Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in Chemical Engineering

Editor-in-Chief: Luss, Dan / Brauner, Neima

Editorial Board: Agar, David / Davis, Mark E. / Edgar, Thomas F. / Giorno, Lidietta / Joshi, J. B. / Khinast, Johannes / Kost, Joseph / Leal, L. Gary / Li, Jinghai / Mills, Patrick / Morbidelli, Massimo / Ng, Ka Ming / Schouten, Jaap C. / Seinfeld, John / Stitt, E. Hugh / Tronconi, Enrico / Vayenas, Constantinos G. / Zagoruiko, Andrey

6 Issues per year

IMPACT FACTOR 2016: 3.173

CiteScore 2016: 3.19

SCImago Journal Rank (SJR) 2016: 0.797
Source Normalized Impact per Paper (SNIP) 2016: 1.458

See all formats and pricing
More options …
Volume 31, Issue 3


Porous silicon for cancer therapy: from fundamental research to the clinic

Adi Tzur-Balter
  • The Interdepartmental Program of Biotechnology, Technion – Israel Institute of Technology, Haifa 32000, Israel
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Giorgi Shtenberg
  • Technion – Israel Institute of Technology, Department of Biotechnology and Food Engineering, Haifa 32000, Israel
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ester Segal
  • Corresponding author
  • Technion – Israel Institute of Technology, Department of Biotechnology and Food Engineering, Haifa 32000, Israel
  • The Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 32000, Israel
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-04-14 | DOI: https://doi.org/10.1515/revce-2015-0001


Porous silicon (PSi) has emerged over the past decade as a promising biomaterial for nanomedicine in general and cancer nanomedicine in particular. PSi offers a unique combination of properties, including large surface area and porous volume, biocompatibility, degradability in vivo into non-toxic silicic acid species, as well as its wealth of intrinsic optical properties (e.g., luminescence, photonic). This arsenal of properties together with the ability to tailor the PSi nanostructure and surface characteristics have led to an immense research effort directed at the development of PSi-based platforms for biomedical applications. After a brief introduction of the biology of cancer and currently practiced therapies, we provide an updated review of the progress of PSi-based platforms for cancer therapy and imaging.

Keywords: cancer; drug delivery; porous silicon


  • Ananta JS, Godin B, Sethi R, Moriggi L, Liu XW, Serda RE, Krishnamurthy R, Muthupillai R, Bolskar RD, Helm L, Ferrari M, Wilson LJ, Decuzzi P. Geometrical confinement of gadolinium-based contrast agents in nanoporous particles enhances T1 contrast. Nat Nanotechnol 2010; 5: 815–821.Google Scholar

  • Anglin EJ, Schwartz MP, Ng VP, Perelman LA, Sailor MJ. Engineering the chemistry and nanostructure of porous silicon Fabry-Perot films for loading and release of a steroid. Langmuir 2004; 20: 11264–11269.CrossrefPubMedGoogle Scholar

  • Anglin EJ, Cheng LY, Freeman WR, Sailor MJ. Porous silicon in drug delivery devices and materials. Adv Drug Deliv Rev 2008; 60: 1266–1277.PubMedCrossrefGoogle Scholar

  • Baldo BA, Pham NH. Adverse reactions to targeted and non-targeted chemotherapeutic drugs with emphasis on hypersensitivity responses and the invasive metastatic switch. Cancer Metastasis Rev 2013; 32: 723–761.CrossrefPubMedGoogle Scholar

  • Bayliss SC, Harris PJ, Buckberry LD, Rousseau C. Phosphate and cell growth on nanostructured semiconductors. J Mater Sci Lett 1997; 16: 737–740.CrossrefGoogle Scholar

  • Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 2014; 66: 2–25.PubMedCrossrefGoogle Scholar

  • Bimbo LM, Sarparanta M, Santos HA, Airaksinen AJ, Makila E, Laaksonen T, Peltonen L, Lehto VP, Hirvonen J, Salonen J. Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats. ACS Nano 2010; 4: 3023–3032.PubMedCrossrefGoogle Scholar

  • Bimbo LM, Mäkiläb E, Laaksonen T, Lehto V-P, Salonen J, Hirvonen J, Santos HA. Drug permeation across intestinal epithelial cells using porous silicon nanoparticles. Biomaterials 2011; 32: 2625–2633.CrossrefPubMedGoogle Scholar

  • Bonanno LM, Segal E. Nanostructured porous silicon-polymer-based hybrids: from biosensing to drug delivery. Nanomedicine 2011; 6: 1755–1770.CrossrefGoogle Scholar

  • Boucher Y, Baxter LT, Jain RK. Interstitial pressure-gradients in tissue-isolated and subcutaneous tumors – implications for therapy. Cancer Res 1990; 50: 4478–4484.PubMedGoogle Scholar

  • Bracci L, Schiavoni G, Sistigu A, Belardelli F. Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer. Cell Death Differ 2014; 21: 15–25.PubMedCrossrefGoogle Scholar

  • Canham LT. Bioactive silicon structure fabrication through nanoetching techniques. Adv Mater 1995; 7: 1033–1037.CrossrefGoogle Scholar

  • Canham L, editor. Properties of porous silicon. London: INSPEC, 1997.Google Scholar

  • Canham LT. Nanoscale semiconducting silicon as a nutritional food additive. Nanotechnology 2007; 18: 6.Google Scholar

  • Canham L. Nanosilicon for nanomedicine: a step towards biodegradable electronic implants? Nanomedicine 2013; 8: 1573–1576.CrossrefGoogle Scholar

  • Canham L, editor. Handbook of porous silicon. Switzerland: Springer, 2014.Google Scholar

  • Canham LT, Newey JP, Reeves CL, Houlton MR, Loni A, Simons AJ, Cox TI. The effects of dc electric currents on the in-vitro calcification of bioactive silicon wafers. Adv Mater 1996a; 8: 847.CrossrefGoogle Scholar

  • Canham LT, Reeves CL, King DO, Branfield PJ, Crabb JG, Ward MCL. Bioactive polycrystalline silicon. Adv Mater 1996b; 8: 850–852.CrossrefGoogle Scholar

  • Canham LT, Reeves CL, Loni A, Houlton MR, Newey JP, Simons AJ, Cox TI. Calcium phosphate nucleation on porous silicon: factors influencing kinetics in acellular simulated body fluids. Thin Solid Films 1997; 297: 304–307.CrossrefGoogle Scholar

  • Cheng L, Anglin E, Cunin F, Kim D, Sailor MJ, Falkenstein I, Tammewar A, Freeman WR. Intravitreal properties of porous silicon photonic crystals: a potential self-reporting intraocular drug-delivery vehicle. Br J Ophthalmol 2008; 92: 705–711.CrossrefPubMedGoogle Scholar

  • Chiappini C, Tasciotti E, Fakhoury JR, Fine D, Pullan L, Wang Y-C, Fu L, Liu X, Ferrari M. Tailored porous silicon microparticles: fabrication and properties. ChemPhysChem 2010; 11: 1029–1035.PubMedCrossrefGoogle Scholar

  • Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI, Bawendi MG, Frangioni JV. Renal clearance of quantum dots. Nat Biotechnol 2007; 25: 1165–1170.CrossrefPubMedGoogle Scholar

  • Coffer JL, Whitehead MA, Nagesha DK, Mukherjee P, Akkaraju G, Totolici M, Saffie RS, Canham LT. Porous silicon-based scaffolds for tissue engineering and other biomedical applications. Phys Status Solidi A 2005; 202: 1451–1455.CrossrefGoogle Scholar

  • Collins I, Weber A, Levens D. Transcriptional consequences of topoisomerase inhibition. Mol Cell Biol 2001; 21: 8437–8451.CrossrefPubMedGoogle Scholar

  • Cunin F, Schmedake TA, Link JR, Li YY, Koh J, Bhatia SN, Sailor MJ. Biomolecular screening with encoded porous-silicon photonic crystals. Nat Mater 2002; 1: 39–41.PubMedCrossrefGoogle Scholar

  • Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 2008; 7: 771–782.PubMedCrossrefGoogle Scholar

  • Decuzzi P, Godin B, Tanaka T, Lee SY, Chiappini C, Liu X, Ferrari M. Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release 2010; 141: 320–327.CrossrefPubMedGoogle Scholar

  • Doherty GJ, McMahon HT. Mechanisms of endocytosis. Annual review of biochemistry. Palo Alto: Annual Reviews, 2009.Google Scholar

  • Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Globocan 2012: Cancer incidence and mortality worldwide. International Agency for Research on Cancer, 2012 (cited 27 December 2014).Google Scholar

  • Ferrari M. Experimental therapies vectoring siRNA therapeutics into the clinic. Nat Rev Clin Oncol 2010; 7: 485–486.CrossrefGoogle Scholar

  • Gebski V, Burmeister B, Smithers BM, Foo K, Zalcberg J, Simes J. Survival benefits from neoadjuvant chemoradiotherapy or chemotherapy in oesophageal carcinoma: a meta-analysis. Lancet Oncol 2007; 8: 226–234.PubMedCrossrefGoogle Scholar

  • Gizzatov A, Stigliano C, Ananta JS, Sethi R, Xu R, Guven A, Ramirez M, Shen H, Sood A, Ferrari M, Wilson LJ, Liu X, Decuzzi P. Geometrical confinement of Gd(DOTA) molecules within mesoporous silicon nanoconstructs for MR imaging of cancer. Cancer Lett 2014; 352: 97–101.CrossrefPubMedGoogle Scholar

  • Glatstein E, Glick J, Kaiser L, Hahn SM. Should randomized clinical trials be required for proton radiotherapy? An alternative view. J Clin Oncol 2008; 26: 2438–2439.CrossrefPubMedGoogle Scholar

  • Godin B, Gu JH, Serda RE, Bhavane R, Tasciotti E, Chiappini C, Liu XW, Tanaka T, Decuzzi P, Ferrari M. Tailoring the degradation kinetics of mesoporous silicon structures through PEGylation. J Biomed Mater Res Part A 2010; 94A: 1236–1243.Google Scholar

  • Godin B, Tasciotti E, Liu X, Serda RE, Ferrari M. Multistage nanovectors: from concept to novel imaging contrast agents and therapeutics. Acc Chem Res 2011; 44: 979–989.PubMedCrossrefGoogle Scholar

  • Godin B, Chiappini C, Srinivasan S, Alexander JF, Yokoi K, Ferrari M, Decuzzi P, Liu XW. Discoidal porous silicon particles: fabrication and biodistribution in breast cancer bearing mice. Adv Funct Mater 2012; 22: 4225–4235.CrossrefPubMedGoogle Scholar

  • Goh AS-W, Chung AY-F, Lo RH-G, Lau T-N, Yu SW-K, Chng M, Satchithanantham S, Loong SL-E, Ng DC-E, Lim B-C, Connor S, Chow PK-H. A novel approach to brachytherapy in hepatocellular carcinoma using a phosphorous32 (32P) brachytherapy delivery device – a first-in-man study. Int J Radiat Oncol Biol Phys 2007; 67: 786–792.CrossrefGoogle Scholar

  • Gorustovich AA, Monserrat AJ, Guglielmotti MB, Cabrini RL. Effects of intraosseous implantation of silica-based bioactive glass particles on rat kidney under experimental renal failure. J Biomater Appl 2007; 21: 431–442.PubMedGoogle Scholar

  • Gu L, Park JH, Duong KH, Ruoslahti E, Sailor MJ. Magnetic luminescent porous silicon microparticles for localized delivery of molecular drug payloads. Small 2010; 6: 2546–2552.PubMedCrossrefGoogle Scholar

  • Gu L, Ruff LE, Qin Z, Corr M, Hedrick SM, Sailor MJ. Nanoparticles for immunotherapy: multivalent porous silicon nanoparticles enhance the immune activation potency of agonistic CD40 antibody (Adv. Mater. 29/2012). Adv Mater 2012; 24: 4025–4025.CrossrefGoogle Scholar

  • Gu L, Hall DJ, Qin ZT, Anglin E, Joo J, Mooney DJ, Howell SB, Sailor MJ. In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles. Nat Commun 2013; 4: 7.Google Scholar

  • Harris AL. Hypoxia – a key regulatory factor in tumour growth. Nat Rev Cancer 2002; 2: 38–47.PubMedCrossrefGoogle Scholar

  • Helmlinger G, Yuan F, Dellian M, Jain RK. Interstitial pH and pO(2) gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 1997; 3: 177–182.CrossrefGoogle Scholar

  • Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, Felix R, Riess H. The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 2002; 43: 33–56.CrossrefPubMedGoogle Scholar

  • Hong C, Lee J, Son M, Hong SS, Lee C. In-vivo cancer cell destruction using porous silicon nanoparticles. Anti-Cancer Drugs 2011a; 22: 971–977.Google Scholar

  • Hong C, Lee J, Zheng H, Hong S-S, Lee C. Porous silicon nanoparticles for cancer photothermotherapy. Nanoscale Res Lett 2011b; 6: 321–328.PubMedCrossrefGoogle Scholar

  • Hua MY, Yang HW, Chuang CK, Tsai RY, Chen WJ, Chuang KL, Chang YH, Chuang HC, Pang ST. Magnetic-nanoparticle-modified paclitaxel for targeted therapy for prostate cancer. Biomaterials 2010; 31: 7355–7363.PubMedCrossrefGoogle Scholar

  • Iversen TG, Skotland T, Sandvig K. Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano Today 2011; 6: 176–185.CrossrefGoogle Scholar

  • Jain RK. Determinants of tumor blood-flow – a review. Cancer Res 1988; 48: 2641–2658.PubMedGoogle Scholar

  • Jain RK, Tong RT, Munn LL. Effect of vascular normalization, by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Cancer Res 2007; 67: 2729–2735.CrossrefPubMedGoogle Scholar

  • Jane A, Dronov R, Hodges A, Voelcker NH. Porous silicon biosensors on the advance. Trends Biotechnol 2009; 27: 230–239.PubMedCrossrefGoogle Scholar

  • Juarranz A, Jaen P, Sanz-Rodriguez F, Cuevas J, Gonzalez S. Photodynamic therapy of cancer. Basic principles and applications. Clin Transl Oncol 2008; 10: 148–154.PubMedCrossrefGoogle Scholar

  • Kallinen AM, Sarparanta MP, Liu D, Makila EM, Salonen JJ, Hirvonen JT, Santos HA, Airaksinen AJ. In vivo evaluation of porous silicon and porous silicon solid lipid nanocomposites for passive targeting and imaging. Mol Pharmaceutics 2014; 11: 2876–2886.CrossrefGoogle Scholar

  • Kam NWS, O’Connell M, Wisdom JA, Dai HJ. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA 2005; 102: 11600–11605.CrossrefGoogle Scholar

  • Kilian KA, Boecking T, Gooding JJ. The importance of surface chemistry in mesoporous materials: lessons from porous silicon biosensors. Chem Commun 2009; 6: 630–640.CrossrefGoogle Scholar

  • Kinnari PJ, Hyvonen MLK, Makila EM, Kaasalainen MH, Rivinoja A, Salonen JJ, Hirvonen JT, Laakkonen PM, Santos HA. Tumour homing peptide-functionalized porous silicon nanovectors for cancer therapy. Biomaterials 2013; 34: 9134–9141.PubMedCrossrefGoogle Scholar

  • Kinsella JM, Ananda S, Andrew JS, Grondek JF, Chien MP, Scadeng M, Gianneschi NC, Ruoslahti E, Sailor MJ. Enhanced magnetic resonance contrast of Fe3O4 nanoparticles trapped in a porous silicon nanoparticle host. Adv Mater 2011; 23: 248.CrossrefGoogle Scholar

  • Koukourakis G, Kelekis N, Armonis V, Kouloulias V. Brachytherapy for prostate cancer: a systematic review. Adv Urol 2009; 2009: 327945.PubMedGoogle Scholar

  • Kovalainen M, Monkare J, Kaasalainen M, Riikonen J, Lehto VP, Salonen J, Herzig KH, Jarvinen K. Development of porous silicon nanocarriers for parenteral peptide delivery. Mol Pharm 2013; 10: 353–359.PubMedCrossrefGoogle Scholar

  • Kumar R, Kaur M, Silakari O. Physiological modulation approaches to improve cancer chemotherapy: a review. Anti-Cancer Agents Med Chem 2014; 14: 713–749.CrossrefGoogle Scholar

  • Lee C, Kim H, Cho YJ, Lee WI. The properties of porous silicon as a therapeutic agent via the new photodynamic therapy. J Mater Chem 2007; 17: 2648–2653.CrossrefGoogle Scholar

  • Lee C, Kim H, Hong C, Kim M, Hong SS, Lee DH, Lee WI. Porous silicon as an agent for cancer thermotherapy based on near-infrared light irradiation. J Mater Chem 2008; 18: 4790–4795.CrossrefGoogle Scholar

  • Lee C, Hong C, Kim H, Kang J, Zheng HM. TiO2 nanotubes as a therapeutic agent for cancer thermotherapy. Photochem Photobiol 2010; 86: 981–989.CrossrefPubMedGoogle Scholar

  • Levin WP, Kooy H, Loeffler JS, DeLaney TF. Proton beam therapy. Br J Cancer 2005; 93: 849–854.PubMedCrossrefGoogle Scholar

  • Li X, John JS, Coffer JL, Chen Y, Pinizzotto RF, Newey J, Reeves C, Canham LT. Porosified silicon wafer structures impregnated with platinum anti-tumor compounds: fabrication, characterization, and diffusion studies. Biomed Microdevices 2000; 2: 265–272.CrossrefGoogle Scholar

  • Li YY, Cunin F, Link JR, Gao T, Betts RE, Reiver SH, Chin V, Bhatia SN, Sailor MJ. Polymer replicas of photonic porous silicon for sensing and drug delivery applications. Science 2003; 299: 2045–2047.PubMedCrossrefGoogle Scholar

  • Li WJ, Nicol F, Szoka FC. GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery. Adv Drug Deliv Rev 2004; 56: 967–985.CrossrefGoogle Scholar

  • Liedtke C, Mazouni C, Hess KR, André F, Tordai A, Mejia JA, Symmans WF, Gonzalez-Angulo AM, Hennessy B, Green M, Cristofanilli M, Hortobagyi GN, Pusztai L. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol 2008; 26: 1275–1281.PubMedCrossrefGoogle Scholar

  • Liu DF, Makila E, Zhang HB, Herranz B, Kaasalainen M, Kinnari P, Salonen J, Hirvonen J, Santos HA. Nanostructured porous silicon-solid lipid nanocomposite: towards enhanced cytocompatibility and stability, reduced cellular association, and prolonged drug release. Adv Funct Mater 2013; 23: 1893–1902.CrossrefGoogle Scholar

  • Loo C, Lin A, Hirsch L, Lee MH, Barton J, Halas NJ, West J, Drezek R. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 2004; 3: 33–40.PubMedCrossrefGoogle Scholar

  • Low SP, Voelcker NH, Canham LT, Williams KA. The biocompatibility of porous silicon in tissues of the eye. Biomaterials 2009; 30: 2873–2880.CrossrefPubMedGoogle Scholar

  • MacDonald IJ, Dougherty TJ. Basic principles of photodynamic therapy. J Porphyr Phthalocyanines 2001; 5: 105–129.CrossrefGoogle Scholar

  • Maeda H, Sawa T, Konno T. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release 2001; 74: 47–61.PubMedCrossrefGoogle Scholar

  • Maeda H, Bharate GY, Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm 2009; 71: 409–419.CrossrefPubMedGoogle Scholar

  • Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 2009; 30: 592–599.PubMedCrossrefGoogle Scholar

  • Mann AP, Bhavane RC, Somasunderam A, Montalvo-Ortiz BL, Ghaghada KB, Volk D, Nieves-Alicea R, Suh KS, Ferrari M, Annapragada A, Gorenstein DG, Tanaka T. Thioaptamer conjugated liposomes for tumor vasculature targeting. Oncotarget 2011; 2: 298–304.PubMedGoogle Scholar

  • Martinez JO, Boada C, Yazdi IK, Evangelopoulos M, Brown BS, Liu XW, Ferrari M, Tasciotti E. Short and long term, in vitro and in vivo correlations of cellular and tissue responses to mesoporous silicon nanovectors. Small 2013a; 9: 1722–1733.CrossrefGoogle Scholar

  • Martinez JO, Chiappini C, Ziemys A, Faust AM, Kojic M, Liu XW, Ferrari M, Tasciotti E. Engineering multi-stage nanovectors for controlled degradation and tunable release kinetics. Biomaterials 2013b; 34: 8469–8477.CrossrefPubMedGoogle Scholar

  • Massad-Ivanir N, Shtenberg G, Segal E. Advancing nanostructured porous Si-based optical transducers for label free bacteria detection. Adv Exp Med Biol 2012; 733: 37–45.CrossrefGoogle Scholar

  • Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy – mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res 1986; 46: 6387–6392.PubMedGoogle Scholar

  • Mertz W. The essential trace-elements. Science 1981; 213: 1332–1338.CrossrefPubMedGoogle Scholar

  • Mintzer MA, Simanek EE. Nonviral vectors for gene delivery. Chem Rev 2009; 109: 259–302.CrossrefPubMedGoogle Scholar

  • Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. FASEB J 2005; 19: 311–330.PubMedCrossrefGoogle Scholar

  • Nieto A, Hou HY, Sailor MJ, Freeman WR, Cheng LY. Ocular silicon distribution and clearance following intravitreal injection of porous silicon microparticles. Exp Eye Res 2013; 116: 161–168.PubMedCrossrefGoogle Scholar

  • Park JH, Lee S, Kim JH, Park K, Kim K, Kwon IC. Polymeric nanomedicine for cancer therapy. Prog Polym Sci 2008; 33: 113–137.CrossrefGoogle Scholar

  • Park JH, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 2009; 8: 331–336.CrossrefGoogle Scholar

  • Park JS, Kinsella JM, Jandial DD, Howell SB, Sailor MJ. Cisplatin-loaded porous Si microparticles capped by electroless deposition of platinum. Small 2011; 7: 2061–2069.CrossrefPubMedGoogle Scholar

  • Parodi A, Quattrocchi N, van de Ven AL, Chiappini C, Evangelopoulos M, Martinez JO, Brown BS, Khaled SZ, Yazdi IK, Vittoria Enzo M, Isenhart L, Ferrari M, Tasciotti E. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol 2013; 8: 61–68.Google Scholar

  • Perelman LA, Pacholski C, Li YY, VanNieuwenhze MS, Sailor MJ. pH-triggered release of vancomycin from protein-capped porous silicon films. Nanomedicine 2008; 3: 31–43.CrossrefGoogle Scholar

  • Pitsillides CM, Joe EK, Wei XB, Anderson RR, Lin CP. Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J 2003; 84: 4023–4032.PubMedCrossrefGoogle Scholar

  • Rajendran L, Knolker HJ, Simons K. Subcellular targeting strategies for drug design and delivery. Nat Rev Drug Discov 2010; 9: 29–42.PubMedCrossrefGoogle Scholar

  • Russo L, Colangelo F, Cioffi R, Rea I, De Stefano L. A mechanochemical approach to porous silicon nanoparticles fabrication. Materials 2011; 4: 1023–1033.CrossrefGoogle Scholar

  • Salonen J, Lehto VP. Fabrication and chemical surface modification of mesoporous silicon for biomedical applications. Chem Eng J 2008; 137: 162–172.CrossrefGoogle Scholar

  • Salonen J, Kaukonen AM, Hirvonen J, Lehto VP. Mesoporous silicon in drug delivery applications. J Pharm Sci 2008; 97: 632–653.PubMedCrossrefGoogle Scholar

  • Santos HA, editor. Porous silicon for biomedical applications. Cambridge UK, MA USA and Kidlington UK: Woodhead Publishing, 2014.Google Scholar

  • Sarparanta M, Bimbo LM, Rytkonen J, Makila E, Laaksonen TJ, Laaksonen P, Nyman M, Salonen J, Linder MB, Hirvonen J, Santos HA, Airaksinen AJ. Intravenous delivery of hydrophobin-functionalized porous silicon nanoparticles: stability, plasma protein adsorption and biodistribution. Mol Pharmaceutics 2012a; 9: 654–663.CrossrefGoogle Scholar

  • Sarparanta MP, Bimbo LM, Makila EM, Salonen JJ, Laaksonen PH, Helariutta AMK, Linder MB, Hirvonen JT, Laaksonen TJ, Santos HA, Airaksinen AJ. The mucoadhesive and gastroretentive properties of hydrophobin-coated porous silicon nanoparticle oral drug delivery systems. Biomaterials 2012b; 33: 3353–3362.CrossrefPubMedGoogle Scholar

  • Schott AF, Hayes DF. Defining the benefits of neoadjuvant chemotherapy for breast cancer. J Clin Oncol 2012; 30: 1747–1749.CrossrefPubMedGoogle Scholar

  • Secret E, Maynadier M, Gallud A, Gary-Bobo M, Chaix A, Belamie E, Maillard P, Sailor MJ, Garcia M, Durand J-O, Cunin F. Anionic porphyrin-grafted porous silicon nanoparticles for photodynamic therapy. Chem Commun 2013a; 49: 4202–4204.CrossrefGoogle Scholar

  • Secret E, Smith K, Dubljevic V, Moore E, Macardle P, Delalat B, Rogers ML, Johns TG, Durand JO, Cunin F, Voelcker NH. Antibody-functionalized porous silicon nanoparticles for vectorization of hydrophobic drugs. Adv Healthc Mater 2013b; 2: 718–727.PubMedCrossrefGoogle Scholar

  • Secret E, Maynadier M, Gallud A, Chaix A, Bouffard E, Gary-Bobo M, Marcotte N, Mongin O, El Cheikh K, Hugues V, Auffan M, Frochot C, Morère A, Maillard P, Blanchard-Desce M, Sailor MJ, Garcia M, Durand J-O, Cunin F. Two-photon excitation of porphyrin-functionalized porous silicon nanoparticles for photodynamic therapy. Adv Mater 2014; 26: 7643–7648.PubMedCrossrefGoogle Scholar

  • Segal E, Perelman LA, Cunin F, Di Renzo F, Devoisselle JM, Li YY, Sailor MJ. Confinement of thermoresponsive hydrogels in nanostructured porous silicon dioxide templates. Adv Funct Mater 2007; 17: 1153–1162.CrossrefGoogle Scholar

  • Serda RE, Mack A, Pulikkathara M, Zaske AM, Chiappini C, Fakhoury JR, Webb D, Godin B, Conyers JL, Liu XW, Bankson JA, Ferrari M. Cellular association and assembly of a multistage delivery system. Small 2010a; 6: 1329–1340.CrossrefPubMedGoogle Scholar

  • Serda RE, Mack A, van de Ven AL, Ferrati S, Dunner K, Jr., Godin B, Chiappini C, Landry M, Brousseau L, Liu X, Bean AJ, Ferrari M. Logic-embedded vectors for intracellular partitioning, endosomal escape, and exocytosis of nanoparticles. Small 2010b; 6: 2691–2700.CrossrefGoogle Scholar

  • Shahbazi MA, Hamidi M, Makila EM, Zhang HB, Almeida PV, Kaasalainen M, Salonen JJ, Hirvonen JT, Santos HA. The mechanisms of surface chemistry effects of mesoporous silicon nanoparticles on immunotoxicity and biocompatibility. Biomaterials 2013; 34: 7776–7789.CrossrefPubMedGoogle Scholar

  • Shen HF, You J, Zhang GD, Ziemys A, Li QP, Bai LT, Deng XY, Erm DR, Liu XW, Li C, Ferrari M. Cooperative, nanoparticle-enabled thermal therapy of breast cancer. Adv Healthc Mater 2012; 1: 84–89.PubMedCrossrefGoogle Scholar

  • Shen HF, Rodriguez-Aguayo C, Xu R, Gonzalez-Villasana V, Mai JH, Huang Y, Zhang GD, Guo XJ, Bai LT, Qin GT, Deng XY, Li QP, Erm DR, Aslan B, Liu XW, Sakamoto J, Chavez-Reyes A, Han HD, Sood AK, Ferrari M, Lopez-Berestein G. Enhancing chemotherapy response with sustained EphA2 silencing using multistage vector delivery. Clin Cancer Res 2013a; 19: 1806–1815.CrossrefGoogle Scholar

  • Shen JL, Xu R, Mai JH, Kim HC, Guo XJ, Qin GT, Yang Y, Wolfram J, Mu CF, Xia XJ, Gu JH, Liu XW, Mao ZW, Ferrari M, Shen HF. High capacity nanoporous silicon carrier for systemic delivery of gene silencing therapeutics. ACS Nano 2013b; 7: 9867–9880.CrossrefPubMedGoogle Scholar

  • Shen JL, Kim HC, Su H, Wang F, Wolfram J, Kirui D, Mai JH, Mu CF, Ji LN, Mao ZW, Shen HF. Cyclodextrin and polyethylenimine functionalized mesoporous silica nanoparticles for delivery of siRNA cancer therapeutics. Theranostics 2014; 4: 487–497.PubMedCrossrefGoogle Scholar

  • Shubayev VI, Pisanic TR, Jin SH. Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev 2009; 61: 467–477.CrossrefPubMedGoogle Scholar

  • Sun W, Puzas JE, Sheu TJ, Fauchet PM. Porous silicon as a cell interface for bone tissue engineering. Phys Status Solidi A 2007a; 204: 1429–1433.CrossrefGoogle Scholar

  • Sun W, Puzas JE, Sheu TJ, Liu X, Fauchet PM. Nano- to microscale porous silicon as a cell interface for bone-tissue engineering. Adv Mater 2007b; 19: 921.CrossrefGoogle Scholar

  • Tamarov KP, Osminkina LA, Zinovyev SV, Maximova KA, Kargina JV, Gongalsky MB, Ryabchikov Y, Al-Kattan A, Sviridov AP, Sentis M, Ivanov AV, Nikiforov VN, Kabashin AV, Timoshenko VY. Radio frequency radiation-induced hyperthermia using si nanoparticle-based sensitizers for mild cancer therapy. Sci Rep 2014; 4: 7034.CrossrefPubMedGoogle Scholar

  • Tanaka T, Mangala LS, Vivas-Mejia PE, Nieves-Alicea R, Mann AP, Mora E, Han HD, Shahzad MMK, Liu XW, Bhavane R, Gu JH, Fakhoury JR, Chiappini C, Lu CH, Matsuo K, Godin B, Stone RL, Nick AM, Lopez-Berestein G, Sood AK, Ferrari M. Sustained small interfering RNA delivery by mesoporous silicon particles. Cancer Res 2010; 70: 3687–3696.CrossrefPubMedGoogle Scholar

  • Tasciotti E, Liu XW, Bhavane R, Plant K, Leonard AD, Price BK, Cheng MMC, Decuzzi P, Tour JM, Robertson F, Ferrari M. Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat Nanotechnol 2008; 3: 151–157.PubMedCrossrefGoogle Scholar

  • Tatum JL, Kelloff GJ, Gillies RJ, Arbeit JM, Brown JM, Chao KSC, Chapman JD, Eckelman WC, Fyles AW, Giaccia AJ, Hill RP, Koch CJ, Krishna MC, Krohn KA, Lewis JS, Mason RP, Melillo G, Padhani AR, Powis G, Rajendran JG, Reba R, Robinson SP, Semenza GL, Swartz HM, Vaupel P, Yang D, Croft B, Hoffman J, Liu GY, Stone H, Sullivan D. Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. Int J Radiat Biol 2006; 82: 699–757.PubMedCrossrefGoogle Scholar

  • Tolli MA, Ferreira MPA, Kinnunen SM, Rysa J, Makila EM, Szabo Z, Serpi RE, Ohukainen PJ, Valimaki MJ, Correia AMR, Salonen JJ, Hirvonen JT, Ruskoaho HJ, Santos HA. In vivo biocompatibility of porous silicon biomaterials for drug delivery to the heart. Biomaterials 2014; 35: 8394–8405.CrossrefPubMedGoogle Scholar

  • Torchilin VP. Drug targeting. Eur J Pharm Sci 2000; 11: S81–S91.CrossrefGoogle Scholar

  • Tzur-Balter A, Gilert A, Massad-Ivanir N, Segal E. Engineering porous silicon nanostructures as tunable carriers for mitoxantrone dihydrochloride. Acta Biomater 2013; 9: 6208–6217.CrossrefGoogle Scholar

  • Tzur-Balter A, Shatsberg Z, Beckerman M, Segal E, Artzi N. Mechanism of erosion of nanostructured porous silicon drug carriers in neoplastic tissues. Nat Commun 2015; 6: 6208.CrossrefGoogle Scholar

  • Van de Ven AL, Kim P, Haley OH, Fakhoury JR, Adriani G, Schmulen J, Moloney P, Hussain F, Ferrari M, Liu X, Yun S-H, Decuzzi P. Rapid tumoritropic accumulation of systemically injected plateloid particles and their biodistribution. J Control Release 2012; 158: 148–155.Google Scholar

  • Vaupel P, Kallinowski F, Okunieff P. Blood-flow, oxygen and nutrient supply, and metabolic microenvironment of human-tumors – a review. Cancer Res 1989; 49: 6449–6465.PubMedGoogle Scholar

  • Veiseh O, Kievit FM, Mok H, Ayesh J, Clark C, Fang C, Leung M, Arami H, Park JO, Zhang MQ. Cell transcytosing poly-arginine coated magnetic nanovector for safe and effective siRNA delivery. Biomaterials 2011; 32: 5717–5725.PubMedCrossrefGoogle Scholar

  • Wang AZ, Langer R, Farokhzad OC. Nanoparticle delivery of cancer drugs. Annu Rev Med 2012; 63: 185–198.PubMedCrossrefGoogle Scholar

  • Wu EC, Andrew JS, Cheng LY, Freeman WR, Pearson L, Sailor MJ. Real-time monitoring of sustained drug release using the optical properties of porous silicon photonic crystal particles. Biomaterials 2011; 32: 1957–1966.PubMedCrossrefGoogle Scholar

  • Xiao L, Gu L, Howell SB, Sailor MJ. Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells. ACS Nano 2011; 5: 3651–3659.PubMedCrossrefGoogle Scholar

  • Xu R, Huang Y, Mai JH, Zhang GD, Guo XJ, Xia XJ, Koay EJ, Qin GT, Erm DR, Li QP, Liu XW, Ferrari M, Shen HF. Multistage vectored siRNA targeting ataxia-telangiectasia mutated for breast cancer therapy. Small 2013; 9: 1799–1808.CrossrefPubMedGoogle Scholar

  • Yokoi K, Godin B, Oborn CJ, Alexander JF, Liu XW, Fidler IJ, Ferrari M. Porous silicon nanocarriers for dual targeting tumor associated endothelial cells and macrophages in stroma of orthotopic human pancreatic cancers. Cancer Lett 2013; 334: 319–327.PubMedCrossrefGoogle Scholar

  • Zhang MZ, Xu R, Xia XJ, Yang Y, Gu JH, Qin GT, Liu XW, Ferrari M, Shen HF. Polycation-functionalized nanoporous silicon particles for gene silencing on breast cancer cells. Biomaterials 2014; 35: 423–431.PubMedCrossrefGoogle Scholar

About the article

Adi Tzur-Balter

Adi Tzur-Balter earned her BSc in Biotechnology Engineering in 2007 from the Ben-Gurion University of the Negev, Israel. In 2008, she joined the group of Professor Ester Segal at the Department of Biotechnology and Food Engineering at the Technion – Israel Institute of Technology and received her PhD degree very recently. Her PhD thesis focused on the development of nano-structured porous silicon scaffolds for controlled delivery of antineoplastic drugs. Adi is currently a research scientist at ViAqua Therapeutics Ltd, focusing on the development of tailored therapeutics for aquaculture.

Giorgi Shtenberg

Giorgi Shtenberg is currently completing his doctoral studies under the auspices of the Interdepartmental Program of Biotechnology Engineering at the Technion – Israel Institute of Technology. He received his BSc in Biotechnology and Food Engineering from the Technion in 2009 and later joined the group of Professor Segal as a PhD student. His PhD research focuses on the development of optical biosensors for monitoring proteins activity. His research interests include surface chemistry, nano-engineering, microfluidics, and biological interfaces.

Ester Segal

Ester Segal is an Associate Professor in the Faculty of Biotechnology and Food Engineering at the Technion – Israel Institute of Technology. She earned her BSc (cum laude) in Chemical Engineering in 1997 and her PhD in Chemical Engineering in 2004, both from the Technion. Since 2007 she has been heading the Laboratory of Multifunctional Nanomaterials. The research in her group is focused on the synthesis and characterization of nanostructured materials and their interface with soft matter, e.g., hydrogels, biomolecules, and living cells. Understanding these interfaces is circumvented for rational design of biosensors for diagnostics and new drug delivery schemes. She has authored 50 scientific publications in peer reviewed journals and has one issued and several pending US patents.

Corresponding author: Ester Segal, Technion – Israel Institute of Technology, Department of Biotechnology and Food Engineering, Haifa 32000, Israel; and The Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 32000, Israel, e-mail:

Received: 2015-01-04

Accepted: 2015-02-26

Published Online: 2015-04-14

Published in Print: 2015-06-01

Citation Information: Reviews in Chemical Engineering, Volume 31, Issue 3, Pages 193–207, ISSN (Online) 2191-0235, ISSN (Print) 0167-8299, DOI: https://doi.org/10.1515/revce-2015-0001.

Export Citation

©2015 by De Gruyter. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Jonas G. Croissant, Yevhen Fatieiev, and Niveen M. Khashab
Advanced Materials, 2017, Volume 29, Number 9, Page 1604634
Neta Zilony, Michal Rosenberg, Liran Holtzman, Hadas Schori, Orit Shefi, and Ester Segal
Journal of Controlled Release, 2017, Volume 257, Page 51
Emilie Secret, Camille Leonard, Stefan J. Kelly, Amanda Uhl, Clayton Cozzan, and Jennifer S. Andrew
Langmuir, 2016, Volume 32, Number 4, Page 1166

Comments (0)

Please log in or register to comment.
Log in