Phys 2012; 132: 973–976.CrossrefGoogle Scholar

  • Brosius R, Martens JA. Reaction mechanisms of lean-burn hydrocarbon SCR over zeolite catalysts. Top Catal 2004; 28: 119–130.CrossrefGoogle Scholar

  • Buckley HE. Crystal growth. New York: John Wiley and Sons, 1951.Google Scholar

  • Buhl J-C, Schuster K, Robben L. Nanocrystalline sodalite grown from superalkaline NaCl bearing gels at low temperature (333 K) and the influence of TEA on crystallization process. Micropor Mesopor Mater 2011; 142: 666–671.Google Scholar

  • Burton A, Feuerstein M, Lobo RF, Chan JCC. Characterization of cancrinite synthesized in 1,3-butanediol by Rietveld analysis of powder neutron diffraction data and solid-state Na-23 NMR spectroscopy. Microporous Mesoporous Mat 1999; 30: 293–305.Google Scholar

  • Cannan TR. Crystalline zeolite LZ-202 and process for preparing same. US Patent 4840779, 1989.Google Scholar

  • Carr CS, Shantz DF. Synthesis of high aspect ratio low-silica zeolite L rods in oil/water/surfactant mixtures. Chem Mater 2005; 17: 6192–6197.CrossrefGoogle Scholar

  • Chaikittisilp W, Suzuki Y, Mukti RR, Suzuki T, Sugita K, Itabashi K, Shimojima A, Okubo T. Formation of hierarchically organized zeolites by sequential intergrowth. Angew Chem-Int Edit 2013; 52: 3355–3359.CrossrefGoogle Scholar

  • Cheng YT, Wang ZP, Gilbert CJ, Fan W, Huber GW. Production of p-Xylene from biomass by catalytic fast pyrolysis using ZSM-5 catalysts with reduced pore openings. Angew Chem-Int Edit 2012; 51: 11097–11100.CrossrefGoogle Scholar

  • Chi CH, Sand LB. Synthesis of Na-clinoptilolite and K-clinoptilolite endmembers. Nature 1983; 304: 255–257.CrossrefGoogle Scholar

  • Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 2009; 461: 246–U120.Google Scholar

  • Cichocki A. Effect of glass corrosion on the synthesis of zeolite-T. Zeolites 1985; 5: 26–30.CrossrefGoogle Scholar

  • Cichocki A, Koscielniak P. Experimental designs applied to hydrothermal synthesis of zeolite ERI plus OFF (T) in the Na2O-K2O-Al2O3-SiO2-H2O system Part 3. Mathematical models and geometrical forms of the relationship between product properties and synthesis parameters: an attempt to optimize synthesis conditions. Micropor Mesopor Mater 2000; 41: 241–251.Google Scholar

  • Ciric J. Lithium-containing crystalline aluminosilicate. US Patent 3415736, 1968a.Google Scholar

  • Ciric J. ZSM-2 zeolite and preparation thereof. US Patent 3411874, 1968b.Google Scholar

  • Colombo M, Nova I, Tronconi EA. Comparative study of the NH3-SCR reactions over a Cu-zeolite and a Fe-zeolite catalyst. Catal Today 2010; 151: 223–230.Google Scholar

  • Constable RFS. Kinetics and mechanism of crystallization. New York: Academic Press, 1968.Google Scholar

  • Copeland JR, Shi X-R, Sholl DS, Sievers C. Surface interactions of C-2 and C-3 polyols with gamma-Al2O3 and the role of coadsorbed water. Langmuir 2013; 29: 581–593.Google Scholar

  • Corma A, Diaz-Cabanas MJ, Rey F, Nicolooulas S, Boulahya K. ITQ-15: the first ultralarge pore zeolite with a bi-directional pore system formed by intersecting 14- and 12-ring channels, and its catalytic implications. Chem Commun 2004; 1356–1357.Google Scholar

  • Cundy CS, Cox PA. The hydrothermal synthesis of zeolites: precursors, intermediates and reaction mechanism. Micropor Mesopor Mater 2005; 82: 1–78.CrossrefGoogle Scholar

  • Cundy CS, Lowe BM, Sinclair DM. Direct measurements of the crystal-growth rate and nucleation behavior of silicalite, a zeolitic silica polymorph. J Cryst Growth 1990; 100: 189–202.CrossrefGoogle Scholar

  • Dai FY, Suzuki M, Takahashi H, Saito I. Mechanism of zeolite crystallization without using template reagents of organic bases. In: Murakami Y, Iijima A, Ward JW, editors. New developments in zeolite science and technology, Studies in Surface Science and Catalysis. Amsterdam, Netherlands: Elsevier, 1986: 223–230.Google Scholar

  • Davis TM, Drews TO, Ramanan H, He C, Dong JS, Schnablegger H, Katsoulakis MA, Kokkoli E, McCormick AV, Penn RL, Tsapatsis M. Mechanistic principles of nanoparticle evolution to zeolite crystals. Nat Mater 2006; 5: 400–408.CrossrefPubMedGoogle Scholar

  • de Moor P, Beelen TPM, van Santen RA. Influence of aging and dilution on the crystallization of silicalite-1. J Appl Crystallogr 1997; 30: 675–679.Google Scholar

  • de Moor P, Beelen TPM, van Santen RA, Tsuji K, Davis ME. SAXS and USAXS investigation on nanometer-scaled precursors in organic-mediated zeolite crystallization from gelating systems. Chem Mater 1999; 11: 36–43.CrossrefGoogle Scholar

  • De Yoreo J. Crystal nucleation: more than one pathway. Nat Mater 2013; 12: 284–285.PubMedCrossrefGoogle Scholar

  • Direnzo F, Fajula F, Espiau P, Nicolle MA, Dutartre R. The influecne of microgravity on zeolite crystallization. Zeolites 1994; 14: 256–261.CrossrefGoogle Scholar

  • Dokter WH, Vangarderen HF, Beelen TPM, Vansanten RA, Bras W. Homogeneous versus heterogeneous zeolite nucleation. Angew Chem-Int Edit Engl 1995; 34: 73–75.CrossrefGoogle Scholar

  • Duecker HC, Weiss A, Guerra CR. Synthetic crystalline zeolite. US Patent 3567372, 1971.Google Scholar

  • Dutta PK, Bronić J. Mechanism of zeolite formation – seed gel intereaction. Zeolites 1994; 14: 250–255.CrossrefGoogle Scholar

  • Dwyer FG, Chu P. ZSM-4 crystallization via faujasite metamorphosis. J Catal 1979; 59: 263–271.Google Scholar

  • Egeblad K, Kustova M, Klitgaard SK, Zhu K, Christensen CH. Mesoporous zeolite and zeotype single crystals synthesized in fluoride media. Micropor Mesopor Mater 2007; 101: 214–223.CrossrefGoogle Scholar

  • Engelhardt G, Hoebbel D, Tarmak M, Samoson A, Lippmaa E. Si-29 NMR investigations on the anion structure of crystalline tetramethylammonium-aluminosilicates and aluminosilicate solutions. Z Anorg Allg Chem 1982; 484: 22–32.CrossrefGoogle Scholar

  • Fahlke B, Starke P, Seefeld V, Wieker W, Wendlandt KP. On the intermediates in zeolite Y snythesis. Zeolites 1987; 7: 209–213.CrossrefGoogle Scholar

  • Fan W, Ogura M, Sankar G, Okubo T. In situ small-angle and wide-angle X-ray scattering investigation on nucleation and crystal growth of nanosized zeolite A. Chem Mater 2007; 19: 1906–1917.CrossrefGoogle Scholar

  • Fan W, Morozumi K, Kimura R, Yokoi T, Okubo T. Synthesis of nanometer-sized sodalite without adding organic additives. Langmuir 2008; 24: 6952–6958.CrossrefPubMedGoogle Scholar

  • Fedeyko JM, Rimer JD, Lobo RF, Vlachos DG. Spontaneous formation of silica nanoparticles in basic solutions of small tetraalkylammonium cations. J Phys Chem B 2004; 108: 12271–12275.CrossrefGoogle Scholar

  • Fedeyko JM, Vlachos DG, Lobo RF. Formation and structure of self-assembled silica nanoparticles in basic solutions of organic and inorganic cations. Langmuir 2005; 21: 5197–5206.PubMedCrossrefGoogle Scholar

  • Feoktistova NN, Zhdanov SP. On the kinetics of crystallization of silicalite-1. Zeolites 1989; 9: 136–139.Google Scholar

  • Filobelo LF, Galkin O, Vekilov PG. Spinodal for the solution-to- crystal phase transformation. J Chem Phys 2005; 123: 014904-1–014904-7.PubMedCrossrefGoogle Scholar

  • Freund EF. Mechanism of crystallization of zeolite X. J Cryst Growth 1976; 34: 11–23.CrossrefGoogle Scholar

  • Gaona-Gomez A, Cheng C-H. Modification of zeolite L (LTL) morphology using diols, (OH)(2)(CH2)(2n+2)O-n (n=0, 1, and 2). Micropor Mesopor Mater 2012; 153: 227–235.Google Scholar

  • Ginter DM, Bell AT, Radke CJ. The effects of gel aging on the synthesis of NaY zeolite from colloidal silica. Zeolites 1992; 12: 742–749.CrossrefGoogle Scholar

  • Gomez AG, de Silveira G, Doan H, Cheng CH. A facile method to tune zeolite L crystals with low aspect ratio. Chem Commun 2011; 47: 5876–5878.CrossrefGoogle Scholar

  • Gower LB. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem Rev 2008; 108: 4551–4627.CrossrefPubMedGoogle Scholar

  • Graca I, Ribeiro FR, Cerqueira HS, Lam YL, de Almeida MBB. Catalytic cracking of mixtures of model bio-oil compounds and gasoil. Appl Catal B-Environ 2009; 90: 556–563.CrossrefGoogle Scholar

  • Greenberg SA. The depolymerization of silica in sodium hydroxide solutions. J Phys Chem 1957; 61: 960–965.CrossrefGoogle Scholar

  • Grose RW, Flanigen EM. Novel zeolite compositions and processes for preparing and using same. US Patent 4257885, 1981.Google Scholar

  • Han B, Shin CH, Warrender SJ, Lightfoot P, Wright PA, Camblor MA, Hong SB. Structural chemical zoning in the boundary phase zeolite TNU-7 (EON). Chem Mater 2006; 18: 3023–3033.CrossrefGoogle Scholar

  • Hayhurst David T, Sand LB. Crystallization kinetics and properties of Na, K-phillipsites. In: Gould RF, editor. Molecular Sieves – II, ACS Symposium Series. American Chemical Society 1977; 219–232.Google Scholar

  • Hernandez-Rodriguez M, Jorda JL, Rey F, Corma A. Synthesis and structure determination of a new microporous zeolite with large cavities connected by small pores. J Am Chem Soc 2012; 134: 13232–13235.CrossrefGoogle Scholar

  • Hu D, Xia QH, Lu XH, Luo XB, Liu ZM. Synthesis of ultrafine zeolites by dry-gel conversion without any organic additive. Mater Res Bull 2008; 43: 3553–3561.CrossrefGoogle Scholar

  • Huang Y, Wang K, Dong D, Li D, Hill MR, Hill AJ, Wang H. Synthesis of hierarchical porous zeolite NaY particles with controllable particle sizes. Micropor Mesopor Mater 2010; 127: 167–175.CrossrefGoogle Scholar

  • Huber GW, Corma A. Synergies between bio- and oil refineries for the production of fuels from biomass. Angew Chem-Int Edit 2007; 46: 7184–7201.CrossrefGoogle Scholar

  • Iler RK. The chemistry of silica: solubility, polymerization, colloid and surface properties and biochemistry of silica. New York: Wiley, 1979.Google Scholar

  • Ilias S, Bhan A. Mechanism of the catalytic conversion of methanol to hydrocarbons. ACS Catal 2013; 3: 18–31.CrossrefGoogle Scholar

  • Inoue T, Itakura M, Jon H, Oumi Y, Takahashi A, Fujitani T, Sano T. Synthesis of LEV zeolite by interzeolite conversion method and its catalytic performance in ethanol to olefins reaction. Micropor Mesopor Mater 2009; 122: 149–154.CrossrefGoogle Scholar

  • International Zeolite Association, www.iza-online.org.

  • Itabashi K, Kamimura Y, Iyoki K, Shimojima A, Okubo T. A working hypothesis for broadening framework types of zeolites in seed-assisted synthesis without organic structure-directing agent. J Am Chem Soc 2012; 134: 11542–11549.PubMedCrossrefGoogle Scholar

  • Itakura M, Inoue T, Takahashi A, Fujitani T, Oumi Y, Sano T. Synthesis of high-silica CHA zeolite from FAU zeolite in the presence of benzyltrimethylammonium hydroxide. Chem Lett 2008; 37: 908–909.CrossrefGoogle Scholar

  • Itakura M, Oumi Y, Sadakane M, Sano T. Synthesis of high-silica offretite by the interzeolite conversion method. Mater Res Bull 2010; 45: 646–650.CrossrefGoogle Scholar

  • Itani L, Bozhilov KN, Clet G, Delmotte L, Valtchev V. Factors that control zeolite L crystal size. Chem-Eur J 2011; 17: 2199–2210.CrossrefGoogle Scholar

  • Itani L, Liu Y, Zhang W, Bozhilov KN, Delmotte L, Valtchev V. Investigation of the physicochemical changes preceding zeolite nucleation in a sodium-rich aluminosilicate gel. J Am Chem Soc 2009; 131: 10127–10139.CrossrefGoogle Scholar

  • Iwama M, Suzuki Y, Plevert J, Itabashi K, Ogura M, Okubo T. Location of alkali ions and their relevance to crystallization of low silica X zeolite. Cryst Growth Des 2010; 10: 3471–3479.CrossrefGoogle Scholar

  • Jakkula VS, Williams CD, Hocking TJ, Fullen MA. High selectivity and affinity of Linde type F towards NH4+ on application as a soil amendment for maize growth. Micropor Mesopor Mater 2006; 88: 101–104.Google Scholar

  • Jiang JX, Jorda JL, Yu JH, Baumes LA, Mugnaioli E, Diaz-Cabanas MJ, Kolb U, Corma A. Synthesis and structure determination of the hierarchical meso-microporous zeolite ITQ-43. Science 2011; 333: 1131–1134.Google Scholar

  • Jon H, Nakahata K, Lu BW, Oumi Y, Sano T. Hydrothermal conversion of FAU into (*)BEA zeolites. Micropor Mesopor Mater 2006; 96: 72–78.CrossrefGoogle Scholar

  • Jon H, Takahashi S, Sasaki H, Oumi Y, Sano T. Hydrothermal conversion of FAU zeolite into RUT zeolite in TMAOH system. Micropor Mesopor Mater 2008; 113: 56–63.CrossrefGoogle Scholar

  • Ju JX, Zeng CF, Zhang LX, Xu NP. Continuous synthesis of zeolite NaA in a microchannel reactor. Chem Eng J 2006; 116: 115–121.CrossrefGoogle Scholar

  • Kalapathy U, Proctor A, Shultz J. An improved method for production of silica from rice hull ash. Bioresour Technol 2002; 85: 285–289.CrossrefPubMedGoogle Scholar

  • Kamimura Y, Iyoki K, Elangovan SP, Itabashi K, Shimojima A, Okubo T. OSDA-free synthesis of MTW-type zeolite from sodium aluminosilicate gels with zeolite beta seeds. Micropor Mesopor Mater 2012; 163: 282–290.CrossrefGoogle Scholar

  • Kashchiev D, Vekilov PG, Kolomeisky AB. Kinetics of two-step nucleation of crystals. J Chem Phys 2005; 122: 244706-1–244706-6.CrossrefPubMedGoogle Scholar

  • Kazemimoghadam M, Mohammadi T. Preparation of nano pore hydroxysodalite zeolite membranes using of kaolin clay and chemical sources. Desalination 2011; 278: 438–442.Google Scholar

  • Khajavi S, Sartipi S, Gascon J, Jansen JC, Kapteijn F. Thermostability of hydroxy sodalite in view of membrane applications. Micropor Mesopor Mater 2010; 132: 510–517.CrossrefGoogle Scholar

  • Kim SD, Noh SH, Seong KH, Kim WJ. Compositional and kinetic study on the rapid crystallization of ZSM-5 in the absence of organic template under stirring. Micropor Mesopor Mater 2004; 72: 185–192.CrossrefGoogle Scholar

  • Kim J, Jentys A, Maier SM, Lercher JA. Characterization of Fe-exchanged BEA zeolite under NH3 selective catalytic reduction conditions. J Phys Chem C 2013; 117: 986–993.CrossrefGoogle Scholar

  • Knight CTG, Kinrade SD. Comment on “Identification of precursor species in the formation of MFI zeolite in the TPAOH-TEOS-H2O system”. J Phys Chem B 2002; 106: 3329–3332.CrossrefGoogle Scholar

  • Ko YS, Ahn WS. Crystallization of zeolite L from Na2O-K2O-Al2O3-SiO2-H2O system. Powder Technol 2004; 145: 10–19.Google Scholar

  • Koroglu HJ, Sarioglan A, Tatlier M, Erdem-Senatalar A, Savasci OT. Effects of low-temperature gel aging on the synthesis of zeolite Y at different alkalinities. J Crystal Growth 2002; 241: 481–488.Google Scholar

  • Kragten DD, Fedeyko JM, Sawant KR, Rimer JD, Vlachos DG, Lobo RF, Tsapatsis M. Structure of the silica phase extracted from silica/(TPA)OH solutions containing nanoparticles. J Phys Chem B 2003; 107: 10006–10016.CrossrefGoogle Scholar

  • Krznarić I, Antonić T, Bronić J, Subotić B, Thompson RW. Influence of silica sources on the chemical composition of aluminosilicate hydrogels and the results of their hydrothermal treatment. Croat Chem Acta 2003; 76: 7–17.Google Scholar

  • Kwak JH, Tonkyn RG, Kim DH, Szanyi J, Peden CHF. Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3. J Catal 2010; 275: 187–190.Google Scholar

  • Larlus O, Valtchev VP. Crystal morphology control of LTL-type zeolite crystals. Chem Mater 2004; 16: 3381–3389.CrossrefGoogle Scholar

  • Lechert H. Possibilities and limitations of the prediction of the Si/Al ratios of zeolites from the batch composition. Micropor Mesopor Mater 2000; 40: 181–196.CrossrefGoogle Scholar

  • Lechert H, Kacirek H. The kinetics of nucleation of X zeolites. Zeolites 1993; 13: 192–200.CrossrefGoogle Scholar

  • Lee YJ, Lee JS, Yoon KB. Synthesis of long zeolite-L crystals with flat facets. Micropor Mesopor Mater 2005; 80: 237–246.CrossrefGoogle Scholar

  • Li YS, Chen HL, Liu J, Yang WS. Microwave synthesis of LTA zeolite membranes without seeding. J Membrane Sci 2006; 277: 230–239.CrossrefGoogle Scholar

  • Lin DC, Xu XW, Zuo F, Long YC. Crystallization of JBW, CAN, SOD and ABW type zeolite from transformation of meta-kaolin. Micropor Mesopor Mater 2004; 70: 63–70.CrossrefGoogle Scholar

  • Linares CF, Simon C, Weller MT. Synthesis and characterization of the oxalate cancrinite-type zeolite. Micropor Mesopor Mater 2011; 137: 32–35.CrossrefGoogle Scholar

  • Liu Q, Navrotsky A. Synthesis of nitrate sodalite: an in situ scanning calorimetric study. Geochim Cosmochim Acta 2007; 71: 2072–2078.CrossrefGoogle Scholar

  • Long RQ, Yang RT. Selective catalytic oxidation of ammonia to nitrogen over Fe2O3-TiO2 prepared with a sol-gel method. J Catal 2002; 207: 158–165.CrossrefGoogle Scholar

  • Lowe BM, Nee JRD, Casci JL. Crystallization of inorganic ZSM-5 in the system K2O-Al2O3-SiO2-H2O. Zeolites 1994; 14: 610–619.CrossrefGoogle Scholar

  • Lowenstam HA. Magnetite in denticle capping in recent chitons (polyacophora). Geol Soc Am Bull 1962; 73: 435–438.CrossrefGoogle Scholar

  • Lukyanov DB, Lombardo EA, Sill GA, dItri JL, Hall WK. Selective catalytic reduction (SCR) of NO with methane over CoZSM-5 and HZSM-5 zeolites: on the role of free radicals and competitive oxidation reactions. J Catal 1996; 163: 447–456.CrossrefGoogle Scholar

  • Lupulescu AI, Rimer JD. Tailoring silicalite-1 crystal morphology with molecular modifiers. Angew Chem-Int Edit 2012; 51: 3345–3349.CrossrefGoogle Scholar

  • Lupulescu AI, Kumar M, Rimer JD. A facile strategy to design zeolite L crystals with tunable morphology and surface architecture. J Am Chem Soc 2013; 135: 6608–6617.CrossrefPubMedGoogle Scholar

  • Machado FJ, Lopez CM, Centeno MA, Urbina C. Template-free synthesis and catalytic behaviour of aluminium-rich MFI-type zeolites. Appl Catal A-Gen 1999; 181: 29–38.CrossrefGoogle Scholar

  • Mackinnon I, Millar G, Stolz W. Aluminosilicate of zeolite N structure. US Patent 0269472 A1, 2006.Google Scholar

  • Maghsoodloorad H, Mirfendereski SM, Mohammadi T, Pak A. Effects of gel parameters on the synthesis and characteristics of W-type zeolite nanoparticles. Clay Clay Min 2011; 59: 328–335.Google Scholar

  • Majano G, Delmotte L, Valtchev V, Mintova S. Al-rich zeolite beta by seeding in the absence of organic template. Chem Mater 2009; 21: 4184–4191.CrossrefGoogle Scholar

  • Maldonado M, Oleksiak MD, Chinta S, Rimer JD. Controlling crystal polymorphism in organic-free synthesis of Na-zeolites. J Am Chem Soc 2013; 135: 2641–2652.PubMedCrossrefGoogle Scholar

  • Mallon EE, Bhan A, Tsapatsis M. Driving forces for adsorption of polyols onto zeolites from aqueous solutions. J Phys Chem B 2010; 114: 1939–1945.CrossrefPubMedGoogle Scholar

  • Mallon EE, Babineau IJ, Kranz JI, Guefrachi Y, Siepmann JI, Bhan A, Tsapatsis M. Correlations for adsorption of oxygenates onto zeolites from aqueous solutions. J Phys Chem B 2011; 115: 11431–11438.CrossrefPubMedGoogle Scholar

  • Maniar PD, Navrotsky A, Rabinovich EM, Ying JY, Benziger JB. Energetics and structure of sol-gel silicas. J Non-cryst Solids 1990; 124: 101–111.CrossrefGoogle Scholar

  • Martinez C, Corma A. Inorganic molecular sieves: preparation, modification and industrial application in catalytic processes. Coordin Chem Rev 2011; 255: 1558–1580.Google Scholar

  • Matsumoto T, Miyazaki I, Goto Y. Synthesis and characterization of Li-type EDI zeolite. J Eur Ceram Soc 2006; 26: 455–458.CrossrefGoogle Scholar

  • Milton RM. Molecular sieve adsorbents. US Patent 2882244, 1959.Google Scholar

  • Milton RM. Crystalline zeolite. US Patent 3012853, 1961a.Google Scholar

  • Milton RM. Crystalline zeolite B. US Patent 3008803, 1961b.Google Scholar

  • Milton RM. Crystallline zeolite F. US Patent 2996358, 1961c.Google Scholar

  • Milton RM. Crystalline zeolite R. US Patent 3030181, 1962.Google Scholar

  • Mintova S, Olson NH, Bein T. Electron microscopy reveals the nucleation mechanism of zeolite Y from precursor colloids. Angew Chem-Int Edit 1999a; 38: 3201–3204.CrossrefGoogle Scholar

  • Mintova S, Olson NH, Valtchev V, Bein T. Mechanism of zeolite a nanocrystal growth from colloids at room temperature. Science 1999b; 283: 958–960.Google Scholar

  • Mirfendereski M, Mohammadi T. Investigation of hydrothermal synthesis parameters on characteristics of T type zeolite crystal structure. Powder Technol 2011; 206: 345–352.CrossrefGoogle Scholar

  • Miyake M, Akachi T, Matsuda M. Preparation, structure and photocatalytic properties of cancrinite encapsulating lead and sulfide ions. J Mater Chem 2005; 15: 791–797.CrossrefGoogle Scholar

  • Mullin JW. Crystallisation. London: Butterworths, 1972.Google Scholar

  • Na K, Jo C, Kim J, Cho K, Jung J, Seo Y, Messinger RJ, Chmelka BF, Ryoo R. Directing zeolite structures into hierarchically nanoporous architectures. Science 2011; 333: 328–332.PubMedCrossrefGoogle Scholar

  • Naskar MK, Kundu D, Chatterjee M. Coral-like hydroxy sodalite particles from rice husk ash as silica source. Mater Lett 2011; 65: 3408–3410.CrossrefGoogle Scholar

  • Navrotsky A. Energetic clues to pathways to biomineralization: precursors, clusters, and nanoparticles. Proc Natl Acad Sci USA 2004; 101: 12096–12101.CrossrefGoogle Scholar

  • Navrotsky A, Tian ZR. Systematics in the enthalpies of formation of anhydrous aluminosilicate zeolites, glasses, and dense phases. Chem-Eur J 2001; 7: 769–774.CrossrefGoogle Scholar

  • Navrotsky A, Trofymluk O, Levchenko AA. Thermochemistry of microporous and mesoporous materials. Chem Rev 2009; 109: 3885–3902.CrossrefPubMedGoogle Scholar

  • Ng E-P, Chateigner D, Bein T, Valtchev V, Mintova S. Capturing ultrasmall EMT zeolite from template-free systems. Science 2012a; 335: 70–73.Google Scholar

  • Ng E-P, Goupil JM, Vicente A, Fernandez C, Retoux R, Valtchev V, Mintova S. Nucleation and crystal growth features of EMT-type zeolite synthesized from an organic-template-tree system. Chem Mater 2012b; 24: 4758–4765.CrossrefGoogle Scholar

  • Ogura M, Kawazu Y, Takahashi H, Okubo T. Aluminosilicate species in the hydrogel phase formed during the aging process for the crystallization of FAU zeolite. Chem Mater 2003; 15: 2661–2667.CrossrefGoogle Scholar

  • Olsbye U, Svelle S, Bjorgen M, Beato P, Janssens TVW, Joensen F, Bordiga S, Lillerud KP. Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Angew Chem-Int Edit 2012; 51: 5810–5831.CrossrefGoogle Scholar

  • Osada M, Sasaki I, Nishioka M, Sadakata M, Okubo T. Synthesis of a faujasite thin layer and its application for SO2 sensing at elevated temperatures. Micropor Mesopor Mater 1998; 23: 287–294.CrossrefGoogle Scholar

  • Pan WC, Kolomeisky AB, Vekilov PG. Nucleation of ordered solid phases of proteins via a disordered high-density state: phenomenological approach. J Chem Phys 2005; 122: 174905.CrossrefGoogle Scholar

  • Pan Y, Ju M, Yao J, Zhang L, Xu N. Preparation of uniform nano-sized zeolite A crystals in microstructured reactors using manipulated organic template-free synthesis solutions. Chem Commun 2009; 122: 7233–7235.CrossrefGoogle Scholar

  • Park M, Kim SH, Heo NH, Komarneni S. Synthesis of zeolite rho: aging temperature effect. J Porous Mat 1996; 3: 151–155.CrossrefGoogle Scholar

  • Parnham ER, Morris RE. Ionothermal synthesis of zeolites, metal-organic frameworks, and inorganic-organic hybrids. Accounts Chem Res 2007; 40: 1005–1013.CrossrefGoogle Scholar

  • Passaglia E, Sheppard RA. The crystal chemistry of zeolites. In: Bish D, Ming D, editors. Natural zeolites: occurrence, properties, applications, reviews in mineralogy and geochemistry. Mineralogical Society of America and The Geochemical Society, 2001; 69–116.Google Scholar

  • Petrovic I, Navrotsky A. Thermochemistry of Na-faujasites with varying Si/Al ratios. Micropor Mater 1997; 9: 1–12.CrossrefGoogle Scholar

  • Polak F, Ptak J, Cichocki A. Sposób wytwarzania syntetycznego zeolitu-mordenitu o średnicy porów 6—7 A (A process for preparing synthetic zeolite-mordenite a proe size of 6-7 A). Poland Patent 100913, 1979 (in Polish).Google Scholar

  • Posner AS. Crystal chemistry of bone mineral. Physiol Rev 1969; 49: 760–792.PubMedGoogle Scholar

  • Radulovic A, Dondur V, Dimitrijevic R, Arandjelovic D. Thermal transformation of Na-LTA zeolite into low-carnegieite: the influence of residual sodium and aluminium species. Thermochim Acta 2010; 511: 37–42.CrossrefGoogle Scholar

  • Rakoczy RA, Breuninger M, Hunger M, Traa Y, Weitkamp J. Template-free synthesis of zeolite ferrierite and characterization of its acid sites (Reprinted from Chem. Ing. Tech., 73, 1024–1027, 2001). Chem Eng Technol 2002; 25: 273–275.Google Scholar

  • Ramanan H, Kokkoli E, Tsapatsis M. On the TEM and AFM evidence of zeosil nanoslabs present during the synthesis of silicalite-1. Angew Chem-Int Edit 2004; 43: 4558–4561.Google Scholar

  • Ravishankar R, Kirschhock CEA, Knops-Gerrits PP, Feijen EJP, Grobet PJ, Vanoppen P, De Schryver FC, Miehe G, Fuess H, Schoeman BJ, Jacobs PA, Martens JA. Characterization of nanosized material extracted from clear suspensions for MFI zeolite synthesis. J Phys Chem B 1999; 103: 4960–4964.CrossrefGoogle Scholar

  • Read WT. Dislocations in crystals. New York: McGraw-Hill, 1953.Google Scholar

  • Regis AJ, Sand LB, Calmon C, Gilwood ME. Phase studies in the portion of the soda-alumina-silica-water system producing zeolites. J Phys Chem 1960; 64: 1567–1571.CrossrefGoogle Scholar

  • Ren L, Li C, Fan F, Guo Q, Liang D, Feng Z, Li C, Li S, Xiao, F-S. UV-raman and NMR spectroscopic studies on the crystallization of zeolite A and a new synthetic route. Chem-Eur J 2011; 17: 6162–6169.CrossrefGoogle Scholar

  • Ren N, Subotić B, Bronić J, Tang Y, Sikirić MD, Mišić T, Svetličić V, Bosnar S, Jelić TA. Unusual pathway of crystallization of zeolite ZSM-5 in a heterogeneous system: phenomenology and starting considerations. Chem Mater 2012; 24: 1726–1737.CrossrefGoogle Scholar

  • Rimer JD, Vlachos DG, Lobo RF. Evolution of self-assembled silica-tetrapropylammonium nanoparticles at elevated temperatures. J Phys Chem B 2005; 109: 12762–12771.CrossrefPubMedGoogle Scholar

  • Rios CA, Williams CD, Fullen MA. Nucleation and growth history of zeolite LTA synthesized from kaolinite by two different methods. Appl Clay Sci 2009a; 42: 446–454.CrossrefGoogle Scholar

  • Rios RCA, Williams CD, Roberts CL. A comparative study of two methods for the synthesis of fly ash-based sodium and potassium type zeolites. Fuel 2009b; 88: 1403–1416.CrossrefGoogle Scholar

  • Robson HE. Method for preparing a small pore synthetic zeolite. US Patent 3720753, 1973.Google Scholar

  • Robson HE. Zeolite RHO. US Patent 3904738, 1975.Google Scholar

  • Roman-Leshkov Y, Moliner M, Labinger JA, Davis ME. Mechanism of glucose isomerization using a solid lewis acid catalyst in water. Angew Chem-Int Edit 2010; 49: 8954–8957.CrossrefGoogle Scholar

  • Roy BN, Navrotsky A. Thermochemistry of charge-coupled substitutions in silicate-glasses: the systems M1/nn+ AlO2-SiO2 (M=Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Pb). J Am Ceram Soc 1984; 67: 606–610.CrossrefGoogle Scholar

  • Ruiz AZ, Bruhwiler D, Ban T, Calzaferri G. Synthesis of zeolite L: tuning size and morphology. Monatsh Chem 2005; 136: 77–89.CrossrefGoogle Scholar

  • Sand LB, Sand ML. Synthetic zeolite. US Patent 3760062, 1973.Google Scholar

  • Sand LB, Sacco A, Thompson RW, Dixon AG. Large zeolite crystals: their potential growth in space. Zeolites 1987; 7: 387–392.CrossrefGoogle Scholar

  • Sasaki H, Jon H, Itakura M, Inoue T, Ikeda T, Oumi Y, Sano T. Hydrothermal conversion of FAU zeolite into aluminous MTN zeolite. J Porous Mat 2009; 16: 465–471.CrossrefGoogle Scholar

  • Schoeman BJ. A high temperature in situ laser light-scattering study of the initial stage in the crystallization of TPA-silicalite-1. Zeolites 1997; 18: 97–105.Google Scholar

  • Šefčík J, McCormick AV. Prediction of crystallization diagrams for synthesis of zeolites. Chem Eng Sci 1999; 54: 3513–3519.CrossrefGoogle Scholar

  • Simancas R, Dari D, Velamazan N, Navarro MT, Cantin A, Jorda JL, Sastre G, Corma A, Rey F. Modular organic structure-directing agents for the synthesis of zeolites. Science 2010; 330: 1219–1222.Google Scholar

  • Simonetti DA, Dumesic JA. Catalytic strategies for changing the energy content and cchieving C-C coupling in biomass-derived oxygenated hydrocarbons. ChemSusChem 2008; 1: 725–733.CrossrefPubMedGoogle Scholar

  • Skeels GW, Sears MR. Zeolite LZ-277 and process for preparing same. US Patent 5192522, 1993.Google Scholar

  • Smith JV. Topochemistry of zeolites and related materials 1. Topology and geometry. Chem Rev 1988; 88: 149–182.Google Scholar

  • Song JW, Dai L, Ji YY, Xiao FS. Organic template free synthesis of aluminosilicate zeolite ECR-1. Chem Mater 2006; 18: 2775–2777.CrossrefGoogle Scholar

  • Suzuki Y, Wakihara T, Itabashi K, Ogura M, Okubo T. Cooperative effect of sodium and potassium cations on synthesis of ferrierite. Top Catal 2009; 52: 67–74.CrossrefGoogle Scholar

  • Tatlier M, Baris K, Tokay CB, Erdem-Senatalar A. Microwave vs. conventional synthesis of analcime from clear solutions. J Cryst Growth 2007; 306: 146–151.CrossrefGoogle Scholar

  • Taylor AM, Roy R. Zeolite studies IV: Na-P zeolites and ion–exchanged derivatives of tetragonal Na-P. Am Miner 1964; 49: 656–682.Google Scholar

  • Termine JD, Posner AS. Infrared analysis of rat bone: age dependency of amorphous and crystalline mineral fractions. Science 1966; 153: 1523–1525.Google Scholar

  • Tompsett GA, Conner WC, Yngvesson KS. Microwave synthesis of nanoporous materials. Chemphyschem 2006; 7: 296–319.PubMedCrossrefGoogle Scholar

  • Valtchev VP, Bozhilov KN. Transmission electron microscopy study of the formation of FAU-type zeolite at room temperature. J Phys Chem B 2004; 108: 15587–15598.CrossrefGoogle Scholar

  • Valtchev VP, Bozhilov KN. Evidences for zeolite nucleation at the solid-liquid interface of gel cavities. J Am Chem Soc 2005; 127: 16171–16177.CrossrefPubMedGoogle Scholar

  • Valtchev VP, Tosheva L. Porous nanosized particles: preparation, properties, and applications. Chem Rev 2013; 113: 6734–6760.CrossrefGoogle Scholar

  • Valtchev VP, Tosheva L, Bozhilov KN. Synthesis of zeolite nanocrystals at room temperature. Langmuir 2005; 21: 10724–10729.PubMedCrossrefGoogle Scholar

  • Vaughan DEW. ECR-33: a stabilized rare-earth exchanged Q type zeolite. US Patent 5382420, 1995.Google Scholar

  • Vekilov PG. Dense liquid precursor for the nucleation of ordered solid phases from solution. Cryst Growth Des 2004; 4: 671–685.CrossrefGoogle Scholar

  • Vekilov PG. Two-step mechanism for the nucleation of crystals from solution. J Cryst Growth 2005; 275: 65–76.Google Scholar

  • Wang D, Zhang L, Kamasamudram K, Epling WS. In situ DRIFTS study of selective catalytic reduction of NOx by NH3 over Cu-exchanged SAPO-34. ACS Catal 2013; 3: 871–881.CrossrefGoogle Scholar

  • Warzywoda J, Thompson RW. Synthesis of zeoltie A in the Na/K system and the effect of seeding. Zeolites 1991; 11: 577–582.CrossrefGoogle Scholar

  • Watson JN, Iton LE, Keir RI, Thomas JC, Dowling TL, White JW. TPA-silicalite crystallization from homogeneous solution: kinetics and mechanism of nucleation and growth. J Phys Chem B 1997; 101: 10094–10104.CrossrefGoogle Scholar

  • Wells A. Crystal growth. Annu Rep Chem Soc 1946; 43: 62.Google Scholar

  • Wenqin P, Ueda S, Koizumi M. The synthesis of zeolite NaA from homogeneous solutions and studies of its properties. In: Murakami AIY, Ward JW, editors. New developments in zeolite science and technology, Studies in Surface Science and Catalysis. Amsterdam, Netherlands: Elsevier, 1986: 177–184.Google Scholar

  • Wiersema GS, Thompson RW. Nucleation and crystal growth of analcime from clear aluminosilicate solutions. J Mater Chem 1996; 6: 1693–1699.CrossrefGoogle Scholar

  • Wu Z, Song J, Ji Y, Ren L, Xiao F-S. Organic template-free synthesis of ZSM-34 zeolite from an assistance of zeolite L seeds solution. Chem Mater 2008; 20: 357–359.CrossrefGoogle Scholar

  • Xingqiao W, Ruren X. Studies on the transformation between erionite and effretite in T-type zeolite. In: Držaj B, Hočevar S, Pejovnik S, editors. Zeolites: synthesis, structure, technology and application, Studies in Surface Science and Catalysis. Amsterdam, Netherlands: Elsevier, 1985: 111–118.Google Scholar

  • Xiong R, Sandler SI, Vlachos DG. Alcohol adsorption onto silicalite from aqueous solution. J Phys Chem C 2011; 115: 18659–18669.CrossrefGoogle Scholar

  • Xiong R, Sandler SI, Vlachos DG. Molecular screening of alcohol and polyol adsorption onto MFI-type zeolites. Langmuir 2012; 28: 4491–4499.PubMedCrossrefGoogle Scholar

  • Yang SY, Navrotsky A. Energetics of formation and hydration of ion-exchanged zeolite Y. Micropor Mesopor Mater 2000; 37: 175–186.CrossrefGoogle Scholar

  • Yang SY, Navrotsky A, Phillips BL. In situ calorimetric, structural, and compositional study of zeolite synthesis in the system 5.15Na2O-1.00Al2O3-3.28SiO2-165H2O. J Phys Chem B 2000; 104: 6071–6080.Google Scholar

  • Yoo WC, Kumar S, Wang ZY, Ergang NS, Fan W, Karanikolos GN, McCormick AV, Penn RL, Tsapatsis M, Stein A. Nanoscale reactor engineering: hydrothermal synthesis of uniform zeolite particles in massively parallel reaction chambers. Angew Chem-Int Edit 2008; 47: 9096–9099.CrossrefGoogle Scholar

  • Zapata PA, Faria J, Ruiz MP, Jentoft RE, Resasco DE. Hydrophobic zeolites for biofuel upgrading reactions at the liquid-liquid interface in water/oil emulsions. J Am Chem Soc 2012; 134: 8570–8578.CrossrefPubMedGoogle Scholar

  • Zhang L, Liu SL, Xie SJ, Xu LY. Organic template-free synthesis of ZSM-5/ZSM-11 co-crystalline zeolite. Micropor Mesopor Mater 2012a; 147: 117–126.Google Scholar

  • Zhang XY, Liu DX, Xu DD, Asahina S, Cychosz KA, Agrawal KV, Al Wahedi Y, Bhan A, Al Hashimi S, Terasaki O, Thommes M, Tsapatsis M. Synthesis of self-pillared zeolite nanosheets by repetitive branching. Science 2012b; 336: 1684–1687.CrossrefPubMedGoogle Scholar

  • Zhao DY, Szostak R, Kevan L. Role of alkali-metal cations and seeds in the synthesis of silica-rich heulandite-type zeolites. J Mater Chem 1998; 8: 233–239.CrossrefGoogle Scholar

  • Zhdanov SP. Some problems of zeolite crystallization. Adv Chem Ser 1971; 101: 20–43.Google Scholar

  • Zhdanov SP, Samulevich NN. Nucleation and crystal growth of zeolites in crystallizing aluminosilicate gels. Proceedings of the fifth international conference on zeolites, Naples, Italy, 1980.Google Scholar

  • Zhou RF, Zhong SL, Lin X, Xu NP. Synthesis of zeolite T by microwave and conventional heating. Micropor Mesopor Mater 2009; 124: 117–122.CrossrefGoogle Scholar

  • Zhu GQ, Li YS, Chen HL, Liu J, Yang WS. An in situ approach to synthesize pure phase FAU-type zeolite membranes: effect of aging and formation mechanism. J Mater Sci 2008; 43: 3279–3288.CrossrefGoogle Scholar

  • Zones SI. Conversion of faujasites to high-silica chabazite SSZ-13 in the presence of N,N,N-trimethyl-1-adamantammonium iodide. J Chem Soc-Faraday Trans 1991; 87: 3709–3716.CrossrefGoogle Scholar

  • Zones SI, Nakagawa Y. Boron-beta zeolite hydrothermal conversions: the influence of template structure and of boron concentration and source. Microporous Mater 1994; 2: 557–562.CrossrefGoogle Scholar

  • Zones SI, Vannordstrand RA. Novel zeolite transformations: the template-mediated conversion of cubic-P zeolite to SSZ-13. Zeolites 1988; 8: 166–174.Google Scholar

  • Zones SI, Yuen LT, Nakagawa Y, van Nordstrand RA, Toto SD. An unexpected and highly versatile new zeolite synthesis route leading to large pore alumino and borosilicate sieves. Proceedings from the ninth international zeolite conference, Montreal, 1992.Google Scholar

  • Zones SI, Ruan J, Elomari S, Terasaki O, Chen CY, Corma A. Studies on zeolite SSZ-57: a structural enigma. Solid State Sci 2011; 13: 706–713.Google Scholar

About the article

Matthew D. Oleksiak

Matthew Dowd Oleksiak received his BS degree in Chemical Engineering from the University of Delaware. He is currently pursuing his PhD in Chemical Engineering at the University of Houston. His research interests include rational approaches in zeolite synthesis and catalysis.

Jeffrey D. Rimer

Jeffrey Daniel Rimer received dual BS degrees in Chemistry from Allegheny College in 1999 and Chemical Engineering from Washington University in St. Louis in 2001. He received his PhD in Chemical Engineering from the University of Delaware in 2006 and began his position at the University of Houston in 2009, where he now serves as the Ernest J. and Barbara M. Henley Assistant Professor of Chemical Engineering. His research interests in the area of crystal engineering include studies of zeolite and biogenic crystal formation with applications that span catalysis to drug design.

Corresponding author: Jeffrey D. Rimer, Department of Chemical and Biomolecular Engineering, University of Houston, 4800 Calhoun Road, Houston, TX 77204-4004, USA, e-mail:

Received: 2013-05-30

Accepted: 2013-08-04

Published Online: 2013-10-22

Published in Print: 2014-02-01

Citation Information: Reviews in Chemical Engineering, Volume 30, Issue 1, Pages 1–49, ISSN (Online) 2191-0235, ISSN (Print) 0167-8299, DOI: https://doi.org/10.1515/revce-2013-0020.

Export Citation

©2014 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Koki Muraoka, Yuki Sada, Daiki Miyazaki, Watcharop Chaikittisilp, and Tatsuya Okubo
Nature Communications, 2019, Volume 10, Number 1
Pablo F. Corregidor, Pablo M. Cuesta, Delicia E. Acosta, and Hugo A. Destéfanis
Applied Catalysis A: General, 2019, Page 117262
S. V. Lazareva, L. V. Piryutko, V. S. Chernyavskii, and A. S. Kharitonov
Petroleum Chemistry, 2019, Volume 59, Number 8, Page 910
Wei Qin, Rishabh Jain, Francisco C. Robles Hernández, and Jeffrey D. Rimer
Chemistry – A European Journal, 2019, Volume 25, Number 23, Page 5893
Hanin M. Radman, Aasif A. Dabbawala, Issam Ismail, Yasser F. Alwahedi, Kyriaki Polychronopoulou, Balasubramanian V. Vaithilingam, Gnana P. Singaravel, Stephane Morin, Mikael Berthod, and Saeed M. Alhassan
Microporous and Mesoporous Materials, 2019, Volume 282, Page 73
María Gálvez-Llompart, Angel Cantín, Fernando Rey, and German Sastre
Zeitschrift für Kristallographie - Crystalline Materials, 2019, Volume 234, Number 7-8, Page 451
Ya Guo, Tianjun Sun, Xiaowei Liu, Quanli Ke, Xiaoli Wei, Yiming Gu, and Shudong Wang
Chemical Engineering Journal, 2018
Claudia Belviso, Antonio Lettino, and Francesco Cavalcante
Molecules, 2018, Volume 23, Number 9, Page 2122
Rui Li, Aseem Chawla, Noemi Linares, James G. Sutjianto, Karena W. Chapman, Javier García Martínez, and Jeffrey D. Rimer
Industrial & Engineering Chemistry Research, 2018
Jeffrey D. Rimer, Aseem Chawla, and Thuy T. Le
Annual Review of Chemical and Biomolecular Engineering, 2018, Volume 9, Number 1, Page 283
Ya Guo, Tianjun Sun, Yiming Gu, Xiaowei Liu, Quanli Ke, and Shudong Wang
Chemistry - An Asian Journal, 2018
Sanja Bosnar, Tatjana Antonic Jelic, Josip Bronic, Maja Dutour Sikirić, Suzana Segota, Vida Cadez, Vilko Smrecki, Ana Palcic, and Boris Subotic
The Journal of Physical Chemistry C, 2018
Xiangfei Ji, Hui Jia, Yaoyao Wang, and Xiaofeng Yang
Journal of Porous Materials, 2018
Aseem Chawla, Rui Li, Rishabh Jain, R. John Clark, James G. Sutjianto, Jeremy C. Palmer, and Jeffrey D. Rimer
Molecular Systems Design & Engineering, 2018
Yeqing Wang, Qinming Wu, Xiangju Meng, and Feng-Shou Xiao
Engineering, 2017, Volume 3, Number 4, Page 567
M. Borel, M. Dodin, T. J. Daou, N. Bats, and J. Patarin
New J. Chem., 2017
Jonghyun Kim and Do Heui Kim
Microporous and Mesoporous Materials, 2017
Matthew D. Oleksiak, Koki Muraoka, Ming-Feng Hsieh, Marlon T. Conato, Atsushi Shimojima, Tatsuya Okubo, Watcharop Chaikittisilp, and Jeffrey D. Rimer
Angewandte Chemie International Edition, 2017
Matthew D. Oleksiak, Koki Muraoka, Ming-Feng Hsieh, Marlon T. Conato, Atsushi Shimojima, Tatsuya Okubo, Watcharop Chaikittisilp, and Jeffrey D. Rimer
Angewandte Chemie, 2017
Harshul Thakkar, Ahlam Issa, Ali A. Rownaghi, and Fateme Rezaei
Chemical Engineering & Technology, 2017
Benoît Louis, Elisa S. Gomes, Pit Losch, Gaëtan Lutzweiler, Tiago Coelho, Arnaldo Faro, Joana F. Pinto, Cristiane S. Cardoso, Alessandra V. Silva, and Marcelo M. Pereira
ChemCatChem, 2017, Volume 9, Number 12, Page 2065
Zhiguo Zhu, Hao Xu, Jingang Jiang, Yejun Guan, and Peng Wu
Journal of Catalysis, 2017, Volume 352, Page 1
Elisa S. Gomes, Gaëtan Lutzweiler, Pit Losch, Alessandra V. Silva, Claire Bernardon, Ksenia Parkhomenko, Marcelo M. Pereira, and Benoît Louis
Microporous and Mesoporous Materials, 2017
Kun Jiao, Zixin Zhang, Xiangyu Xu, Zhi Lv, Jiaqing Song, Cong Lin, Junliang Sun, Mingyuan He, and Hermann Gies
Dalton Trans., 2017, Volume 46, Number 7, Page 2270
Leen Van Tendeloo, Wauter Wangermez, Annelies Vandekerkhove, Tom Willhammar, Sara Bals, André Maes, Johan A. Martens, Christine E. A. Kirschhock, and Eric Breynaert
Chemistry of Materials, 2017, Volume 29, Number 2, Page 629
Carsten Sievers, Yu Noda, Long Qi, Elise M. Albuquerque, Robert M. Rioux, and Susannah L. Scott
ACS Catalysis, 2016, Volume 6, Number 12, Page 8286
Matthew D. Oleksiak, Arian Ghorbanpour, Marlon T. Conato, B. Peter McGrail, Lars C. Grabow, Radha Kishan Motkuri, and Jeffrey D. Rimer
Chemistry - A European Journal, 2016, Volume 22, Number 45, Page 16078
Matthew D. Oleksiak, Jennifer A. Soltis, Marlon T. Conato, R. Lee Penn, and Jeffrey D. Rimer
Chemistry of Materials, 2016, Volume 28, Number 14, Page 4906
Sima Askari, Anahita Bashardoust Siahmard, Rouein Halladj, and Shayan Miar Alipour
Powder Technology, 2016, Volume 301, Page 268
Maria J. F. Costa, Jowita Marszewska, Alexandre A. S. Gonçalves, Luiz K. C. de Souza, Antonio S. Araujo, and Mietek Jaroniec
RSC Adv., 2016, Volume 6, Number 60, Page 54956
Maryam Khaleel, Wenqian Xu, David A. Lesch, and Michael Tsapatsis
Chemistry of Materials, 2016, Volume 28, Number 12, Page 4204
Norwahyu Jusoh, Yin Fong Yeong, Maisarah Mohamad, Kok Keong Lau, and Azmi M. Shariff
Ultrasonics Sonochemistry, 2017, Volume 34, Page 273
Hongxia Zhang, Hongbin Zhang, Peicheng Wang, Yang Zhao, Zhangping Shi, Yahong Zhang, and Yi Tang
RSC Adv., 2016, Volume 6, Number 53, Page 47623
Jeffrey D. Rimer and Michael Tsapatsis
MRS Bulletin, 2016, Volume 41, Number 05, Page 393
Julien Grand, Hussein Awala, and Svetlana Mintova
CrystEngComm, 2016, Volume 18, Number 5, Page 650
Georgian Melinte, Veselina Georgieva, Marie-Anne Springuel-Huet, Andreï Nossov, Ovidiu Ersen, Flavien Guenneau, Antoine Gedeon, Ana Palčić, Krassimir N. Bozhilov, Cuong Pham-Huu, Shilun Qiu, Svetlana Mintova, and Valentin Valtchev
Chemistry - A European Journal, 2015, Volume 21, Number 50, Page 18316
N. Rangnekar, N. Mittal, B. Elyassi, J. Caro, and M. Tsapatsis
Chem. Soc. Rev., 2015, Volume 44, Number 20, Page 7128
Ka Ming Leung, Peter P. Edwards, Emyr Jones, and Asel Sartbaeva
RSC Adv., 2015, Volume 5, Number 45, Page 35580
Sarika Goel, Stacey I. Zones, and Enrique Iglesia
Chemistry of Materials, 2015, Volume 27, Number 6, Page 2056
Marlon T. Conato, Matthew D. Oleksiak, B. Peter McGrail, Radha K. Motkuri, and Jeffrey D. Rimer
Chem. Commun., 2015, Volume 51, Number 2, Page 269
J. D. Rimer, M. Kumar, R. Li, A. I. Lupulescu, and M. D. Oleksiak
Catal. Sci. Technol., 2014, Volume 4, Number 11, Page 3762

Comments (0)

Please log in or register to comment.
Log in