Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in Chemical Engineering

Editor-in-Chief: Luss, Dan / Brauner, Neima

Editorial Board: Agar, David / Davis, Mark E. / Edgar, Thomas F. / Giorno, Lidietta / Joshi, J. B. / Khinast, Johannes / Kost, Joseph / Leal, L. Gary / Li, Jinghai / Mills, Patrick / Morbidelli, Massimo / Ng, Ka Ming / Schouten, Jaap C. / Seinfeld, John / Stitt, E. Hugh / Tronconi, Enrico / Vayenas, Constantinos G. / Zagoruiko, Andrey / Zondervan, Edwin


IMPACT FACTOR 2018: 4.200

CiteScore 2018: 4.96

SCImago Journal Rank (SJR) 2018: 1.016
Source Normalized Impact per Paper (SNIP) 2018: 1.572

Online
ISSN
2191-0235
See all formats and pricing
More options …
Volume 31, Issue 3

Issues

A survey on cationic polyelectrolytes and their applications: acrylamide derivatives

Ahmad Rabiee
  • Corresponding author
  • Faculty of Polymer Science, Iran Polymer and Petrochemical Institute, PO Box 14965-115, Tehran, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Amir Ershad-Langroudi
  • Faculty of Polymer Processing, Iran Polymer and Petrochemical Institute, PO Box 14965-115, Tehran, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohammad Ebrahim Zeynali
  • Faculty of Petrochemistry, Iran Polymer and Petrochemical Institute, PO Box 14965-115, Tehran, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-04-21 | DOI: https://doi.org/10.1515/revce-2014-0056

Abstract

Cationic polyelectrolytes are water-soluble polymers bearing positive ionic groups along the backbone or in side chains. These cationic polymers are synthesized by free radical polymerization of acrylamide and their derivatives by the copolymerization method, which includes solution, precipitation, and emulsion techniques. The Mannich reaction is another important method by which the cationic polymers can be processed. In this review paper, the preparation methods, interaction mechanisms of these polymers, and their popular industrial applications are summarized. These polymers open a lot of applications in different fields such as paper-making processes, water and wastewater treatment, oil and drilling industries, mineral separation, paint and food industries, cosmetics, and pharmacy. In addition, these polymers are widely used as flocculants and rheology control agents. These polymers are especially employed in oil field operations as viscosity control agents for enhanced oil recovery, drilling fluid additives, and also for modifying flow and stability properties of aqueous solutions and gels. They are used as super-plasticizers, which affect the rheological properties of dense cement suspensions. Mining processes also benefit from the use of acrylamide derivative polymers to flocculate solids in aqueous dispersions. The cationic polymers may interact with different components in the system such as inorganic/organic particles in aqueous dispersions in several ways, which may result in the stability or instability of dispersion. The particles can be destabilized through three different main mechanisms which promote flocculation: polymer bridging, charge neutralization, and polymer adsorption.

Keywords: acrylamide derivatives; applications; cationic polymers; charged polymers; polyelectrolyte

References

  • Alagha L, Wang S, Yan L, Xu Z, Masliyah J. Probing adsorption of polyacrylamide-based polymers on anisotropic basal planes of kaolinite using quartz crystal microbalance. Langmuir 2013; 29: 3989–3998.PubMedCrossrefGoogle Scholar

  • Allen LH, Pelton RH. The effects of some electrolytes on flocculation with a cationic polyacrylamide. Colloid Polym Sci 1983; 261: 485–492.Google Scholar

  • Ariffin A, Shatat RSA, Nik Norulaini AR, Mohd Omar AK. Synthetic polyelectrolytes of varying charge densities but similar molar mass based on acrylamide and their applications on palm oil mill effluent treatment. Desalination 2005; 173: 201–208.CrossrefGoogle Scholar

  • Behler A. Handbook of detergents: Part F. In: Zoller U, Sosis P, editors. Boca Raton, FL: CRC Press, 2004: 365.Google Scholar

  • Bolto BA. Soluble polymers in water purification. Prog Polym Sci 1995; 20: 987–1041.CrossrefGoogle Scholar

  • Bolto B, Gregory J. Organic polyelectrolytes in water treatment. J Water Res 2007; 41: 2301–2324.CrossrefPubMedGoogle Scholar

  • Bratskaya S, Avramenko V, Schwarz S, Philippova I. Enhanced flocculation of oil-in-water emulsions by hydrophobically modified chitosan derivatives. Colloids Surf A 2006; 275: 168–176.CrossrefGoogle Scholar

  • Brostow W, Lobland HEH, Pal S, Singh RPJ. Polymeric flocculants for wastewater and industrial effluent treatment. Mater Edu 2009; 31: 157–166.Google Scholar

  • Candau F, Zekhnini Z, Healtely F, Franta E. Characterization of poly(acrylamide-co-crylates) obtained by inverse microemulsion polymerization. Colloid Polym Sci 1986; 264: 676–682.CrossrefGoogle Scholar

  • Carnali JO, Shah P. Correlation of surfactant/polymer phase behavior with adsorption on target surfaces. J Phys Chem B 2008; 112: 7171–7182.PubMedCrossrefGoogle Scholar

  • Chatterji J, Borchardt JK. Application of water soluble polymers in the oil field. J Petr Technol 1981; 33: 2042–2056.CrossrefGoogle Scholar

  • Chauhan GS, Mahajan S, Sharma R, Kumari A, Lal H. Trends Carbohydr Chem 2001; 7: 137.Google Scholar

  • Chen D, Liu X, Yue Y, Zhang W, Wang P. Dispersion copolymerization of acrylamide with quaternary ammonium cationic monomer in aqueous salts solution. Euro Polym J 2006; 42: 1284–1297.CrossrefGoogle Scholar

  • Chen HT, Ravishankar SA, Farinato RS. Rational polymer design for solid–liquid separations in mineral processing applications. Int J Min Proc 2003; 72: 75–86.CrossrefGoogle Scholar

  • Chu CP, Lee DJ, Chang BV You CH, Liao CS, Tay JH. Anaerobic digestion of polyelectrolyte flocculated waste activated sludge. Chemosphere 2003; 53: 757–764.CrossrefGoogle Scholar

  • Collin C. Hydro-seeding mixture. U.S. Patent 7,504,445, 2009.Google Scholar

  • DeBusk JA, Arogo Ogejo J, Knowlton KF, Love NG. Chemical phosphorus removal for separated flushed dairy manure. Appl Eng Agr 2008; 24: 499–506.CrossrefGoogle Scholar

  • Doherty WOS, Fellows CM, Gorjian S, Senogles E, Cheung WH. Flocculation and sedimentation of cane sugar juice particles with cationic homo- and copolymers. J Appl Polym Sci 2003; 90: 316–325.CrossrefGoogle Scholar

  • Donaldson EC, Chilingar GV, Yen TF. Polymer flooding. Amsterdam: Elsevier, Chapter 7, 1983: 158.Google Scholar

  • Fair MJ, Massaro M, Crookham H, Rattinger GB, Dalton JJ, Farrell TG, Shafer G. Bars comprising benefit agent and cationic polymer. U.S. Patent 6,057,275, 2000.Google Scholar

  • Faraday O, Orumwense F. Dispersion – flocculation studies on a Goethite-clay system. J Chem Technol Biotechnol 1994; 60: 405–411.Google Scholar

  • Fares MM, El-faqeeh AS, Osman ME. Graft copolymerization onto starch: I. Synthesis and optimization of starch grafted with N-tert-butylacrylamide copolymer and its hydrogels. J Poly Res 2003; 10: 119–125.CrossrefGoogle Scholar

  • Finch CA. Industrial water soluble polymers. Cambridge, UK: The Royal Society of Chemistry, 1996: 62.Google Scholar

  • Fleer GJ, Cohen Stuart MA, Scheutjens JMHM, Cosgrove T, Vincent B. Polymers at interfaces. Cambridge, UK: Chapman and Hall, 1993.Google Scholar

  • Franks GV, Li H, O’Shea JP, Qiao GG. Temperature responsive polymers as multiple function reagents in mineral processing. Adv Powder Technol 2009; 20: 273–279.CrossrefGoogle Scholar

  • Frazer LJ. New method accurately analyzes PHPA’s in muds. Oil Gas J 1987; 85: 39–42.Google Scholar

  • Ge X, Ye W, Xu M, Zhang Z. Radiation copolymerization of acrylamide and cationic monomer in an inverse emulsion. Polymer 1998; 39: 1917–1920.CrossrefGoogle Scholar

  • Ghimici L, Bercea M, Dragan ES. Rheological behavior of some cationic polyelectrolytes. J Macrom Sci B 2009; 48: 1011–1024.CrossrefGoogle Scholar

  • Ghorai S, Sarkar A, Panda AB, Pal S. Evaluation of the flocculation characteristics of polyacrylamide grafted xanthan gum/silica hybrid nanocomposite. Ind Eng Chem Res 2013; 52: 9731–9740.CrossrefGoogle Scholar

  • Gogate PR, Pandit AB. A review of imperative technologies for wastewater treatment: I. Oxidation technologies at ambient conditions. Adv Environ Res 2004; 8: 501–551.CrossrefGoogle Scholar

  • Goodman RM. Dispersants. Kirk-Othmer: Encyclopedia of chemical technology. Toronto: Wiley, 1978: 7.Google Scholar

  • Goudarzian N, Rabiee A, Hamidi H. Effect of reactant ratio on gel point of sulfonated melamine formaldehyde. Iran Polym J 1996; 5: 24–29.Google Scholar

  • Green VS, Stott DE, Norton LD, Graveel JG. Polyacrylamide molecular weight and charge effects on infiltration under simulated rainfall. Soil Sci Soc Am J 2000; 64: 1786–1791.CrossrefGoogle Scholar

  • Gregory J. Polymeric flocculants. In: Finch CA, editor. Chemistry and technology of water-soluble polymers. New York: Plenum Press, 1983: 307.Google Scholar

  • Guan Q, Zheng H, Zhai J, Zhao C, Zheng X, Tang XM, Chen W, Sun Y. Effect of template on structure and properties of cationic polyacrylamide: characterization and mechanism. Ind Eng Chem Res 2014; 53: 5624–5635.CrossrefGoogle Scholar

  • Haicun Y, Weiqun Z, Ning S, Yunfei Z, Xin L. Preliminary study on mechanisms and oil displacement performance of cationic starch. J Petr Sci Technol 2009; 65: 188–192.Google Scholar

  • Hale AH, Mody FK, Shell Development Company. SPE International symposium on oilfield chemistry. 2–5 March, New Orleans, LO, 1993.Google Scholar

  • He Y, Li G, Yang F, Yu X, Cui Y, Ren F. Precipitation polymerization of acrylamide with quaternary ammonium cationic monomer in potassium carbonate solution initiated by plasma. J Appl Polym Sci 2007; 104: 4060–4067.CrossrefGoogle Scholar

  • Heskins M, Guillet JE. Solution properties of poly (N-isopropylacrylamide). J Macromol Sci Chem 1968; A2: 1441–1455.CrossrefGoogle Scholar

  • Hessefort YZ, Morris JD, Carlson WM, Wei M, Quadir M, Brammer Jr, Larry E. Water soluble monomers and polymers for protecting substrates from ultraviolet light. U.S. Patent 7,008,618, 2006.Google Scholar

  • Hocking MB, Klimchuck KA, Lowen S. Water-soluble acrylamide copolymers: VIII. Preparation and characterization of polyacrylamide-co-N-t-butylacrylamide. J Polym Sci A 2001; 39: 1960–1977.CrossrefGoogle Scholar

  • Jaeger W, Bohrisch J, Laschewsky A. Synthetic polymers with quaternary nitrogen atoms – synthesis and structure of the most used type of cationic polyelectrolyte. Prog Polym Sci 2010; 35: 511–577.CrossrefGoogle Scholar

  • Ji J, Qiua J, Wai N, Wong FS, Li Y. Influence of organic and inorganic flocculants on physical-chemical properties of biomass and membrane-fouling rate. Water Res 2010; 44: 1627–1635.CrossrefPubMedGoogle Scholar

  • Jiang M, Zhou X, Zhang Y, Lou J. International conference on energy and environment technology. Guilin, China: ICEET, 2009; 2: 574.Google Scholar

  • Johnson KM, Fevola MJ, McCornick CL. Hydrophobically modified acrylamide-based polybetaines: I. Synthesis, characterization, and stimuli-responsive solution behavior. J Appl Polym Sci 2004; 92: 647–657.CrossrefGoogle Scholar

  • Kasturi C, Schafer MG, Spears MJ, Hutton HD, Sivik MR, Kluesener BW, Scheper WM. Detergent composition comprising polymeric suds enhancers which have improved mildness and skin feel. U.S. Patent 6,827,795, 2004.Google Scholar

  • Khai EM, Lee KE, Poh BT, Morad N, Teng TT. Synthesis and characterization of hydrophobically modified cationic polyacrylamide with low concentration of cationic monomer. J Macromol Sci A 2009; 46: 240–249.Google Scholar

  • Khalil MI, Amal AA. Evaluation of some starch derivatives containing amide groups as flocculants. Starch/Stäke 2001a; 53: 323–329.CrossrefGoogle Scholar

  • Khalil MI, Amal AA. Preparation and evaluation of some cationic starch derivatives as flocculants. Starch/Stärke 2001b; 53: 84–89.CrossrefGoogle Scholar

  • Khalil MI, Amal AA. Preparation and evaluation of some anionic starch derivatives as flocculants. Starch/Stärke 2002; 54: 132–139.CrossrefGoogle Scholar

  • Khan GF, Guskey SM, Wells RL. Conditioning composition comprising cationic cross-linked thickening polymer and nonionic surfactant. U.S. Patent Application 20050002892, 2005.Google Scholar

  • Klimchuk KA, Hocking MB, Lowen S. Water-soluble acrylamide copolymers: IX. Preparation and characterization of the cationic derivatives of poly (acrylamide-co-n,n-dimethylacrylamide), poly(acrylamide-co-methacrylamide), and poly(acrylamide-co-n-t-butylacrylamide). J Polym Sci A 2001; 39: 2525–2535.CrossrefGoogle Scholar

  • Koetz J, Kosmella S. Polyelectrolytes and nanoparticles. Berlin, Heidelberg, New York: Springer, 2007.Google Scholar

  • Kurenkov VF, Myagchenkov VA. Effects of reaction medium on the radical polymerization and copolymerization of acrylamide. Eur Polym J 1980; 16: 1229–1239.CrossrefGoogle Scholar

  • Kurenkov VF, Myagchenkov VA. Heterophase polymerization of acrylamide. Polym Plast Technol Eng 1991; 30: 367–404.CrossrefGoogle Scholar

  • Laue C, Hunkeler D. Chitosan-graft-acrylamide polyelectrolytes: synthesis, flocculation, and modeling. J Appl Polym Sci 2006; 102: 885–896.CrossrefGoogle Scholar

  • Lee SH, Shin WS, Shin MC, Choi SJ, Park LS. Improvement of water treatment performance by using polyamine flocculants. Environ Technol 2001; 22: 653–659.CrossrefPubMedGoogle Scholar

  • Leslie T, Xiao H, Dong M. Tailor-modified starch/cyclodextrin-based polymers for use in tertiary oil recovery. J Pet Sci Eng 2005; 46: 225–232.CrossrefGoogle Scholar

  • Li G, Yang C, He Y, Yang F, Yu X. Studies of precipitated polymerization of acrylamide with quaternary ammonium cationic comonomer in potassium citrate solution. J Appl Polym Sci 2007; 106: 2479–2484.CrossrefGoogle Scholar

  • Liao Y, Zheng H, Qian L, Sun Y, Dai L, Xue W. UV-initiated polymerization of hydrophobically associating cationic polyacrylamide modified by a surface-active monomer: a comparative study of synthesis, characterization, and sludge dewatering performance. Ind Eng Chem Res 2014; 53: 11193–11203.CrossrefGoogle Scholar

  • Liu L, Yang W. Photoinitiated, inverse emulsion polymerization of acrylamide: some mechanistic and kinetic aspects. J Polym Sci A 2004; 42: 846–852.CrossrefGoogle Scholar

  • Liu J, Takisawa N, Shirahama K. Effect of polymer size on the polyelectrolyte–surfactant interaction. J Phys Chem 1997; 101: 7520–7523.CrossrefGoogle Scholar

  • Liu Y, Wang S, Hua J. Synthesis of complex polymeric flocculant and its application in purifying water. J Appl Polym Sci 2000; 76: 2093–2097.CrossrefGoogle Scholar

  • Liu X, Liu K, Gou S, Liang L, Luo C, Guo Q. Water-soluble acrylamide sulfonate copolymer for inhibiting shale hydration. Ind Eng Chem Res 2014; 53: 2903–2910.CrossrefGoogle Scholar

  • Lochhead RY, Cosmetic nanotechnology. ACS Symp Ser 2007; 961: 3–56.Google Scholar

  • Lu S, Liu R, Sun X. A study on the synthesis and application of an inverse emulsion of amphoteric polyacrylamide as a retention aid in papermaking. J Appl Polym Sci 2002; 84: 343–350.CrossrefGoogle Scholar

  • Lu S, Lin T, Cao D. Inverse emulsion of starch-graft-polyacrylamide. Starch/Stärke 2003; 55: 222–227.CrossrefGoogle Scholar

  • Malovikova A, Hayakawa K. Surfactant-polyelectrolyte interactions: 4. Surfactant chain length dependence of the binding of alkylpyridinium cations to dextran sulfate. J Phys Chem 1984; 88: 1930–1933.CrossrefGoogle Scholar

  • Massola CP, Chaves AP, Lima JRB, Andrade CF. Separation of silica from bauxite via froth flotation. Min Eng 2009; 22: 315–318.CrossrefGoogle Scholar

  • Matralis A, Sotiropoulou M, Bokias G, Staikos G. Water-soluble stoichiometric polyelectrolyte complexes based on cationic comb-type copolymers. Macromol Chem Phys 2006; 207: 1018–1025.CrossrefGoogle Scholar

  • Mayer HK. Milk species identification in cheese varieties using electrophoretic, chromatographic and PCR techniques. Int Dairy J 2005; 15: 595–604.CrossrefGoogle Scholar

  • McDonald CJ, Beaver RH. The Mannich reaction of poly(acrylamide). Macromolecules 1979; 12: 203–208.CrossrefGoogle Scholar

  • Migo VP, Matsumura M, Del Rosario EJ, Kataoka H. Decolorization of molasses wastewater using an inorganic flocculant. J Ferment Bioeng 1993; 75: 438–442.CrossrefGoogle Scholar

  • Molyneux P. Water soluble synthetic polymers: properties and behavior, Vol. 2. Boca Raton, FL: CRC Press, 1984.Google Scholar

  • Morchat RM, Hiltz JA. A TGA study correlating polymer characteristics with smoke and flammability properties of polyester and phenolic resins. Thermochemica Acta 1991; 192: 221–231.CrossrefGoogle Scholar

  • Mortimer DA. Synthetic polyelectrolytes – a review. Polym Int 1991; 25: 29–41.CrossrefGoogle Scholar

  • Niemec SM, Yeh H, Gallagher R, Hoe KL. Detergent composition with enhanced depositing, conditioning and softness capabilities. U.S. Patent 6,908,889, 2005.Google Scholar

  • Ochoa JR, Escudero Sanz FJ, Sasia PM, Santos García A, Díaz de Apodaca E, Río P. Synthesis of cationic flocculants by the inverse microemulsion copolymerization of acrylamide with 60% 2-acryloxyethyltrimethyl ammonium chloride in the monomer feed: II. Influence of the formulation composition, hydrophilic-lipophilic balance, starting polymerization temperature, and reaction time. J Appl Polym Sci 2007; 103: 186–197.Google Scholar

  • Oliver J, Hao OJ, Kim H, Chiang PC. Decolorization of Wastewater. Crit Rev Env Sci Technol 2000; 30: 449–505.Google Scholar

  • Pazhanisamy P, Reddy BSR. Synthesis and characterization of methacrylamido propyltrimethyl ammonium chloride and N-substituted acrylamide ionomers. eXPRESS Polym Lett 2007; 1: 740–747.CrossrefGoogle Scholar

  • Pelton RH. Model cationic flocculants from the Mannich reaction of polyacrylamide model cationic flocculants from the Mannich reaction of polyacrylamide. J Polym Sci A 1984; 22: 3955–3966.Google Scholar

  • Pelton RH. Electrolyte effects in the adsorption and desorption of a cationic polyacrylamide on cellulose fibers. J Colloid Interface Sci 1986; 111: 475–485.CrossrefGoogle Scholar

  • Peng P, Garnier G. Effect of cationic polyacrylamide on precipitated calcium carbonate flocculation: kinetics, charge density and ionic strength. Colloid Surface A 2012; 408: 32–39.CrossrefGoogle Scholar

  • Petroudy SRD, Syverud K, Chinga-Carrasco G, Ghasemain A, Resalati H. Effects of bagasse microfibrillated cellulose and cationic polyacrylamide on key properties of bagasse paper. Carbohyd Polym 2014; 99: 311–318.CrossrefGoogle Scholar

  • Pojják K, Bertalanits E, Mészáros R. Effect of salt on the equilibrium and nonequilibrium features of polyelectrolyte/surfactant association. Langmuir 2011; 27: 9139–9147.CrossrefPubMedGoogle Scholar

  • Qiao R, Zhang R, Zhu W, Gong P. Lab simulation of profile modification and enhanced oil recovery with a quaternary ammonium cationic polymer. J Ind Eng Chem 2012; 18: 111–115.CrossrefGoogle Scholar

  • Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 2001; 53: 321–339.CrossrefPubMedGoogle Scholar

  • Rabiee A. Synthesis of water-soluble highly sulphonated melamine-formaldehyde resin as an effective super-plasticizer in concrete. Iran Polym J 2001; 10: 157–163.Google Scholar

  • Rabiee A. Acrylamide-based anionic polyelectrolytes and their applications: a survey. J Vinyl Addit Technol 2010; 16: 111–119.Google Scholar

  • Rabiee A. Acrylamide-based cationic polyelectrolytes and their potential applications: a survey. International conference on management and service science (MASS). 12–14 Aug. 2011, Wuhan, China: IEEE, 1–3.Google Scholar

  • Rabiee A, Zeynali ME, Baharvand H. Synthesis of high molecular weight partially hydrolyzed polyacrylamide and investigation on its properties. Iran Polym J 2005; 14: 603–608.Google Scholar

  • Rabiee A, Ershad-Langroudi A, Jamshidi H. Polyacrylamide-based polyampholytes and their applications. Rev Chem Eng 2014; 30: 501–519.Google Scholar

  • Riggs JP, Rodriguez F. Polymerization of acrylamide initiated by the persulfate–thiosulfate redox couple. J Polym Sci A 1967; 5: 3167–3181.CrossrefGoogle Scholar

  • Robbins CR. Interactions of shampoo and crème rinse ingredients with human hair. Chemical and physical behavior of human hair. New York: Springer-Verlag, 2002: 193–310.Google Scholar

  • Romero-Zeron L, Kantzas A. Evolution of foamed gel confined in pore network models. J Canad Petr Technol 2006; 45: 51–62.Google Scholar

  • Sakohara S, Nishikawa K. Compaction of TiO2 suspension utilizing hydrophilic/hydrophobic transition of cationic thermosensitive polymers. J Colloid Interface Sci 2004; 278: 304–309.Google Scholar

  • Sakohara S, Ochiai E, Kusaka T. Dewatering of activated sludge by thermosensitive polymers. Sep Purif Technol 2007; 56: 296–302.CrossrefGoogle Scholar

  • Samain H, Livoreil A. Alkaline hair-relaxing in the presence of at least one high molecular weight water-soluble polymer. U.S. Patent Application 20040265256 A1, 2004.Google Scholar

  • Schild HG. Poly (N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 1992; 17: 163–249.CrossrefGoogle Scholar

  • Shang H, Liu H, Zheng Y, Wang L. Synthesis, characterization, and flocculation properties of poly(acrylamide-methacryloxyethyltrimethyl ammonium chloride-methacryloxypropyltrimethoxy silane). J Appl Polym Sci 2009; 111: 1594–1599.CrossrefGoogle Scholar

  • Shen Y, Zhang A, Wu G. Effect of polymerization method on structure and properties of cationic polyacrylamide. J Appl Polym Sci 2008; 110: 3889–3896.CrossrefGoogle Scholar

  • Shon HK, Vigneswaran S, Ngo HH, Kim JH, Kandasamy J. Effect of flocculation as a pretreatment to photocatalysis in the removal of organic matter from wastewater. J Sep Purif Technol 2007; 56: 388–391.CrossrefGoogle Scholar

  • Sojka RE, Lentz RD. Reducing furrow irrigation erosion with polyacrylamide (PAM). J Prod Agric 1997; 10: 47–52.CrossrefGoogle Scholar

  • Song H, Wu D, Zhang RQ, Qiao LY, Zhang SH, Lin S, Ye J. Synthesis and application of amphoteric starch graft polymer. J Carbohydr Polym 2009; 78: 253–257.CrossrefGoogle Scholar

  • Soponvuttikul C, Scamehorn JF, Saiwan C. Aqueous dispersion behavior of barium chromate crystals: effect of cationic polyelectrolyte. Langmuir 2003; 19: 4402–4410.CrossrefGoogle Scholar

  • Sorbie KS. Polymer-improved OIL recovery. Boca Raton, FL: CRC Press, 1991.Google Scholar

  • Souza CEC, Fonseca MV, Sa CH, Nascimento RSV. Inhibitive properties of cationic polymers in a borehole environment. J Appl Polym Sci 2006; 102: 2158–2163.CrossrefGoogle Scholar

  • Stechemesser H, Dobias B. Coagulation and flocculation. Boca Raton, FL: CRC Press, 2005.Google Scholar

  • Tadros T. Flory-Huggins interaction parameters. Encyclopedia of colloid and interface science. Heidelberg: Springer, 2013: 523–524.Google Scholar

  • Taylor KC, Nasr-El-Din HA. Water-soluble hydrophobically associating polymers for improved oil recovery: a literature review. J Pet Sci Eng 1998; 19: 265–280.CrossrefGoogle Scholar

  • Thomas WM, Wang DW. Encyclopedia of polymer science and technology, 2nd ed., Vol. 7. In: Mark HF, Bikales NM, Overberger CG, Menges G, editors. New York: Wiley, 1985: 211–229.Google Scholar

  • Tiwari DK, Sen P. Application of nanoparticles in waste water treatment. World Appl Sci J 2008; 3: 417–433.Google Scholar

  • Tripathy T, De BR. Flocculation: a new way to treat the wastewater. J Phys Sci 2006; 10: 93–127.Google Scholar

  • Vorchheimer N. Synthetic polyelectrolytes. In: Schwoyer WLK, editor. Polyelectrolytes for water and wastewater treatment. Boca Raton, FL: CRC Press, 1981: 1.Google Scholar

  • Vorob’ev PD, Krut’ko NP, Vorob’eva EV, Cherednichenko DV, Basalyga II. Peculiarities of the formation of polyacrylamide compound-based polyelectrolyte complexes in the course of the flocculation of clay-salt dispersions. Colloid J 2007; 69: 552–556.CrossrefGoogle Scholar

  • Wang WK, Huang SD. Adsorbing colloid flotation of Zn(II) with Fe(OH)3 and polyelectrolytes. Sep Sci Technol 1989; 24: 1179–1189.Google Scholar

  • Wang LK, Wang MH, Kao JF. Application and determination of organic polymers. J Water Air Soil Pollut 1978; 9: 337–348.Google Scholar

  • Wang Y, Kotsuchibashi Y, Liu Y, Narain R. Temperature-responsive hyperbranched amine-based polymers for solid–liquid separation. Langmuir 2014; 30: 2360–2368.CrossrefPubMedGoogle Scholar

  • Wanga Li J, Wanga JP, Zhanga Sj, Chena YZ, Yuana SJ, Sheng GP, Yu HQ. A water-soluble cationic flocculant synthesized by dispersion polymerization in aqueous salts solution. Sep Purif Technol 2009; 67: 331–335.CrossrefGoogle Scholar

  • Wells RL, Johnson ES. Shampoo containing a cationic guar derivative. U.S. Patent Application 6,930,078, 2005.Google Scholar

  • Wiśniewska M, Chibowski S, Urban T. Impact of anionic and cationic polyacrylamide on the stability of aqueous alumina suspension – comparison of adsorption mechanism. Colloid Polym Sci 2015; 293: 146–152.Google Scholar

  • Wong SS, Teng TT, Ahmad AL, Zuhairi A, Najafpour G. Treatment of pulp and paper mill wastewater by polyacrylamide (PAM) in polymer induced flocculation. J Hazard Mater 2006; 135: 378–388.CrossrefPubMedGoogle Scholar

  • Wu YM, Chen QF, Xu J, Bi JM. Aqueous dispersion polymerization of acrylamide with quaternary ammonium cationic comonomer. J Appl Polym Sci 2008; 108: 134–139.CrossrefGoogle Scholar

  • Xu J, Zhao WP, Wang CX, Wu YM. Preparation of cationic polyacrylamide by aqueous two-phase polymerization. eXPRESS Polym Lett 2010; 4: 275–283.CrossrefGoogle Scholar

  • Xue W, Hamley IW, Castellano V, Olmsted PD. Synthesis and characterization of hydrophobically modified polyacrylamides and some observations on rheological properties. Euro Polym J 2004; 40: 47–56.CrossrefGoogle Scholar

  • Xue Z, Foster E, Wang Y, Nayak S, Cheng V, Ngo VW, Pennell KD, Bielawski CW, Johnston KP. Effect of grafted copolymer composition on iron oxide nanoparticle stability and transport in porous media at high salinity. Energy Fuels 2014; 28: 3655–3665.CrossrefGoogle Scholar

  • Yahaya GO, Ahdab AA, Sli SA, Abu-Sharkh BF, Hamad FZ. Solution behavior of hydrophobically associating water-soluble block copolymers of acrylamide and N-benzylacrylamide. Polymer 2001; 42: 3363–3372.CrossrefGoogle Scholar

  • Yeoh T, Coffindaffer TW, Uchiyama H, Schroeder JG, Okuyama Y. Conditioning shampoo compositions having improved silicone deposition. U.S. Patent 6,200,554, 2001.Google Scholar

  • Zeynali ME, Rabiee A. Alkaline hydrolysis of polyacrylamide and study on poly(acrylamide-co-sodium acrylate) properties. Iran Polym J 2002; 11: 269–275.Google Scholar

  • Zeynali ME, Rabiee A, Baharvand H. Synthesis of partially hydrolyzed polyacrylamide and investigation of solution properties (viscosity behavior). Iran Polym J 2004; 13: 479–484.Google Scholar

  • Zhao X, Liu L, Wang Y, Dai H, Wang D, Cai H. Influences of partially hydrolyzed polyacrylamide (HPAM) residue on the flocculation behavior of oily wastewater produced from polymer flooding. Sep Purif Technol 2008; 62: 199–204.CrossrefGoogle Scholar

  • Zheng HL, Zhu JR, Jiang ZZ, Ji FY, Tan MZ, Sun YJ, Miao SX, Zheng XK. Research on preparation and application of dewatering agents for tailings water treatment. Adv Mater Res 2012; 414: 172–178.Google Scholar

  • Zheng H, Sun Y, Guo J, Li F, Fan W, Liao Y, Guan Q. Characterization and evaluation of dewatering properties of PADB, a highly efficient cationic flocculant. Ind Eng Chem Res 2014; 53: 2572–2582.CrossrefGoogle Scholar

  • Zou C, Zhao P, Hu X, Yan X, Zhang Y, Wang X, Song R, Luo P. β-Cyclodextrin-functionalized hydrophobically associating acrylamide copolymer for enhanced oil recovery. Energy Fuels 2013; 27: 2827–2834.CrossrefGoogle Scholar

About the article

Ahmad Rabiee

Ahmad Rabiee is an Assistant Professor at the Science Department, Iran Polymer and Petrochemical Institute. He obtained his BSc and MSc degrees in Chemistry from Shahid Bahonar University, Kerman, Iran, and Teachers’ Training University, Tehran, Iran, respectively. He received his PhD in Polymer Industry from the Iran Polymer and Petrochemical Institute. Since then he has been involved in teaching different courses in Iranian universities and editing scientific publication papers. His main research interests are synthesis and characterization of different polyelectrolytes.

Amir Ershad-Langroudi

Amir Ershad-Langroudi is an Associate Professor at the Surface Coatings Department, Iran Polymer and Petrochemical Institute. He obtained his BSc and MSc degrees in Materials Engineering from Sharif University of Technology and Iran University of Science and Technology, Tehran, Iran, respectively. He received his PhD in Materials Engineering from INSA de Lyon, Lyon, France. Since then he has been involved in teaching different courses. His main research interests are synthesis and characterization of organic-inorganic hybrid nano-composite coatings.

Mohammad Ebrahim Zeynali

Mohammad Ebrahim Zeynali is an Assistant Professor at the Petrochemical Department, Iran Polymer and Petrochemical Institute. He obtained his BSc and MSc degrees in Chemical Engineering from Amirkabir University of Technology, Tehran, Iran. He received his PhD from UNSW (University of New South Wales) in Sydney, Australia. Since then he has lectured advanced engineering mathematics for postgraduate students. His main research interests are polymer and petrochemical preparation, especially heterogeneous catalytic systems, and mathematical modeling of chemical processes.


Corresponding author: Ahmad Rabiee, Faculty of Polymer Science, Iran Polymer and Petrochemical Institute, PO Box 14965-115, Tehran, Iran, e-mail:


Received: 2014-11-17

Accepted: 2015-02-10

Published Online: 2015-04-21

Published in Print: 2015-06-01


Citation Information: Reviews in Chemical Engineering, Volume 31, Issue 3, Pages 239–261, ISSN (Online) 2191-0235, ISSN (Print) 0167-8299, DOI: https://doi.org/10.1515/revce-2014-0056.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Siying Tan, Shaojie Jiang, Yangzhou Lai, and Qiuhong Yuan
Science of The Total Environment, 2019, Volume 670, Page 1103
[2]
[3]
Anita Lourenço, Julien Arnold, José António Ferreira Gamelas, Olivier Jean Cayre, and Maria G. Rasteiro
Industrial & Engineering Chemistry Research, 2018
[4]
[6]
Boya Xiong, Rebeca Dettam Loss, Derrick Shields, Taylor Pawlik, Richard Hochreiter, Andrew L Zydney, and Manish Kumar
npj Clean Water, 2018, Volume 1, Number 1
[7]
Joana Luísa Pereira, Tânia Vidal, Fernando J.M. Gonçalves, Rita Garrido Gabriel, Raquel Costa, and Maria Graça Rasteiro
Chemosphere, 2018, Volume 202, Page 145
[8]
Haiyang Xu, Jing Li, Renjie Fu, Rui Cheng, Shiming Wang, and Jianfa Zhang
Environmental Science and Pollution Research, 2017
[9]
Sandeep Rellegadla, Ganshyam Prajapat, and Akhil Agrawal
Applied Microbiology and Biotechnology, 2017, Volume 101, Number 11, Page 4387
[10]
Kamil Czerniak, Krzysztof Dwiecki, Łukasz Majchrzycki, Adrian Czerniak, and Wojciech Białas
Chemical Papers, 2017, Volume 71, Number 3, Page 639
[11]
Yuxin Pei, Liqiang Zhao, Guangyan Du, Nianyin Li, Kun Xu, and Hanjie Yang
Petroleum, 2016, Volume 2, Number 4, Page 399

Comments (0)

Please log in or register to comment.
Log in