Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in Chemical Engineering

Editor-in-Chief: Luss, Dan / Brauner, Neima

Editorial Board: Agar, David / Davis, Mark E. / Edgar, Thomas F. / Giorno, Lidietta / Joshi, J. B. / Khinast, Johannes / Kost, Joseph / Leal, L. Gary / Li, Jinghai / Mills, Patrick / Morbidelli, Massimo / Ng, Ka Ming / Schouten, Jaap C. / Seinfeld, John / Stitt, E. Hugh / Tronconi, Enrico / Vayenas, Constantinos G. / Zagoruiko, Andrey

IMPACT FACTOR 2018: 4.200

CiteScore 2018: 4.96

SCImago Journal Rank (SJR) 2018: 1.016
Source Normalized Impact per Paper (SNIP) 2018: 1.572

See all formats and pricing
More options …
Volume 30, Issue 6


Critical review and exergy analysis of formaldehyde production processes

Ali Mohammad Bahmanpour / Andrew Hoadley / Akshat Tanksale
Published Online: 2014-09-25 | DOI: https://doi.org/10.1515/revce-2014-0022


Formaldehyde is one of the most important intermediate chemicals and has been produced industrially since 1889. Formaldehyde is a key feedstock in several industries like resins, polymers, adhesives, and paints, making it one of the most valuable chemicals in the world. However, not many studies have been dedicated to reviewing the production of this economically important product. In this review paper, we study the leading commercial processes for formaldehyde production and compare them with recent advancements in catalysis and novel processes. This paper compares, in extensive detail, the reaction mechanisms and kinetics of water ballast process (or BASF process), methanol ballast process, and Formox process. The thermodynamics of the reactions involved in the formaldehyde production process was investigated using HSC Chemistry™ software (Outotec Oyj, Espoo, Finland). Exergy analysis was carried out for the natural gas to methanol process and the methanol ballast process for formaldehyde production. The former process was simulated using Aspen HYSYS™ and the latter using Aspen Plus™ software (Aspen technology, Burlington, MA, USA). The yield and product specifications from the simulation results closely matched with published experimental data. The exergy efficiencies of the natural gas to synthesis gas via steam reforming, methanol synthesis, and formaldehyde synthesis processes were calculated as 60.8%, 61.6%, and 66%, respectively. The overall exergy efficiency of natural gas conversion into formaldehyde was found to be only 43.2%. The main sources of exergy losses were the steam reformer and methanol loss in formaldehyde synthesis process. Despite high conversions and selectivities of these processes, the low exergy efficiency suggests that innovations in formaldehyde production processes could give a more sustainable product. Novel methods of direct conversion of natural gas or synthesis gas into formaldehyde will improve the exergy efficiency, but the conversion rate must also be increased with advancements in catalysis.

Keywords: exergy analysis; formaldehyde; kinetics and mechanism; methanol ballast process


  • Adkins H, Peterson WR. The oxidation of methanol with air over iron, molybdenum, and iron-molybdenum oxides. J Am Chem Soc 1931; 53: 1512–1520.Google Scholar

  • Albert M, Hahnenstein I, Hasse H, Maurer G. Vapor-Liquid equilibrium of formaldehyde mixtures: new data and model revision. AIChE J 1996; 42: 1741–1751.Google Scholar

  • Albert M, Garcia BG, Kreiter C, Maurer G. Vapor-liquid and chemical equilibria of formaldehyde-water mixtures. AIChE J 1999; 45: 2024–2033.CrossrefGoogle Scholar

  • Albert M, García BC, Kuhnert C, Peschla R, Maurer G. Vapor-liquid equilibrium of aqueous solutions of formaldehyde and methanol. AIChE J 2000; 46: 1676–1687.CrossrefGoogle Scholar

  • Andreasen A, Lynggaard H, Stegelmann C, Stoltze P. A microkinetic model of the methanol oxidation over silver. Surf Sci 2003; 544: 5–23.Google Scholar

  • Aries RS. Process for making anhydrous monomeric formaldehyde. US Patent application, 1960.Google Scholar

  • Arthur BW, Maurice ND. Process of producing formaldehyde. US2196188 A, 1940.Google Scholar

  • Bailey GC, Craver AE. Process of producing formaldehyde. US Patent application, 1921.Google Scholar

  • Bao X, Barth JV, Lehmpfuhl G, Schuster R, Uchida Y, Schlögl R, Ertl G. Oxygen-induced restructuring of Ag(111). Surf Sci 1993a; 284: 14–22.Google Scholar

  • Bao X, Muhler M, Pettinger B, Schlögl R, Ertl G. On the nature of the active state of silver during catalytic oxidation of methanol. Catal Lett 1993b; 22: 215–225.Google Scholar

  • Barnes C, Pudney P, Guo Q, Bowker M. Molecular-beam studies of methanol partial oxidation on Cu(110). J Chem Soc Farad Trans 1990; 86: 2693–2699.CrossrefGoogle Scholar

  • Bejan A. Advanced engineering thermodynamics. New York: Wiley, 1997.Google Scholar

  • Beznis NV, Van Laak ANC, Weckhuysen BM, Bitter JH. Oxidation of methane to methanol and formaldehyde over Co-ZSM-5 molecular sieves: tuning the reactivity and selectivity by alkaline and acid treatments of the zeolite ZSM-5 agglomerates. Microp Mesop Mater 2011; 138: 176–183.Google Scholar

  • Bhattacharyya SK, Janakiram K, Ganguly ND. Kinetics of the vapor-phase oxidation of methyl alcohol on vanadium pentoxide catalyst. J Catal 1967; 8: 128–136.CrossrefGoogle Scholar

  • Bizzari SN. CEH marketing research report: formaldehyde. Chemical Industries Newsletter, 2007.Google Scholar

  • Blair EW, Wheeler TS. The estimation of formaldehyde and acetaldehyde. Analyst 1923; 48: 110–112.CrossrefGoogle Scholar

  • Bobrova II, Bobrov NN, Simonova LG, Parmon VN. Direct catalytic oxidation of methane to formaldehyde: new investigation opportunities provided by an improved flow circulation method. Kinet Catal 2007; 48: 676–692.CrossrefGoogle Scholar

  • Bone WA, Smith HL. XCIV. – The thermal decomposition of formaldehyde and acetaldehyde. J Chem Soc Trans 1905; 87: 910–916.CrossrefGoogle Scholar

  • Brackman W. Process for the preparation of aldehydes and ketones. US Patent application, 1959.Google Scholar

  • Brenk M. Silver catalyst for formaldehyde preparation. PCT/EP2009/006170, 2010.Google Scholar

  • Burcham LJ, Wachs IE. The origin of the support effect in supported metal oxide catalysts: in situ infrared and kinetic studies during methanol oxidation. Catal Today 1999; 49: 467–484.CrossrefGoogle Scholar

  • Busca G. On the mechanism of methanol oxidation over vanadia-based catalysts: a FT-IR study of the adsorption of methanol, formaldehyde and formic acid on vanad. J Mol Catal 1989; 50: 241–249.CrossrefGoogle Scholar

  • Calvert JG, Steacie EWR. Vapor phase photolysis of formaldehyde at wavelength 3130A. J Chem Phys 1951; 19: 176–182.Google Scholar

  • Cao E, Gavriilidis A. Oxidative dehydrogenation of methanol in a microstructured reactor. Catal Today 2005; 110: 154–163.Google Scholar

  • Carlsson PA, Jing D, Skoglundh M. Controlling selectivity in direct conversion of methane into formaldehyde/methanol over iron molybdate via periodic operation conditions. Energy Fuels 2012; 26: 1984–1987.CrossrefGoogle Scholar

  • Chauvel A, Lefebvre G. Petrochemical processes (volume 1: synthesis – gas derivatives and major hydrocarbons). Houston, TX: Institut Francais du Petrole Publications, 1989.Google Scholar

  • Christopher K, Dimitrios R. A review on exergy comparison of hydrogen production methods from renewable energy sources. Energy Environ Sci 2012; 5: 6640–6651.Google Scholar

  • Cogliano VJ, Grosse Y, Baan RA, Straif K, Secretan MB, El Ghissassi F. Meeting report: summary of IARC monographs on formaldehyde, 2-butoxyethanol, and 1-tert-butoxy-2-propanol. Environ Health Perspect 2005; 113: 1205–1208.Google Scholar

  • Demirel Y. Thermodynamic analysis. Arab J Sci Eng 2013; 38: 221–249.Google Scholar

  • Deng J, Wu J. Formaldehyde production by catalytic dehydrogenation of methanol in inorganic membrane reactors. Appl Catal A 1994; 109: 63–76.CrossrefGoogle Scholar

  • Deo G, Wachs IE. Reactivity of supported vanadium oxide catalysts: the partial oxidation of methanol. J Catal 1994; 146: 323–334.Google Scholar

  • Dincer I, Rosen MA. Chemical exergy. In: Dincer I, Rosen MA, editors. Exergy, 2nd ed. New York: Elsevier, 2013: chapter 3.Google Scholar

  • Fajardo CAG, Niznansky D, N’guyen Y, Courson C, Roger AC. Methane selective oxidation to formaldehyde with Fe-catalysts supported on silica or incorporated into the support. Catal Commun 2008; 9: 864–869.CrossrefGoogle Scholar

  • Forzatti P, Tronconi E, Elmi AS, Busca G. Methanol oxidation over vanadia-based catalysts. Appl Catal A 1997; 157: 387–408.Google Scholar

  • Francis SM, Leibsle FM, Haq S, Xiang N, Bowker M. Methanol oxidation on Cu(110). Surf Sci 1994; 315: 284–292.Google Scholar

  • Gómez-Ramírez A, Rico VJ, Cotrino J, González-Elipe AR, Lambert RM. Low temperature production of formaldehyde from carbon dioxide and ethane by plasma-assisted catalysis in a ferroelectrically moderated dielectric barrier discharge reactor. ACS Catal 2014; 4: 402–408.CrossrefGoogle Scholar

  • Hasse H, Maurer G. Vapor-liquid equilibrium of formaldehyde-containing mixtures at temperatures below 320 K. Fluid Phase Equilibria 1991; 64: 185–199.CrossrefGoogle Scholar

  • Hasse H, Hahnenstein I, Maurer G. Revised vapor-liquid equilibrium model for multicomponent formaldehyde mixtures. AIChE J 1990; 36: 1807–1814.Google Scholar

  • He J, Li Y, An D, Zhang Q, Wang Y. Selective oxidation of methane to formaldehyde by oxygen over silica-supported iron catalysts. J Nat Gas Chem 2009; 18: 288–294.CrossrefGoogle Scholar

  • Kirk RE, Othmer DF. Kirk-Othmer encyclopedia of chemical technology. New Jersey: Wiley, 1991.Google Scholar

  • Kuhnert C, Albert M, Breyer S, Hahnenstein I, Hasse H, Maurer G. Phase equilibrium in formaldehyde containing multicomponent mixtures: experimental results for fluid phase equilibria of (formaldehyde+(water or methanol)+methylal) and (formaldehyde+water+methanol+methylal) and comparison with predictions. Ind Eng Chem Res 2006; 45: 5155–5164.CrossrefGoogle Scholar

  • Launay H, Loridant S, Nguyen DL, Volodin AM, Dubois JL, Millet JMM. Vanadium species in new catalysts for the selective oxidation of methane to formaldehyde: activation of the catalytic sites. Catal Today 2007; 128: 176–182.Google Scholar

  • Lausche AC, Hummelshoj JS, Abild-Pedersen F, Studt F, Norskov JK. Application of a new informatics tool in heterogeneous catalysis: analysis of methanol dehydrogenation on transition metal catalysts for the production of anhydrous formaldehyde. J Catal 2012; 291: 133–137.Google Scholar

  • Leibsle FM, Francis SM, Haq S, Bowker M. Aspects of formaldehyde synthesis on Cu(110) as studied by STM. Surf Sci 1994; 318: 46–60.Google Scholar

  • Lou Y, Wang H, Zhang Q, Wang Y. SBA-15-supported molybdenum oxides as efficient catalysts for selective oxidation of ethane to formaldehyde and acetaldehyde by oxygen. J Catal 2007a; 247: 245–255.Google Scholar

  • Lou Y, Zhang Q, Wang H, Wang Y. Catalytic oxidation of ethylene and ethane to formaldehyde by oxygen. J Catal 2007b; 250: 365–368.Google Scholar

  • Lunev NK, Shmyrko YI, Pavlenko NV, Norton B. Selective formation of formaldehyde from carbon dioxide and hydrogen over PtCu/SiO2. Appl Organomet Chem 2001; 15: 148–150.Google Scholar

  • Mann RS, Dosi MK. Kinetics of vapor-phase oxidation of methyl alcohol on vanadium pentoxide-molybdenum trioxide catalyst. J Catal 1973; 28: 282–288.CrossrefGoogle Scholar

  • Mars P, van Krevelen DW. Oxidations carried out by means of vanadium oxide catalysts. Chem Eng Sci 1954; 3 (Suppl 1): 41–59.Google Scholar

  • Maurer G. Vapor-liquid equilibrium of formaldehyde- and water-containing multicomponent mixtures. AIChE J 1986; 32: 932–948.CrossrefGoogle Scholar

  • Michalkiewicz B, Sreńscek-Nazzal J, Tabero P, Grzmil B, Narkiewicz U. Selective methane oxidation to formaldehyde using polymorphic T-, M-, and H-forms of niobium(V) oxide as catalysts. Chem Papers 2008; 62: 106–113.Google Scholar

  • Nagy A, Mestl G, Rühle T, Weinberg G, Schlögl R. The dynamic restructuring of electrolytic silver during the formaldehyde synthesis reaction. J Catal 1998; 179: 548–559.Google Scholar

  • Nagy AJ, Mestl G, Herein D, Weinberg G, Kitzelmann E, Schlögl R. The correlation of subsurface oxygen diffusion with variations of silver morphology in the silver-oxygen system. J Catal 1999; 182: 417–429.Google Scholar

  • Nakata K, Ozaki T, Terashima C, Fujishima A, Einaga Y. High-yield electrochemical production of formaldehyde from CO2 and seawater. Angew Chem Int Ed 2014; 53: 871–874.Google Scholar

  • National Fire Protection Association. Fire protection guide to hazardous materials. Quincy, MA: National Fire Protection Association, 1994.Google Scholar

  • Newton RH, Dodge BF. The equilibrium between carbon monoxide, hydrogen, formaldehyde and methanol.1 I. the reactions CO+H2=HCOH and H2+HCOH=CH3 OH. J Am Chem Soc 1933; 55: 4747–4759.Google Scholar

  • Polnišer R, Štolcová M, Hronec M, Mikula M. Structure and reactivity of copper iron pyrophosphate catalysts for selective oxidation of methane to formaldehyde and methanol. Appl Catal A 2011; 400: 122–130.Google Scholar

  • Punderson JO. Dehydrogenation of alcohols to aldehydes. US Patent application, 1960.Google Scholar

  • Qian M, Liauw MA, Emig G. Formaldehyde synthesis from methanol over silver catalysts. Appl Catal A 2003; 238: 211–222.Google Scholar

  • Reuss G, Disteldorf W, Gamer AO, Hilt A. Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley, 2003.Google Scholar

  • Roeda DDF. Preparation of formaldehyde using a silver-containing ceramic catalyst. J Label Compd Radiopharm 2003; 46: 449.CrossrefGoogle Scholar

  • Routray K, Zhou W, Kiely CJ, Grünert W, Wachs IE. Origin of the synergistic interaction between MoO3 and iron molybdate for the selective oxidation of methanol to formaldehyde. J Catal 2010; 275: 84–98.Google Scholar

  • Sabatier P, Mailhe A. Actions des oxydes metalliques sur les alcools primaires. Ann Chim Phys 1910; 20: 289–352.Google Scholar

  • Sexton BA. Methanol decomposition on platinum (111). Surf Sci 1981; 102: 271–281.Google Scholar

  • Sexton AW, Kartheuser B, Batiot C, Zanthoff HW, Hodnett BK. The limiting selectivity of active sites on vanadium oxide catalysts supported on silica for methane oxidation to formaldehyde. Catal Today 1998; 40: 245–250.Google Scholar

  • Shreiber EH, Roberts GW. Methanol dehydrogenation in a slurry reactor: evaluation of copper chromite and iron/titanium catalysts. Appl Catal B 2000; 26: 119–129.CrossrefGoogle Scholar

  • Soares APV, Farinha Portela M, Kiennemann A, Hilaire L, Millet JMM. Iron molybdate catalysts for methanol to formaldehyde oxidation: effects of Mo excess on catalytic behaviour. Appl Catal A 2001; 206: 221–229.Google Scholar

  • Spence R, Wild W. The thermal reaction between chlorine and formaldehyde. J Am Chem Soc 1935; 57: 1145–1146.CrossrefGoogle Scholar

  • Su S, Prairie MR, Renken A. Reaction mechanism of methanol dehydrogenation on a sodium carbonate catalyst. Appl Catal A 1992; 91: 131–142.Google Scholar

  • Szargut J, Morris DR, Steward FR. Exergy analysis of thermal, chemical, and metallurgical processes. New York: Hemisphere Publishing, 1988.Google Scholar

  • Tang X, Bai Y, Duong A, Smith MT, Li L, Zhang L. Formaldehyde in China: production, consumption, exposure levels, and health effects. Environment International 2009; 35: 1210–1224.Google Scholar

  • Tatibouët JM, Germain JE. A structure-sensitive oxidation reaction: methanol on molybdenum trioxide catalysts. J Catal 1981; 72: 375–378.Google Scholar

  • Thomas MD. Preparation of formaldehyde. 1. J Am Chem Soc 1920; 42: [867]–882.Google Scholar

  • Tolmacsov P, Gazsi A, Solymosi F. Decomposition and reforming of methanol on Pt metals supported by carbon Norit. Appl Catal A 2009; 362: 58–61.Google Scholar

  • Trillat A. Investigation on the catalytic oxidation of the alcohols. Bull Soc Chim France 1903; 29: 35.Google Scholar

  • Tsatsaronis G. Definitions and nomenclature in exergy analysis and exergoeconomics. Energy 2007; 32: 249–253.CrossrefGoogle Scholar

  • Turton R, Bailie RC, Whiting WB, Shaeiwitz JA, Bhattacharyya A. Analysis, synthesis, and design of chemical processes. New Jersey: Prentice Hall, 2009.Google Scholar

  • Ulukardesler AH, Atalay S, Atalay FS. Determination of optimum conditions and the kinetics of methanol oxidation. Chem Eng Technol 2010; 33: 167–176.CrossrefGoogle Scholar

  • Van Veen AC, Hinrichsen O, Muhler M. Mechanistic studies on the oxidative dehydrogenation of methanol over polycrystalline silver using the temporal-analysis-of-products approach. J Catal 2002; 210: 53–66.Google Scholar

  • Vining WC, Strunk J, Bell AT. Investigation of the structure and activity of VOx/ZrO2/SiO2 catalysts for methanol oxidation to formaldehyde. J Catal 2011; 281: 222–230.Google Scholar

  • Vining WC, Strunk J, Bell AT. Investigation of the structure and activity of VOx/CeO2/SiO2 catalysts for methanol oxidation to formaldehyde. J Catal 2012; 285: 160–167.Google Scholar

  • Wachs IE, Madix RJ. The oxidation of methanol on a silver (110) catalyst. Surf Sci 1978a; 76: 531–558.Google Scholar

  • Wachs IE, Madix RJ. The selective oxidation of CH3 OH to H2 CO on a copper(110) catalyst. J Catal 1978b; 53: 208–227.Google Scholar

  • Walker JF. Formaldehyde. New York: Reinhold Publishing, 1967.Google Scholar

  • Wang Q, Li Y, Chen X. Exergy analysis of liquefied natural gas cold energy recovering cycles. Int J Energy Res 2005; 29: 65–78.Google Scholar

  • Wang ZC, Dietl N, Kretschmer R, Ma JB, Weiske T, Schlangen M, Schwarz H. Direct conversion of methane into formaldehyde mediated by [Al2 O3]·+ at room temperature. Angew Chem Int Ed 2012; 51: 3703–3707.CrossrefGoogle Scholar

  • Waterhouse GIN, Bowmaker GA, Metson JB. Influence of catalyst morphology on the performance of electrolytic silver catalysts for the partial oxidation of methanol to formaldehyde. Appl Catal A 2004; 266: 257–273.Google Scholar

  • Zaza P, Randall H, Doepper R, Renken A. Dynamic kinetics of catalytic dehydrogenation of methanol to formaldehyde. Catal Today 1994; 20: 325–334.CrossrefGoogle Scholar

  • Zhang X, He DH, Zhang QJ, Ye Q, Xu BQ, Zhu QM. Selective oxidation of methane to formaldehyde over Mo/ZrO2 catalysts. Appl Catal A 2003; 249: 107–117.Google Scholar

  • Zhang H, Sun K, Feng Z, Ying P, Li C. Studies on the SbOx species of SbOx/SiO2 catalysts for methane-selective oxidation to formaldehyde. Appl Catal A 2006; 305: 110–119.Google Scholar

  • Zhang J, Burklé-Vitzthum V, Marquaire PM, Wild G, Commenge JM. Direct conversion of methane in formaldehyde at very short residence time. Chem Eng Sci 2011; 66: 6331–6340.CrossrefGoogle Scholar

  • Zhang J, Burklé-Vitzthum V, Marquaire PM. NO2-promoted oxidation of methane to formaldehyde at very short residence time – Part II: kinetic modeling. Chem Eng J 2012a; 197: 123–134.Google Scholar

  • Zhang J, Burklé-Vitzthum V, Marquaire PM. NO2-promoted oxidation of methane to formaldehyde at very short residence time. Part I: experimental results. Chem Eng J 2012b; 189–190: 393–403.Google Scholar

About the article

Corresponding author: Akshat Tanksale, Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia, e-mail:

Received: 2014-05-28

Accepted: 2014-08-25

Published Online: 2014-09-25

Published in Print: 2014-12-01

Citation Information: Reviews in Chemical Engineering, Volume 30, Issue 6, Pages 583–604, ISSN (Online) 2191-0235, ISSN (Print) 0167-8299, DOI: https://doi.org/10.1515/revce-2014-0022.

Export Citation

©2014 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Lin Li, Sen Zhang, Jonathan P. Ruffley, and J. Karl Johnson
ACS Sustainable Chemistry & Engineering, 2018
Nguyen-Dung Tran, Matteo Farnesi Camellone, and Stefano Fabris
The Journal of Physical Chemistry C, 2018
Yuanyuan Liu, Shengyang Yang, Su-Na Yin, Ligang Feng, Yang Zang, and Huaiguo Xue
Chemical Engineering Journal, 2017
Jonathan E. Sutton, Thomas Danielson, Ariana Beste, and Aditya Savara
The Journal of Physical Chemistry Letters, 2017, Page 5810
Fan Liang Chan, Garen Altinkaya, Nicholas Fung, and Akshat Tanksale
Catalysis Today, 2017
Allegra A. Latimer, Frank Abild-Pedersen, and Jens K. Nørskov
ACS Catalysis, 2017, Volume 7, Number 7, Page 4527
Janelle Zhiyun Khoo, Nawshad Haque, and Sankar Bhattacharya
International Journal of Mineral Processing, 2017, Volume 161, Page 83
Leo E. Heim, Hannelore Konnerth, and Martin H. G. Prechtl
Green Chem., 2017, Volume 19, Number 10, Page 2347
Audrey S. Duke, Kangmin Xie, John R. Monnier, and Donna A. Chen
Surface Science, 2017, Volume 657, Page 35
Andreas Genner, Christoph Gasser, Harald Moser, Johannes Ofner, Josef Schreiber, and Bernhard Lendl
Analytical and Bioanalytical Chemistry, 2017, Volume 409, Number 3, Page 753
Leo E. Heim, Hannelore Konnerth, and Martin H. G. Prechtl
ChemSusChem, 2016, Volume 9, Number 20, Page 2905
Dominic van der Waals, Leo. E. Heim, Christian Gedig, Fabian Herbrik, Simona Vallazza, and Martin H. G. Prechtl
ChemSusChem, 2016, Volume 9, Number 17, Page 2343
Dominic van der Waals, Leo E. Heim, Simona Vallazza, Christian Gedig, Jan Deska, and Martin H. G. Prechtl
Chemistry - A European Journal, 2016, Volume 22, Number 33, Page 11568
Ali Mohammad Bahmanpour, Andrew Hoadley, Samir H. Mushrif, and Akshat Tanksale
ACS Sustainable Chemistry & Engineering, 2016, Volume 4, Number 7, Page 3970
Thomas Kropp and Joachim Paier
The Journal of Physical Chemistry C, 2015, Volume 119, Number 40, Page 23021
Ali Mohammad Bahmanpour, Andrew Hoadley, and Akshat Tanksale
Green Chem., 2015, Volume 17, Number 6, Page 3500

Comments (0)

Please log in or register to comment.
Log in