Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in Chemical Engineering

Editor-in-Chief: Luss, Dan / Brauner, Neima

Editorial Board: Agar, David / Davis, Mark E. / Edgar, Thomas F. / Giorno, Lidietta / Joshi, J. B. / Khinast, Johannes / Kost, Joseph / Leal, L. Gary / Li, Jinghai / Mills, Patrick / Morbidelli, Massimo / Ng, Ka Ming / Schouten, Jaap C. / Schroeder, Avi / Seinfeld, John / Stitt, E. Hugh / Tronconi, Enrico / Vayenas, Constantinos G. / Zagoruiko, Andrey / Zondervan, Edwin

IMPACT FACTOR 2018: 4.200

CiteScore 2018: 4.96

SCImago Journal Rank (SJR) 2018: 1.016
Source Normalized Impact per Paper (SNIP) 2018: 1.572

See all formats and pricing
More options …
Volume 31, Issue 5


Light alkane dehydrogenation to light olefin technologies: a comprehensive review

Zeeshan Nawaz
  • Corresponding author
  • Olefins and Aromatics, SABIC Technology and Innovation, Saudi Basic Industries Corporation (SABIC), P.O. Box 42503, Riyadh 11551, Kingdom of Saudi Arabia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-08-31 | DOI: https://doi.org/10.1515/revce-2015-0012


The dehydrogenation of light alkanes, especially propane and butane, is widely exploited for the large-scale production of corresponding olefins. The industrial application of the direct dehydrogenation of light alkanes is limited due to reaction and thermodynamic constraints. The dehydrogenation of light hydrocarbons involves the breaking of two carbon–hydrogen bonds with the simultaneous formation of a hydrogen and carbon-carbon double bond selectively. It may appear to be simple, but their endothermic nature and selectivity control at higher temperature is difficult. The same technologies with minor changes in process and catalyst were used for the production of both propane and isobutane dehydrogenation. The economic analysis of the available technologies based on the specific consumption of feedstock, operational ease, and capital investment indicates an internal rate of return ~25%. The attractiveness of light alkane dehydrogenation is largely dependent on the difference in feedstock and the price of olefins produced. The available technologies and how they manage reaction constraints at commercial scale have been compared. The possible solution for improvement is by focusing on catalyst improvements and the unique design of reactors.

Keywords: dehydrogenation catalyst; dehydrogenation technology; isobutane; light alkane; olefins; propane


  • Airaksinen SMK. Chromium oxide catalysts in the dehydrogenation of alkanes. Ph.D. thesis. Helsinki University, 2005.Google Scholar

  • Airaksinen SMK, Harlin ME, Krause AOI. Kinetic modeling of dehydrogenation of isobutane on chromia/alumina catalyst. Ind Eng Chem Res 2002; 41: 5619–5626.CrossrefGoogle Scholar

  • Alcantara-Rodriguez M, Rodriguez-Castellon E, Jimenez-Lopez E. Propane dehydrogenation on mixed Ga/Cr oxide pillared zirconium phosphate materials. Langmuir 1999; 15: 1115–1120.CrossrefGoogle Scholar

  • Al-Ghamdi SA. Oxygen-free propane oxidative dehydrogenation over vanadium oxide catalysts: reactivity and kinetic modelling. Ph.D. thesis. University of Western Ontario, 2013.Google Scholar

  • Al-Ghamdi AA, Al-Bassam AM, Draus JL. Start-up of world’s largest iso-butane dehydrogenation plant for MTBE production. Paper AM-94-28, Annual Meeting of the National Petroleum Refiners, 1994.Google Scholar

  • Al-mutairi SMT, Mezari B, Magusin PCMM, Pidko EA, Hensen EJM. Structure and reactivity of Zn-modified ZSM-5 zeolites: the importance of clustered cationic Zn complexes, structure and reactivity of Zn-modified ZSM-5 zeolites: the importance of clustered cationic Zn complexes. ACS Catal 2012; 2: 71–83.CrossrefGoogle Scholar

  • Al-Mutaz IS. Saudi MTBE Plant and its role in the lead phasedown in the country. Energy Prog 1987; 7: 18–22.Google Scholar

  • Atkins MP, Evans GR. A review of current processes and innovations in catalytic dehydrogenation. Erdoel Erdgas Kohle 1995; 111: 271–274.Google Scholar

  • Bhasin MM, McCain JH, Vora BV, Imai T, Pujado PR. Dehydrogenation and oxy-dehydrogenation of paraffins to olefins. Appl Catal A 2001; 221: 397–419.Google Scholar

  • Beesley E, Wipp B. Butane dehydrogenation at Billingham. Chem Ind (Lond) 2010; S50: 1953.Google Scholar

  • Biscardi A, Iglesia E. Structure and function of metal cations in light alkane reactions catalyzed by modified H-ZSM5. Catal Today 1996; 31: 207–231.CrossrefGoogle Scholar

  • Boot LA, VanDillen AJ, Geus JW, VanBuren FR. Iron-based dehydrogenation catalysts supported on zirconia. I. Preparation and characterization. J Catal 1996; 163: 186–194.Google Scholar

  • Brockwell HL, Sarathy PR, Trotta R. Synthesize ethers. Hydrocarb Proc 1991; 70: 133–141.Google Scholar

  • Bruckner A, Radnik J, Hoang DL, Lieske H. In situ investigation of active sites in zirconia-supported chromium oxide catalysts during the aromatization of n-octane. Catal Lett 1999; 60: 183–189.CrossrefGoogle Scholar

  • Burwell RL, Littlewood AB, Cardew M, Pass G, Stoddart CTH. Reaction between hydrocarbons and deuterium on chromium oxide gel. J Am Chem Soc 1960; 82: 6272.Google Scholar

  • Butt DP, Park Y, Taylor TN. Thermal vaporization and deposition of gallium oxide in hydrogen. J Nucl Mater 1999; 264: 71.Google Scholar

  • Carrero CA, Schloegl R, Wachs IE, Schomaecker R. Critical literature review of the kinetics for the oxidative dehydrogenation of propane over well-defined supported vanadium oxide catalysts. ACS Catal 2014; 4: 3357–3380.CrossrefGoogle Scholar

  • Caspary KJ, Gehrke H, Heinritz-Adrian M, Schwefer M. Handbook of heterogeneous catalysis. Weinheim, Germany: Wiley-VHC Verlag GmbH, 2008: 3206–3229.Google Scholar

  • CATOFIN. Benefits of stabilized catalyst. Süd-Chemie, CATOFIN Technology Conference, Munich, September 2005.Google Scholar

  • CATOFIN. Refractory bricks installation and maintenance in CATOFIN reactors. CATOFIN/Catadiene Technology Conference, Lisbon, Portugal, 2007.Google Scholar

  • CATOFIN. Dehydrogenation, 2013. Available at: http://www.cbi.com/images/uploads/tech_sheets/CatofinDehyrogenation-12.pdf. Accessed on 2013.

  • CCR Platforming & Oleflex, 2015. Available at: http://www.uop.com/equipment/ccr-regeneration/. Accessed on 2015.

  • Chaar MA, Patel D, Kung MC, Kung HH. Selective oxidative dehydrogenation of butane over V-Mg-O catalysts. J Catal 1987; 105: 483–498.Google Scholar

  • Chaiyavech P. Commercialization of the world’s first Oleflex unit. J R Inst Thai 2002, 27: 664–672.Google Scholar

  • Chaku P, Spence D. CATOFIN technology improvements. Lummus Global, CATOFIN Technology Conference, Lisbon, Portugal, 2007.Google Scholar

  • Chen ZX, Derking A, Koot W, VanDijk MP. Dehydrogenation of isobutane over zinc titanate thin film catalysts. J Catal 1996; 161: 730–741.Google Scholar

  • Chen M, Wu JL, Liu YM, Cao Y, Guo L, He HY, Fan KN. Study in support effect of In2O3/MOx (M=Al, Si, Zr) catalysts for dehydrogenation of propane in the presence of CO2. Appl Catal A 2011; 407: 20–28.Google Scholar

  • Chu Y, Wu TW, Li YX, Nawaz Z, Wang Y, Wei F. Studies on propane dehydrogenation to propylene in a gas-solid-sold fluidized bed reactor. 10th International Conference on Circulating Fluidized Beds and Fluidization Technology (CFB-10), ECI Symposium Series Vol. RP7, 2013. Available at: http://dc.engconfintl.org/cfb10/22.

  • Chu Y, Zhang Q, Wu T, Nawaz Z, Wang Y, Wei F. Ultra-dispersed Pt nanoparticles on SAPO-34/γ-Al2O3 support for efficient propane dehydrogenation. J Nanosci Nanotechnol 2014; 14: 6900–6906.PubMedCrossrefGoogle Scholar

  • Chweitzer NM, Hu B, Das U, Kim H, Curtiss LA, Stair PC, Miller T, Hock AS. Propylene hydrogenation and propane dehydrogenation by a single-site Zn2+ on silica catalyst. ACS Catal 2014; 4: 1091–1098.CrossrefGoogle Scholar

  • Cimino A, Cordischi D, DeRossi S, Ferraris G, Gazzoli D, Indovina V, Minelli G, Occhiuzzi M, Valigi M. Studies on chromia/zirconia catalysts I. Preparation and characterization of the system. J Catal 1991; 127: 744.CrossrefGoogle Scholar

  • Craig RG, Spence DC. Catalytic dehydrogenation of liquefied petroleum gas by the Houdry CATOFIN and Catadiene processes. Handbook of petroleum refining processes. New York: McGraw-Hill, 1986.Google Scholar

  • CRI/SRL. Refractory lining of 8 CATOFIN reactors. APPC/PDH/PP Project Jubail, KSA, by CRI/SRL, 2007.Google Scholar

  • Damyanova S, Crange P, Delmon B. Surface characterization of zirconia-coated alumina and silica carriers. J Catal 1997; 168: 421–430.Google Scholar

  • Dunn RO, Brinkmeyer FM, Schuette GF. The Phillips STAR process for the dehydrogenation of C3, C4, and C5 paraffins. Proc NPRA Annu Meet, New Orleans, LA, 1992: 22–24.Google Scholar

  • Eastman AD. Dehydrogenation of organic compounds with a zinc silicate catalyst. US Patent 4371730, 1983.Google Scholar

  • Ercan C, Gartside RJ. Reactor performance and stability in an alternating reaction-reheat paraffin dehydrogenation system. Can J Chem Eng 1996; 74: 626–637.CrossrefGoogle Scholar

  • Fang D, Zhao J, Liu S, Zhang L, Ren W, Zhang H. Relationship between Cr-Al interaction and the performance of Cr-Al2O3 catalysts for isobutane dehydrogenation. Modern Res Catal 2015; 4: 50–58.CrossrefGoogle Scholar

  • Faro AC, Souza KR, Camorim VLD, Cardoso MB. Zirconia-alumina mixing in alumina-supported zirconia prepared by impregnation with solutions of zirconium acetylacetonate. Phys Chem Chem Phys 2003a; 5: 1932–1940.CrossrefGoogle Scholar

  • Faro AC, Souza KR, Eon JG, Leitao AA, Rocha AB, Capaz RB. Mixed-formation during preparation of alumina-supported: an EXAFS and DFT study. Phys Chem Chem Phys 2003b; 5: 3811–3817.CrossrefGoogle Scholar

  • Frey FE, Huppke HF. Processes for converting hydrocarbons. US Patent 2098959, 1937.Google Scholar

  • Fridman VZ, Romaine-Schmid E. Reduction of the Al-Cr catalyst selectivity as a result of its deactivation. Proc 21st N Am Catal Soc Meet, San Francisco, CA, 2009.Google Scholar

  • Fridman V, Urbancic M. Next generation catalyst for HOUDRY dehydrogenation. Süd-Chemie, Inc., CATOFIN Technology Conference, Munich, 2005.Google Scholar

  • Fridman VZ, Urbancic M. Endothermic hydrocarbon conversion process. US Patent 7,973,207, 2011.Google Scholar

  • Fridman VZ, Merriam J, Urbancic M. Catalytically inactive heat generator and improved dehydrogenation process. US Patent 7,622,623, 2009.Google Scholar

  • Fridman VZ, Davies S, Howard J, Jasinski J. Stability of active sites precursors of Al-Cr dehydrogenation catalyst. Proc 22nd N Am Catal Soc Meet, Detroit, 2011.Google Scholar

  • Fujdala K, Tilly TD. Thermolytic molecular precursor routes to Cr/Si/Al/O and Cr/Si/Zr/O catalysts for the oxidative dehydrogenation and dehydrogenation of propane. J Catal 2003; 218: 123.Google Scholar

  • Ghandhi D, Romeo J, Ponzi P. CATOFIN reactor CFD analysis. CATOFIN Technology Conference, Munich, 2005.Google Scholar

  • Gregor J, Wei D. UOP Oleflex process for light olefins production. Ch 5.1. Des Plaines, IL: UOP LLC, 2004.Google Scholar

  • Grunert W, Saffert W, Feldhaus R, Anders K. Reduction and aromatization activity of chromia-alumina catalysts: I. Reduction and break-in behavior of a potassium-promoted chromia-alumina catalyst. J Catal 1986; 99: 149–158.Google Scholar

  • Guisnet M, Gnep NS, Alario F. Aromatization of short chain alkanes on zeolite catalysts. Appl Catal A 1992; 89: 1–30.CrossrefGoogle Scholar

  • Halasz J, Konya Z, Fudala A, Beres A, Kiricsi I. Indium and gallium containing ZSM-5 zeolites: acidity and catalytic activity in propane transformation. Catal Today 1996; 5861: 293.Google Scholar

  • Hamid H, Ali MA. Handbook of MTBE and other gasoline oxygenates. New York: CRC Press, 2004.Google Scholar

  • Harlin ME, Backman LB, Krause AOI, Jylhä OJT. Activity of molybdenum oxide catalyst in the dehydrogenation of n-butane. J Catal 1999; 183: 300–313.Google Scholar

  • Heinritz-Adrian M, Wenzel S, Youssef F. Advanced propane dehydrogenation. PTQ, 2008. Available at: http://www.digitalrefining.com/article/1000632. Accessed on 2015.

  • Hornaday GF, Ferrell FM. Manufacture of mono and diolefins from paraffins by catalytic dehydrogenation. Adv Petrol Chem Refining Intersci Paris 1961; 4: 451–488.Google Scholar

  • Honeywell. Honeywell’s UOP technology selected for petrochemical production in China, 2013. Available at: http://www.dailyfinance.com/rtn/pr/honeywell-s-uop-technology-selected-for-petrochemical-production-inchina/rfid637412763. Accessed on 2013.

  • Iezzi R, Bartolini A. Process for dehydrogenating light paraffins in a fluidized bed reactor. US Patent 5,633,421, 1997 (assigned to Snamprogetti).Google Scholar

  • lmai T, Vora BV, Bricker JC. Development of dehydrogenation catalyst and process. International Conference on Recent Developments in Petrochemical and Polymer Technologies, Bangkok, Thailand, 1989.Google Scholar

  • Jensen SF, Roennekleiv M, Rytter E, Souraker P. Pre-treatment of Pt/Sn-based catalyst. WO 2000072967 A1, 2000.Google Scholar

  • Jibril BY, Al-Zahrani SM, Abasaeed AE, Hughes R. Oxidative dehydrogenation of propane over supported chromium-molybdenum oxides catalysts. Catal Commun 2003; 4: 579–584.CrossrefGoogle Scholar

  • Jie Z, Cui Y, Nawaz Z, Wang Y, Wei F. In situ synthesis of SAPO-34 zeolites in kaolin microspheres for a fluidized methanol or dimethyl ether to olefins process. Chin J Chem Eng 2010; 18: 979–987.Google Scholar

  • Kallo NV, Cousaert R, Weyne K. Flow distribution in the CATOFIN reactors, regeneration air piping, air inlet baffle, reactor internals, by Borealis, CATOFIN Technology Conference, Munich, 2005.Google Scholar

  • Kilicarslan S, Dogan M, Dogu T. Cr incorporated MCM-41 type catalysts for isobutane dehydrogenation and deactivation mechanism. Ind Eng Chem Res 2013; 52: 3674–3682.Google Scholar

  • Li H, Yue Y, Miao C, Xie Z, Hua W, Gao Z. Performance of unsupported Ni(Co,Fe)/MoS2 catalysts in hydrotreating reactions. Catal Commun 2007; 8: 1317–1328.CrossrefGoogle Scholar

  • Liu Y, Li ZH, Lu J, Fan K. Periodic density functional theory study of propane dehydrogenation over perfect Ga2O3(100) surface. J Phys Chem C 2008; 112: 20382.CrossrefGoogle Scholar

  • Liu L, Deng QF, Agula B, Zhao X, Ren TZ, Yuan ZY. Ordered mesoporous carbon catalyst for dehydrogenation of propane to propylene. Chem Commun 2011; 47: 8334–8336.CrossrefGoogle Scholar

  • Luckenbach EC, Zenz FA, Papa G, Bertolini A. Fluidized bed reactor and process for performing reactions therein. US Patent 5,656,243, 1997 (assigned to Snamprogetti).Google Scholar

  • Ma F, Chen S, Wang Y, Chen F, Lu W. Characterization of redox and acid properties of mesoporous Cr-TiO2 and its efficient performance for oxidative dehydrogenation of propane. Appl Catal A 2012; 427–428: 145–154.Google Scholar

  • Martyanov I, Sayari A. Sol-gel assisted preparation of chromia-silica catalysts for non-oxidative dehydrogenation of propane. Catal Lett 2008; 126: 164–172.Google Scholar

  • Michorczyk P, Ogonowski J, Niemczyk M. Investigation of catalytic activity of CrSBA-1 materials obtained by direct method in the dehydrogenation of propane with CO2. Appl Catal A 2010; 374: 142–149.Google Scholar

  • Michorczyk P, Ogonowski J, Zenczak K. Activity of chromium oxide deposited on different silica supports in the dehydrogenation of propane with CO2 – a comparative study. J Mol Catal A Chem 2011; 349: 1.Google Scholar

  • Mimura N, Okamoto M, Yamashita H, Oyama ST, Murata K. Oxidative dehydrogenation of ethane over Cr/ZSM-5 catalysts using CO2 as an oxidant. J Phys Chem B 2006; 110: 21764–21770.CrossrefGoogle Scholar

  • Miracca I, Piovesan L. Light paraffin’s dehydrogenation in a fluidized bed reactor. Catal Today 1999; 52: 259–269.CrossrefGoogle Scholar

  • Mole T, Anderson JR, Creer G. The reaction of propane over ZSM-5-H and ZSM-5-Zn zeolite catalysts. Appl Catal 1985; 17: 141–154.CrossrefGoogle Scholar

  • Monzon A, Garetto TF, Borgna A. Sintering and redispersion of Pt/γ-Al2O3 catalysts: a kinetic model. Appl Catal A 2003; 248: 279–289.Google Scholar

  • Nawaz Z. Activity integration of Pt-Sn/SAPO-34 catalyst for propane dehydrogenation to propylene with different metallic promoters. Proc Int Conf Chem Eng Appl (CCEA), Singapore, 2010a: 57–61.Google Scholar

  • Nawaz Z. Integrated study of light alkane dehydrogenation to propylene using Pt-based SAPO-34 catalyst. Ph.D. thesis. Department of Chemical Engineering, Tsinghua University, Beijing, China, 2010b.Google Scholar

  • Nawaz Z. Embedded alkane dehydrogenation system and process. US Patent Appl 62/049844, 2014.Google Scholar

  • Nawaz Z. Selective zeolite supported catalysts for propane and butane dehydrogenation, WO 2015/025286 A2, 2015.Google Scholar

  • Nawaz Z, Baksh F. Reactor and process for paraffin dehydrogenation to olefins. WO2014167473 A1, 2014.Google Scholar

  • Nawaz Z, Wei F. The Pt-Sn-based SAPO-34 supported novel catalyst for n-butane dehydrogenation, Ind Eng Chem Res 2009; 48: 7442–7447.CrossrefGoogle Scholar

  • Nawaz Z, Wei F. Hydrothermal study of Pt-Sn-based SAPO-34 supported novel catalyst used for selective propane dehydrogenation to propylene. J Ind Eng Chem 2010; 16: 774–784.CrossrefGoogle Scholar

  • Nawaz Z, Wei F. Pt-Sn-based catalyst’s intensification using Al2O3-SAPO-34 as a support for propane dehydrogenation to propylene. J Ind Eng Chem 2011; 17: 389–393.CrossrefGoogle Scholar

  • Nawaz Z, Wei F. Light alkane oxidative dehydrogenation to light olefins over Pt-based SAPO-34 zeolite supported catalyst. Ind Eng Chem Res 2013; 52: 346–352.Google Scholar

  • Nawaz Z, Wei F. Integrated bi-modal fluidized bed reactor for butane dehydrogenation to corresponding butylenes. Chem Eng J 2014; 238: 249–253.Google Scholar

  • Nawaz Z, Jie Z, Wei F. Drastic enhancement of propene from 1-hexene cracking using a shape intensified meso-SAPO-34 catalyst. J Eng Sci Tech (JESTEC) 2009a; 4: 409–418.Google Scholar

  • Nawaz Z, Shu Q, Naveed S, Wei F. Light alkane (mixed feed) selective dehydrogenation using bi-metallic zeolite supported catalyst. Bull Chem Soc Ethiopia 2009b; 23: 429–436.CrossrefGoogle Scholar

  • Nawaz Z, Tang XP, Jie Z, Naveed S, Wei F. Catalytic cracking of 1-hexene to propylene using SAPO-34 catalysts with different bulk topologies. Chin J Catal 2009c; 30: 1049–1057.CrossrefGoogle Scholar

  • Nawaz Z, Tang XP, Qiang Z, Dezheng W, Wei F. A highly selective Pt-Sn/SAPO-34 catalyst for propane dehydrogenation to propylene. Catal Commun 2009d; 10: 1925–1930.CrossrefGoogle Scholar

  • Nawaz Z, Tang XP, Wei F. Hexene catalytic cracking over SAPO-34 catalyst for propylene maximization: influence of reaction conditions and reaction pathway exploration. Braz J Chem Eng 2009e; 26: 705–712.CrossrefGoogle Scholar

  • Nawaz Z, Tang XP, Wei F. Influence of operating conditions, Si/Al ratio and doping of zinc on Pt-Sn/ZSM-5 catalyst for propane dehydrogenation to propene. Korean J Chem Eng 2009f; 26: 1528–1532.CrossrefGoogle Scholar

  • Nawaz Z, Wei F, Shu Q. Catalytic cracking of iso-hexene over SAPO-34 catalyst. Sci Int (Lahore) 2009g; 21: 161–163.Google Scholar

  • Nawaz Z, Chu Y, Wei Y, Tang XP, Wang Y, Wei F. Study of propane dehydrogenation to propylene in an integrated fluidized bed reactor using Pt-Sn/Al-SAPO-34 novel catalyst, Ind Eng Chem Res 2010a; 49: 4614–4619.CrossrefGoogle Scholar

  • Nawaz Z, Shu Q, Gao J, Tang XP, Wei F. Effect of Si/Al ratio on performance of Pt-Sn-based catalyst supported on ZSM-5 zeolite for n-butane conversion to light olefins. J Ind Eng Chem 2010b; 16: 57–62.CrossrefGoogle Scholar

  • Nawaz Z, Sun Y, Chu Y, Wei F. Mixing behavior and hydrodynamic study of gas-solid-solid fluidization system: co-fluidization of FCC and coarse particles. Fluidization XIII, Gyeong-ju, Korea, 2010c.Google Scholar

  • Nawaz Z, Tang XP, Chu Y, Wei F. Influence of calcinations temperature and reaction atmosphere on catalytic properties of Pt-Sn/SAPO-34 novel catalyst for propane dehydrogenation to propylene. Chin J Catal 2010d; 31: 552–556.CrossrefGoogle Scholar

  • Nawaz Z, Tang XP, Cui Y, Wei F. Intensive features of 1-hexene catalytic cracking to propylene using SAPO-34. Arab J Sci Eng B 2010e; 35: 15–24.Google Scholar

  • Nawaz Z, Tang XP, Naveed S, Shu Q, Wei F. Experimental investigation of attrition resistance of zeolite catalysts in two particle gas-solid-solid fluidization system. Pak J Sci Ind Res 2010f; 53: 169–174.Google Scholar

  • Nawaz Z, Tang XP, Wang Y, Wei F. Parametric characterization and influence of tin on the performance of Pt-Sn/SAPO-34 catalyst for selective propane dehydrogenation to propylene. Ind Eng Chem Res 2010g; 49: 1274–1280.CrossrefGoogle Scholar

  • Nawaz Z, Tang XP, Wei X, Wei F. Attrition behavior of small particles in bimodal particles fluidized bed environment: influence of density and size ratio. Korean J Chem Eng 2010h; 27: 1606–1612.CrossrefGoogle Scholar

  • Nawaz Z, Naveed S, Ramzan N, Wei F. Integrated approach for heat transfer in fluidized bed reactors. Heat transfer. 1st ed. INTECH, Rijeka, Croatia, 2011a: 3–14.Google Scholar

  • Nawaz Z, Wei F, Naveed S. Pt-Sn-based catalyst for selective propane dehydrogenation to propylene: higher propylene selectivity and yield. Pak Patent 140812, 2011b.Google Scholar

  • Nawaz Z, Baksh F, Ramzan N, Alqahtani A. Rational asymmetric catalyst design, intensification and modeling. Advances in Chemical Engineering, INTECH, Croatia. 1st ed. 2012: 3–14.Google Scholar

  • Nawaz Z, Baksh F, Jie Z, Wei F. Dehydrogenation of C3–C4 paraffin’s to corresponding olefins over Slit-SAPO-34 supported Pt-Sn-based novel catalyst. J Ind Eng Chem 2013a; 19: 540–546.CrossrefGoogle Scholar

  • Nawaz Z, Wei F, Naveed S. Highly stable Pt-Sn-based, SAPO-34 supported, Al-binded catalyst, and integrated fluidized bed reactor design for alkane dehydrogenation. Pak Patent 141413, 2013b.Google Scholar

  • Nawaz Z, Sharief KA, Baksh FR, Al-Qahtani A. Methods used for the dehydrogenation of alkanes. WO 2014191945 A1, 2014.Google Scholar

  • Nesterenko NS, Ponomoreva OA, Yuschenko VV, Ivanova II, Testa F, DiRenzo F, Fajula F. Dehydrogenation of ethylbenzene and isobutane over Ga- and Fe-containing mesoporous silicas. Appl Catal A 2003; 254: 261–272.Google Scholar

  • New Clariant CATOFIN propane dehydrogenation catalysts delivers significant savings, 2013. Available at: http://newsroom.clariant.com/newclariant-catofin-propane-dehydrogenation-catalyst-delivers-significantsavings.

  • Neylon MK, Choi S, Kwon H, Curry KE, Thompson LT. Catalytic properties of early transition metal nitrides and carbides: n-butane hydrogenolysis, dehydrogenation and isomerization. Appl Catal A 1999; 183: 253–263.Google Scholar

  • Nijhuis TA, Tinnemans SJ, Visser T, Weckhuysen BM. Towards real-time spectroscopic process control for the dehydrogenation of propane over supported chromium oxide catalysts. Chem Eng Sci 2004; 59: 5487–5492.CrossrefGoogle Scholar

  • Olah GA, Molnar A. Hydrocarbon chemistry. 2nd ed. Hoboken, NJ: Wiley, Inc., 2003.Google Scholar

  • Oviol L, Bruns M, Fridman V, Merriam J, Urbancic M. Mind the gap. Hydrocarbon Engineering, Reprinted in September 2012 (http://www.catalysts.clariant.com/C12575E4001FB2B8/vwLookupDownloads/Catalysts_Catafin_HE.pdf/$FILE/Catalysts_Catafin_HE.pdf).

  • Pakhomova NA, Parakhinc OA, Nemykinab EI, Danilevich VV, Chernovc MP, Pecherichenko VA. Microspherical chromium oxide/alumina catalyst KDM for fluidized bed isobutane dehydrogenation: development and industrial application experience. Catal Ind 2012; 4: 298–307.CrossrefGoogle Scholar

  • Pedersen EO. Dehydrogenation of propane by carbon supported metal catalysts. Ph.D. thesis. Norwegian University of Science and Technology, 2013.Google Scholar

  • Pless JD, Bardin BB, Kim HS, Ko D, Smith MT, Hammond RR, Stair PC, Poeppelmeier KR. Catalytic oxidative dehydrogenation of propane over Mg-V/Mo oxides. J Catal 2004; 223: 419–431.Google Scholar

  • Pujado P, Vora B. Make C3–C4 olefins selectively. Hydrol Proc 1990; 19: 65–70.Google Scholar

  • Puurunen RL, Beheydt BG, Weckhuysen BM. Monitoring chromia/alumina catalysts in situ during propane dehydrogenation by optical fiber UV-visible diffuse reflectance spectroscopy. J Catal 2001; 204: 253–257.Google Scholar

  • Rodríguez L, Romero D, Rodríguez D, Sánchez J, Domínguez F, Arteaga G. Dehydrogenation of n-butane over Pd-Ga/Al2O3 catalysts. Appl Catal A 2010; 373: 66–70.Google Scholar

  • Rokicki A, Brummer R, Fridman VZ. Catalyst and process improvements for increased stability CATOFIN i-C4 and C3 dehydrogenation, catalysts in petroleum refining and petrochemicals. Proc 11th Saudi-Japanese Symposium, Dhahran, Saudi Arabia, 2001.Google Scholar

  • Rossignol S, Kappenstein C. Effect of doping elements on the thermal stability of transition alumina. J Inorg Mater 2001; 3: 51–58.CrossrefGoogle Scholar

  • Russell AS, Stokes JJ. Role of surface area in dehydrocyclization catalysis. Ind Eng Chem 1946; 38: 1071–1074.CrossrefGoogle Scholar

  • Sanfilippo D. Dehydrogenation in a fluidized bed – an east-west collaboration. Chemtech 1993; 23: 35–39.Google Scholar

  • Sanfilippo D. Dehydrogenations in fluidized bed: catalysis and reactor engineering. Catal Today 2011; 178: 142–150.Google Scholar

  • Sanfilippo D, Miracca I. Oxidation and functionalization: classical and alternative routes and sources. Proc DGMK Conf, Hamburg, 2005: 773.Google Scholar

  • Sanfilippo D, Miracca I. Dehydrogenation of paraffins: synergies between catalyst design and reactor engineering. Catal Today 2006; 111: 133–139.Google Scholar

  • Sanfilippo D, Rylander P. Hydrogenation and dehydrogenation. In: Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH, 2009.Google Scholar

  • Sanfilippo D, Buonomo F, Fusco G, Miracca I. Paraffins activation through fluidized bed dehydrogenation: the answer to light olefins demand increase. Stud Surf Sci Catal. Elsevier, Amsterdam, 1998; 119: 919.Google Scholar

  • Sanfilippo D, Miracca I, Trifiro F. In Encyclopedia of hydrocarbons, refining and petrochemicals. ENI, Rome, 2006; II: 687–700.Google Scholar

  • Sattler JJHB. Propane dehydrogenation on metal and metal oxide catalysts. Ph.D. thesis. Universiteit Utrecht, 2014.Google Scholar

  • Sattler JJHB, Gonzalez-Jimenez ID, Luo L, Stears BA, Malek A, Barton DG, Kilos BA, Kaminsky MP, Verhoeven TWGM, Koers EJ, Baldus M, Weckhuysen BM. Platinum-promoted Ga/Al2O3 as highly active, selective, and stable. Angew Chem Int Ed 2014a; 53: 9251–9256.CrossrefGoogle Scholar

  • Sattler JJHB, Martinez JR, Jimenez ES, Weckhuysen BM. Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem Rev 2014b; 114: 10613–10653.CrossrefPubMedGoogle Scholar

  • Schindler GP, Magin W, Harth K. Regeneration of a dehydrogenation catalyst. US Patent Appl 20040029715, 2004.Google Scholar

  • Scott A. Metathesis, dehydro fill propylene shortfall. Chem Week 1999; 161: 41–42.Google Scholar

  • Setoyama T. Recent topics on catalyst research at Mitsubishi Chemical, 17th Saudi Arabia-Japan Joint Symposium, Dhahran, Saudi Arabia, 2007.Google Scholar

  • Shen Z, Liu J, Xu H, Yue Y, Hua W, Shen W. Dehydrogenation of ethane to ethylene over a highly efficient Ga2O3/HZSM-5 catalyst in the presence of CO2. Appl Catal A 2009; 356: 148–153.Google Scholar

  • Shi X, Ji S, Wang K. Oxidative dehydrogenation of ethane to ethylene with carbon dioxide over Cr-Ce/SBA-15 catalysts. Catal Lett 2008; 125: 331–339.Google Scholar

  • Shimada H, Akazawa T, Ikenaga N, Suzuki T. Dehydrogenation of isobutane to isobutene with iron-loaded activated carbon catalyst. Appl Catal A 1998; 168: 243–250.Google Scholar

  • Siddiqi G, Sun P, Galvita V, Bell AT. Catalyst performance of novel Pt/Mg(Ga)(Al)O catalysts for alkane dehydrogenation. J Catal 2010; 274: 200–206.Google Scholar

  • Song H, Rioux RM, Hoefelmeyer JD, Komor R, Niesz K, Grass M, Yang P, Somorjai GA. Hydrothermal growth of mesoporous SBA-15 silica in the presence of PVP-stabilized Pt nanoparticles: synthesis, characterization, and catalytic properties. J Am Chem Soc 2006; 128: 3027–3037.Google Scholar

  • Spivey JJ, Roberts GW, Goodwin JG, Kim S, Rhodes WD. Turnover frequencies in metal catalysis: meanings, functionalities and relationships. Catalysis 2004; 17: 320–348.CrossrefGoogle Scholar

  • Stobbe DE, VanBuren FR, Hoogenraad MS, VanDillen AJ, Geus JW. Iron oxide dehydrogenation catalysts supported on magnesium oxide. Part 2 – reduction behaviour. J Chem Soc Faraday Trans 1991; 87: 1631–1637.Google Scholar

  • Stobbe DE, VanBuren FR, VanDillen AJ, Geus JW. Potassium promotion of iron oxide dehydrogenation catalysts supported on magnesium oxide: 2. Butene dehydrogenation activity. J Catal 1992; 135: 548–562.Google Scholar

  • Suppia DD. Study on structural transformation of molybdenum oxide catalyst for propane oxydehydrogenation (ODH) reaction. Masters thesis. University of Malaya, 2012.Google Scholar

  • Trifiro F, Cavani F. Catalytica Studies Division. Study=4192 OD, 1993. Available at: http://www.sud-chemieinc.com/houdry_isobutane.shtml. Accessed on 2013.

  • Tullo AH. Propylene on demand. Chem Eng News 2003; 81: 15–16.Google Scholar

  • Uhde STAR Process. Oxydehydrogenation of light paraffins to olefins, 2012. Available at: http://www.uhde.biz/cgi-bin/byteserver.pl/pdf/broschueren/. Accessed on 2012.

  • Uhde STAR Process. Oxydehydrogenation of light paraffins to olefins, 2013. Available at: http://www.thyssenkrupp-industrial-solutions.com/fileadmin/documents/brochures/uhde_brochures_pdf_en_12.pdf. Accessed on 2013.

  • UOP. UOP Oleflex User Conference, USA, 2001.Google Scholar

  • UOP. UOP LLC, 25 East Algonquin Road, Des Plaines, IL 60017-5017. 4217-25, 2004. Available at: http://www.uop.com. Accessed on 2012.

  • UOP. UOP Oleflex process for light olefin production, 2013. Available at: http://pet-oil.blogspot.nl/2012/10/uop-oleflex-process-for-light-olefin.html. Accessed on 2013.

  • Urbancic MA, Fridman VZ, Rokicki A. A new Houdry catalyst for the ‘third wave’–propane dehydrogenation. Proc 19th N Am Catal Soc Meet, Philadelphia, PA, 2005.Google Scholar

  • Vaezifar S, Faghihian H, Kamali M. Dehydrogenation of isobutane over Sn/Pt/Na-ZSM-5 catalysts: the effect of SiO2/Al2O3 ratio, amount and distribution of Pt nanoparticles on the catalytic behavior. Korean J Chem Eng 2011; 28: 370–377.Google Scholar

  • Vora BV, Pujado PR, Adams ND, LeMerle CA. A new source of propylene – the Oleflex process. International Conference on Propylene, Madrid, Spain, 1989.Google Scholar

  • Wachs IE, Weckhuysen BM. Structure and reactivity of surface vanadium oxide species on oxide supports. Appl Catal A 1997; 157: 67–90.Google Scholar

  • Wachowski L, Kirszuensztejn P, Lopatka R, Czajka B. Studies of physicochemical and surface-properties of alumina modified with rare-earth-oxides, 1. Preparation, structure and thermal-stability. Mater Chem Phys 1994; 37: 29–38.CrossrefGoogle Scholar

  • Waddams AL. Chemicals from petroleum. 4th ed. Houston: Gulf Publishing Company, 1980.Google Scholar

  • Wang L, Tao L, Xie M, Xu G, Huang J, Xu Y. Dehydrogenation and aromatization of methane under non-oxidizing conditions. Catal Lett 1993; 21: 35–41.CrossrefGoogle Scholar

  • Wang J, Zhang F, Hua W, Yue Y, Gao Z. Dehydrogenation of propane over MWW-type zeolites supported gallium oxide. Catal Commun 2012; 18: 63–67.CrossrefGoogle Scholar

  • Weckhuysen BM, Wachs IE. Raman spectroscopy of supported chromium oxide catalysts: determination of chromium–oxygen bond distances and bond orders. J Chem Soc Faraday Trans 1996; 92: 1969.Google Scholar

  • Weckhuysen BM, Schoonheydt RA. Alkane dehydrogenation over supported chromium oxide catalysts. Catal Today 1999; 51: 223–232.CrossrefGoogle Scholar

  • Weckhuysen BM, Bensalem A, Schoonheydt RA. In situ UV-vis diffuse reflectance spectroscopy-on line activity measurements: the significance of Crn+-species (n=2, 3 and 6) in n-butane dehydrogenation catalyzed by supported chromium oxide catalysts. J Chem Soc Farad Trans 1998; 94: 2011.CrossrefGoogle Scholar

  • Weckhuysen BM, Verberckmoes AA, Debaere J, Ooms K, Langhans I, Schoonheydt RA. In situ UV-vis diffuse reflectance spectroscopy-on line activity measurements of supported chromium oxide catalysts: relating isobutane dehydrogenation activity with Cr-speciation via experimental design. J Mol Catal A 2000; 151: 115.CrossrefGoogle Scholar

  • Wei F, Tang XP, Zhou H, Nawaz Z. Development of propylene production enhancement technology. Petrochem Technol 2008; 37: 979–983.Google Scholar

  • Wei F, Nawaz Z, Tang XP. Light alkane dehydrogenation to olefins catalyst, their preparation method and applications. Chin Patent Appl 200910091226.6, 2009.Google Scholar

  • Wei F, Nawaz Z, Tang XP, Chu Y, Wang Y. Integrated fluidized bed reactor design for alkane dehydrogenation. Chin Patent Appl 201010103170.4, 2010.Google Scholar

  • Wenner RR, Dybal EC. Catalytic dehydrogenation of ethylbenzene. Catal Eng Prog 1948: 44: 275–286.Google Scholar

  • Xu B, Zheng B, Hua W, Yue Y, Gao Z. Support effect in dehydrogenation of propane in the presence of CO2 over supported gallium oxide catalysts. J Catal 2006; 239: 470–477.Google Scholar

  • Xu B, Li T, Zheng B, Hua W, Yue Y, Gao Z. Enhanced stability of HZSM-5 supported Ga2O3 catalyst in propane dehydrogenation by dealumination. Catal Lett 2007; 119: 283–288.Google Scholar

  • Yang ML, Zhu YA, Fan C, Sui ZJ, Chen D, Zhou XG. DFT study of propane dehydrogenation on Pt catalyst: effects of step sites. Phys Chem Chem Phys 2011; 13: 3257.CrossrefPubMedGoogle Scholar

  • Yun JH, Lobo RF. Catalytic dehydrogenation of propane over iron-silicate zeolites. J Catal 2014; 312: 263–270.Google Scholar

  • Zangeneh FT, Sahebdelfar S, Bahmani M. Propane dehydrogenation over a commercial Pt-Sn/Al2O3 catalyst for isobutane dehydrogenation: optimization of reaction conditions. Chin J Chem Eng 2013; 21: 730–735.Google Scholar

  • Zenz FA, Othmer DF. Fluidization and fluid particle systems. New York: Van Nostrand Reinhold, 1960.Google Scholar

  • Zhang J, Liu X, Blume R, Zhang A, Schlögl R, Su DS. Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane. Science 2008; 322: 73–77.Google Scholar

  • Zhang Y, Zhou Y, Shi J, Sheng X, Duan Y, Zhou S, Zhang Z. Effect of zinc addition on catalytic properties of PtSnK/γ-Al2O3 catalyst for isobutane dehydrogenation. Fuel Process Technol 2012; 96: 220–227.Google Scholar

  • Zhao H, Song H, Xu L, Chou L. Isobutane dehydrogenation over the mesoporous Cr2O3/Al2O3 catalysts synthesized from a metal-organic framework MIL-101. Appl Catal A 2013; 456: 188–196.Google Scholar

  • Zheng B, Hua W, Yue Y, Gao Z. Dehydrogenation of propane to propene over different polymorphs of gallium oxide. J Catal 2005; 232: 143–151.Google Scholar

  • Zimmermann H, Verluis F. Aluminum and chromium oxide support with cesium and zirconium oxide promoters. US Patent 5,378,350, 1995 (assigned to Linde).Google Scholar

About the article

Zeeshan Nawaz

Zeeshan Nawaz received his BE and MSc degrees with distinction in Chemical Engineering from MUET Jamshoro in 2003 and UET Lahore in 2006, respectively. He earned his doctoral degree (PhD) in Chemical Engineering and Technology from Tsinghua University, Beijing, China in 2010. He has been engaged in a number of catalyst development, process and reactor design, and plant support activities for alkane dehydrogenation since 2005 and patented about 20 catalyst and process/reactor concepts. Working as a lead scientist in SABIC Technology & Innovation, Saudi Basic Industries Corporation (SABIC), he is involved in high-fidelity reactor modeling, plant support, and various technology development activities, particularly alkane dehydrogenation, acetylene hydrogenation, MTBE, ethylene oxide, ethylene glycol, and syngas conversion to olefins. He won many awards and scholarships in his career, including the NAYS Best Young Scientist (Chemistry) Award in 2011 and SABIC Syngas Technology Development Award 2015. Dr Nawaz has more than 50 journal publications and editorial board member in various reputed research journals of chemical engineering.

Corresponding author: Zeeshan Nawaz, Olefins and Aromatics, SABIC Technology and Innovation, Saudi Basic Industries Corporation (SABIC), P.O. Box 42503, Riyadh 11551, Kingdom of Saudi Arabia, e-mail: ,

Received: 2015-04-07

Accepted: 2015-06-11

Published Online: 2015-08-31

Published in Print: 2015-10-01

Citation Information: Reviews in Chemical Engineering, Volume 31, Issue 5, Pages 413–436, ISSN (Online) 2191-0235, ISSN (Print) 0167-8299, DOI: https://doi.org/10.1515/revce-2015-0012.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Pengpeng Zhang, David Huang, and Timothy R. Newhouse
Journal of the American Chemical Society, 2020
Guangjing Li, Borna Zandkarimi, Ashley C. Cass, Timothy J. Gorey, Bradley J. Allen, Anastassia N. Alexandrova, and Scott L. Anderson
The Journal of Chemical Physics, 2020, Volume 152, Number 2, Page 024702
Lukas Rochlitz, Keith Searles, Jan Alfke, Dmitry Zemlyanov, Olga V. Safonova, and Christophe Copéret
Chemical Science, 2020
Zhikang Xu, Yuanyuan Yue, Xiaojun Bao, Zailai Xie, and Haibo Zhu
ACS Catalysis, 2019, Page 818
Guangjian Wang, Ning Song, Kai Lu, Wentai Wang, Liancheng Bing, Qinqin Zhang, Haitao Fu, Fang Wang, and Dezhi Han
Catalysts, 2019, Volume 9, Number 11, Page 968
Yupeng Du, Lin Zhang, and Abdallah S. Berrouk
Energy Conversion and Management, 2019, Volume 202, Page 112213
Xiaoping Wu, Qiao Zhang, Lungang Chen, Qiying Liu, Xinghua Zhang, Qi Zhang, Longlong Ma, and Chenguang Wang
Fuel Processing Technology, 2020, Volume 198, Page 106222
Guanghua Ye, Haizhi Wang, Xinggui Zhou, Frerich J. Keil, Marc‐Olivier Coppens, and Weikang Yuan
AIChE Journal, 2019, Volume 65, Number 10
Rui Hu, Xin Li, Zhijun Sui, Guanghua Ye, and Xinggui Zhou
Chemical Engineering and Processing - Process Intensification, 2019, Volume 143, Page 107608
Zhong-Pan Hu, Dandan Yang, Zheng Wang, and Zhong-Yong Yuan
Chinese Journal of Catalysis, 2019, Volume 40, Number 9, Page 1233
Mariana Stoyanova, Ursula Bentrup, Hanan Atia, Evgenii V. Kondratenko, David Linke, and Uwe Rodemerck
Catalysis Science & Technology, 2019, Volume 9, Number 12, Page 3137
Jae-Won Jung, Won-Il Kim, Jeong-Rang Kim, Kyeongseok Oh, and Hyoung Lim Koh
Catalysts, 2019, Volume 9, Number 5, Page 446
Kaifeng Niu, Zhenhua Qi, Youyong Li, Haiping Lin, and Lifeng Chi
The Journal of Physical Chemistry C, 2019, Volume 123, Number 8, Page 4969
Tianqi Lei, Hongyao Guo, Changxi Miao, Weiming Hua, Yinghong Yue, and Zi Gao
Catalysts, 2019, Volume 9, Number 2, Page 119
Hai-Zhi Wang, Wei Zhang, Jia-Wei Jiang, Zhi-Jun Sui, Yi-An Zhu, Guang-Hua Ye, De Chen, Xing-Gui Zhou, and Wei-Kang Yuan
Catalysis Science & Technology, 2019, Volume 9, Number 3, Page 867
Lidan Deng, Hiroki Miura, Tomoyo Ohkubo, Tetsuya Shishido, Zheng Wang, Saburo Hosokawa, Kentaro Teramura, and Tsunehiro Tanaka
Catalysis Science & Technology, 2019, Volume 9, Number 4, Page 947
Sebastian Standl and Olaf Hinrichsen
Catalysts, 2018, Volume 8, Number 12, Page 626
Zhe Li, Liang Yu, Cory Milligan, Tao Ma, Lin Zhou, Yanran Cui, Zhiyuan Qi, Nicole Libretto, Biao Xu, Junwei Luo, Enzheng Shi, Zhenwei Wu, Hongliang Xin, W. Nicholas Delgass, Jeffrey T. Miller, and Yue Wu
Nature Communications, 2018, Volume 9, Number 1
Yang He, Yuanjun Song, David A. Cullen, and Siris Laursen
Journal of the American Chemical Society, 2018
Guanghua Ye, Haizhi Wang, Xuezhi Duan, Zhijun Sui, Xinggui Zhou, Marc-Olivier Coppens, and Weikang Yuan
AIChE Journal, 2018
Yang Liu, Chengjie Xia, Qi Wang, Lei Zhang, Ao Huang, Ming Ke, and Zhaozheng Song
Catalysis Science & Technology, 2018
Keith Searles, Ka Wing Chan, Jorge Augusto Mendes Burak, Dmitry Zemlyanov, Olga Safonova, and Christophe Copéret
Journal of the American Chemical Society, 2018
Shuqi Fang, Kang Bi, Qiao Zhang, Lingpeng Chen, Yongming Sun, Hongyu Huang, Longlong Ma, and Chenguang Wang
Catalysts, 2018, Volume 8, Number 8, Page 296
Ce Yang, Zhenwei Wu, Guanghui Zhang, Huaping Sheng, Jun Tian, Zhengli Duan, Hyuntae Sohn, A. Jeremy Kropf, Tianpin Wu, Theodore R. Krause, and Jeffrey T. Miller
Catalysis Today, 2018
Kai C. Szeto, Zachary R. Jones, Nicolas Merle, Cesar Rios, Alessandro Gallo, Frédéric Le Quéméner, Laurent Delevoye, Régis M. Gauvin, Susannah L Scott, and Mostafa Taoufik
ACS Catalysis, 2018
Eric E. Stangland
Annual Review of Chemical and Biomolecular Engineering, 2018, Volume 9, Number 1, Page 341
Tatiana A. Bugrova, Valerii V. Dutov, Valeriy A. Svetlichnyi, Vicente Cortés Corberán, and Grigory V. Mamontov
Catalysis Today, 2018
Christophe Copéret, Florian Allouche, Ka Wing Chan, Matthew P. Conley, Murielle F. Delley, Alexey Fedorov, Ilia B. Moroz, Victor Mougel, Margherita Pucino, Keith Searles, Keishi Yamamoto, and Pavel A. Zhizhko
Angewandte Chemie, 2018
Christophe Copéret, Florian Allouche, Ka Wing Chan, Matthew P. Conley, Murielle F. Delley, Alexey Fedorov, Ilia B. Moroz, Victor Mougel, Margherita Pucino, Keith Searles, Keishi Yamamoto, and Pavel A. Zhizhko
Angewandte Chemie International Edition, 2018
Anna N. Matveyeva, Nadezhda A. Zaitseva, Päivi Mäki-Arvela, Atte Aho, Anastasia K. Bachina, Sergey P. Fedorov, Dmitry Yu. Murzin, and Nikolai A. Pakhomov
Industrial & Engineering Chemistry Research, 2018
Ashwin Agarwal, Debalina Sengupta, and Mahmoud M El-Halwagi
ACS Sustainable Chemistry & Engineering, 2017
Akshai Kumar, Tariq M. Bhatti, and Alan S. Goldman
Chemical Reviews, 2017
F. Mark Chadwick, Alasdair I. McKay, Antonio J. Martinez-Martinez, Nicholas H. Rees, Tobias Krämer, Stuart A. Macgregor, and Andrew S. Weller
Chem. Sci., 2017, Volume 8, Number 9, Page 6014
Tatyana Otroshchenko, Vita A. Kondratenko, Uwe Rodemerck, David Linke, and Evgenii V. Kondratenko
Journal of Catalysis, 2017, Volume 348, Page 282
Natarajan Prakash, Mi-Hyun Lee, Sungho Yoon, and Kwang-Deog Jung
Catalysis Today, 2017, Volume 293-294, Page 33
Keith Searles, Georges Siddiqi, Olga V. Safonova, and Christophe Copéret
Chem. Sci., 2017, Volume 8, Number 4, Page 2661
An-hua Dong, Kang Wang, Shi-zhen Zhu, Gong-bing Yang, and Xi-tao Wang
Fuel Processing Technology, 2017, Volume 158, Page 218
Vladimir I. Sobolev, Konstantin Yu. Koltunov, and Galina A. Zenkovets
Catalysis Letters, 2017, Volume 147, Number 2, Page 310
Gheorghita Mitran, Rawaz Ahmed, Emmanuel Iro, Saeed Hajimirzaee, Simon Hodgson, Adriana Urdă, Maria Olea, and Ioan-Cezar Marcu
Catalysis Today, 2016
Akshai Kumar, Jason D. Hackenberg, Gao Zhuo, Andrew M. Steffens, Oleg Mironov, Robert J. Saxton, and Alan S. Goldman
Journal of Molecular Catalysis A: Chemical, 2017, Volume 426, Page 368
Tatyana Otroshchenko, Jörg Radnik, Matthias Schneider, Uwe Rodemerck, David Linke, and Evgenii V. Kondratenko
Chem. Commun., 2016, Volume 52, Number 52, Page 8164
Salvatore Abate, Urbano Díaz, Alejandro Prieto, Serena Gentiluomo, Miguel Palomino, Siglinda Perathoner, Avelino Corma, and Gabriele Centi
Industrial & Engineering Chemistry Research, 2016, Volume 55, Number 17, Page 4948
Feng Wang, Meng-Lu Li, Pei-Gao Duan, Jie Fu, Xiu-Yang Lü, and Yu-Ping Xu
Fuel Processing Technology, 2016, Volume 146, Page 62

Comments (0)

Please log in or register to comment.
Log in