Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in Chemical Engineering

Editor-in-Chief: Luss, Dan / Brauner, Neima

Editorial Board: Agar, David / Davis, Mark E. / Edgar, Thomas F. / Giorno, Lidietta / Joshi, J. B. / Khinast, Johannes / Kost, Joseph / Leal, L. Gary / Li, Jinghai / Mills, Patrick / Morbidelli, Massimo / Ng, Ka Ming / Schouten, Jaap C. / Seinfeld, John / Stitt, E. Hugh / Tronconi, Enrico / Vayenas, Constantinos G. / Zagoruiko, Andrey / Zondervan, Edwin

IMPACT FACTOR 2018: 4.200

CiteScore 2018: 4.96

SCImago Journal Rank (SJR) 2018: 1.016
Source Normalized Impact per Paper (SNIP) 2018: 1.572

See all formats and pricing
More options …
Volume 33, Issue 2


Polymeric ionic liquids (PILs) for CO2 capture

Mahsa Sadeghpour
  • Chemical Engineering Department, Faculty of Engineering, University Malaya, 50603 Kuala Lumpur, Malaysia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rozita Yusoff
  • Chemical Engineering Department, Faculty of Engineering, University Malaya, 50603 Kuala Lumpur, Malaysia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohamed Kheireddine Aroua
  • Corresponding author
  • Chemical Engineering Department, Faculty of Engineering, University Malaya, 50603 Kuala Lumpur, Malaysia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-08-09 | DOI: https://doi.org/10.1515/revce-2015-0070


The emission of carbon dioxide (CO2) into the atmosphere is considered the main cause of global warming. CO2 is mostly viewed as the principal product associated with the combustion of fossil fuels. One of the emerging studies at the moment is the use polymeric ionic liquids (PILs) for capturing CO2 from flue gas streams. The objective of this paper is to provide an overview of the various PILs for CO2 capture. PILs can be used in different processes, including absorption, membrane, and adsorption. In this paper, preparation and synthesis of PILs for various processes are discussed. The paper includes elaboration on using composite, grafted, and blended PILs to achieve a powerful and effective capture mode. The effects of different parameters such as temperature and pressure on CO2 sorption are also discussed.

Keywords: CO2 capture; grafting; polymeric ionic liquid; synthesis


  • Al-Maythalony BA, Shekhah O, Swaidan R, Belmabkhout Y, Pinnau I, Eddaoudi M. Quest for anionic MOF membranes: continuous sod-ZMOF membrane with CO2 adsorption-driven selectivity. J Am Chem Soc 2015; 137: 1754–1757.Google Scholar

  • Alothman Z, Unsal Y, Habila M, Tuzen M, Soylak M. A membrane filtration procedure for the enrichment, separation, and flame atomic absorption spectrometric determinations of some metals in water, hair, urine, and fish samples. Desalination and Water Treatment 2015; 53: 3457–3465.Google Scholar

  • An D, Wu L, Li B-G, Zhu S. Synthesis and SO2 absorption/desorption properties of poly(1, 1, 3, 3-tetramethylguanidine acrylate). Macromolecules 2007; 40: 3388–3393.CrossrefGoogle Scholar

  • Anthony JL, Anderson JL, Maginn EJ, Brennecke JF. Anion effects on gas solubility in ionic liquids. J Phys Chem B 2005; 109: 6366–6374.CrossrefGoogle Scholar

  • Aziz N, Yusoff R, Aroua MK. Absorption of CO2 in aqueous mixtures of N-methyldiethanolamine and guanidinium tris (pentafluoroethyl) trifluorophosphate ionic liquid at high-pressure. Fluid Phase Equilibria 2012; 322: 120–125.Google Scholar

  • Bahukudumbi P, Ford DM. Molecular modeling study of the permeability-selectivity trade-off in polymeric and microporous membranes. Ind Eng Chem Res 2006; 45: 5640–5648.CrossrefGoogle Scholar

  • Bai H, Ho WW. New carbon dioxide-selective membranes based on sulfonated polybenzimidazole (SPBI) copolymer matrix for fuel cell applications. Ind Eng Chem Res 2008; 48: 2344–2354.CrossrefGoogle Scholar

  • Bara JE, Lessmann S, Gabriel CJ, Hatakeyama ES, Noble RD, Gin DL. Synthesis and performance of polymerizable room-temperature ionic liquids as gas separation membranes. Ind Eng Chem Res 2007; 46: 5397–5404.CrossrefGoogle Scholar

  • Bara JE, Gabriel CJ, Hatakeyama ES, Carlisle TK, Lessmann S, Noble RD, Gin DL. Improving CO2 selectivity in polymerized room-temperature ionic liquid gas separation membranes through incorporation of polar substituents. J Membr Sci 2008a; 321: 3–7.Google Scholar

  • Bara JE, Gin DL, Noble RD. Effect of anion on gas separation performance of polymer-room-temperature ionic liquid composite membranes. Ind Eng Chem Res 2008b; 47: 9919–9924.CrossrefGoogle Scholar

  • Bara JE, Hatakeyama ES, Gabriel CJ, Zeng X, Lessmann S, Gin DL, Noble RD. Synthesis and light gas separations in cross-linked gemini room temperature ionic liquid polymer membranes. J Membr Sci 2008c; 316: 186–191.Google Scholar

  • Bara JE, Hatakeyama ES, Gin DL, Noble RD. Improving CO2 permeability in polymerized room temperature ionic liquid gas separation membranes through the formation of a solid composite with a room-temperature ionic liquid. Polym Adv Technol 2008d; 19: 1415–1420.CrossrefGoogle Scholar

  • Bara JE, Noble RD, Gin DL. Effect of “free” cation substituent on gas separation performance of polymer–room-temperature ionic liquid composite membranes. Ind Eng Chem Res 2009; 48: 4607–4610.CrossrefGoogle Scholar

  • Ben Hamouda S, Nguyen QT, Langevin D, Roudesli S. Poly(vinylalcohol)/poly(ethyleneglycol)/poly (ethyleneimine) blend membranes-structure and CO2 facilitated transport. C R Chim 2010; 13: 372–379.CrossrefGoogle Scholar

  • Bhavsar RS, Kumbharkar SC, Kharul UK. Polymeric ionic liquids (PILs) effect of anion variation on their CO2 sorption. J Membr Sci 2012; 389: 305–315.Google Scholar

  • Blasig A, Tang J, Hu X, Shen Y, Radosz M. Magnetic suspension balance study of carbon dioxide solubility in ammonium-based polymerized ionic liquids: poly(p-vinylbenzyltrimethyl ammonium tetrafluoroborate) and poly([2-(methacryloyloxy) ethyl] trimethyl ammonium tetrafluoroborate). Fluid Phase Equilibria 2007; 256: 75–80.Google Scholar

  • Brunetti A, Scura F, Barbieri G, Drioli E. Membrane technologies for CO2 separation. J Membr Sci 2010; 359: 115–125.Google Scholar

  • Budzien JL, McCoy JD, Weinkauf DH, LaViolette RA, Peterson ES. Solubility of gases in amorphous polyethylene. Macromolecules 1998; 31: 3368–3371.CrossrefGoogle Scholar

  • Cadena C, Anthony JL, Shah JK, Morrow TI, Brennecke JF, Maginn EJ. Why is CO2 so soluble in imidazolium-based ionic liquids? J Am Chem Soc 2004; 126: 5300–5308.CrossrefGoogle Scholar

  • Camper D, Bara JE, Gin DL, Noble RD. Room-temperature ionic liquid-amine solutions: tunable solvents for efficient and reversible capture of CO2. Ind Eng Chem Res 2008; 47: 8496–8498.CrossrefGoogle Scholar

  • Carlisle TK, Bara JE, Lafrate AL, Gin DL, Noble RD. Main-chain imidazolium polymer membranes for CO2 separations: an initial study of a new ionic liquid-inspired platform. J Membr Sci 2010; 359: 37–43.Google Scholar

  • Carlisle TK, Nicodemus GD, Gin DL, Noble RD. CO2/light gas separation performance of cross-linked poly(vinylimidazolium) gel membranes as a function of ionic liquid loading and cross-linker content. J Membr Sci 2012; 397: 24–37.Google Scholar

  • Chen H, Choi J-H, Salas-de la Cruz D, Winey KI, Elabd YA. Polymerized ionic liquids: the effect of random copolymer composition on ion conduction. Macromolecules 2009; 42: 4809–4816.CrossrefGoogle Scholar

  • Chi WS, Hong SU, Jung B, Kang SW, Kang YS, Kim JH. Synthesis, structure and gas permeation of polymerized ionic liquid graft copolymer membranes. J Membr Sci 2013; 443: 54–61.Google Scholar

  • Feng Z, Cheng-Gang F, You-Ting W, Yuan-Tao W, Ai-Min L, Zhi-Bing Z. Absorption of CO2 in the aqueous solutions of functionalized ionic liquids and MDEA. Chem Eng J 2010; 160: 691–697.Google Scholar

  • Feng S, Ren J, Li Z, Li H, Hua K, Li X, Deng M. Poly(amide-12-b-ethylene oxide)/glycerol triacetate blend membranes for CO2 separation. Int J Greenhouse Gas Control 2013; 19: 41–48.Google Scholar

  • Freeman BD. Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules 1999; 32: 375–380.CrossrefGoogle Scholar

  • Fu S, Sanders ES, Kulkarni SS, Wenz GB, Koros WJ. Temperature dependence of gas transport and sorption in carbon molecular sieve membranes derived from four 6FDA based polyimides: entropic selectivity evaluation. Carbon 2015; 95: 995–1006.CrossrefGoogle Scholar

  • González-Álvarez J, Blanco-Gomis D, Arias-Abrodo P, Díaz-Llorente D, Ríos-Lombardía N, Busto E, Gotor-Fernández V, Gutiérrez-Álvarez MD. Polymeric imidazolium ionic liquids as valuable stationary phases in gas chromatography: chemical synthesis and full characterization. Anal Chim Acta 2012; 721: 173–181.Google Scholar

  • González-Álvarez J, Blanco-Gomis D, Arias-Abrodo P, Pello-Palma J, Ríos-Lombardía N, Busto E, Gotor-Fernández V, Gutiérrez-Álvarez MD. Analysis of beer volatiles by polymeric imidazolium-solid phase microextraction coatings: synthesis and characterization of polymeric imidazolium ionic liquids. J Chromatogr A 2013; 1305: 35–40.Google Scholar

  • Gupta M, Coyle I, Thambimuthu K. CO2 capture technologies and opportunities in Canada. 1st Canadian CC&S Technology Roadmap Workshop, 2003.Google Scholar

  • Hall JE. Guyton and Hall textbook of medical physiology. Philadelphia, PA, USA: Elsevier Health Sciences, 2015.Google Scholar

  • Hasib-ur-Rahman M, Siaj M, Larachi F. Ionic liquids for CO2 capture – development and progress. Chem Eng Proc 2010; 49: 313–322.CrossrefGoogle Scholar

  • Hasib-ur-Rahman M, Siaj M, Larachi F. CO2 capture in alkanolamine/room-temperature ionic liquid emulsions: a viable approach with carbamate crystallization and curbed corrosion behavior. Int J Greenhouse Gas Control 2012; 6: 246–252.Google Scholar

  • Hirao M, Ito K, Ohno H. Preparation and polymerization of new organic molten salts; N-alkylimidazolium salt derivatives. Electrochim Acta 2000; 45: 1291–1294.CrossrefGoogle Scholar

  • Hong SU, Park D, Ko Y, Baek I. Polymer-ionic liquid gels for enhanced gas transport. Chem Commun (Camb) 2009: 7227–7229. Doi: 10.1039/b913746g.CrossrefGoogle Scholar

  • Hosseini SS, Teoh MM, Chung TS. Hydrogen separation and purification in membranes of miscible polymer blends with interpenetration networks. Polymer 2008; 49: 1594–1603.CrossrefGoogle Scholar

  • Hu X, Tang J, Blasig A, Shen Y, Radosz M. CO2 permeability, diffusivity and solubility in polyethylene glycol-grafted polyionic membranes and their CO2 selectivity relative to methane and nitrogen. J Membr Sci 2006; 281: 130–138.Google Scholar

  • Hudiono YC, Carlisle TK, LaFrate AL, Gin DL, Noble RD. Novel mixed matrix membranes based on polymerizable room-temperature ionic liquids and SAPO-34 particles to improve CO2 separation. J Membr Sci 2011; 370: 141–148.Google Scholar

  • Isik M, Gracia R, Kollnus LC, Tomé LC, Marrucho IM, Mecerreyes D. Cholinium-based poly(ionic liquid)s: synthesis, characterization, and application as biocompatible ion gels and cellulose coatings. ACS Macro Lett 2013; 2: 975–979.CrossrefGoogle Scholar

  • Jansen JC, Friess K, Clarizia G, Schauer J, Izak P. High ionic liquid content polymeric gel membranes: preparation and performance. Macromolecules 2010; 44: 39–45.CrossrefGoogle Scholar

  • Kato S, Tsujita Y, Yoshimizu H, Kinoshita T, Higgins J. Characterization and CO2 sorption behaviour of polystyrene/polycarbonate blend system. Polymer 1997; 38: 2807–2811.CrossrefGoogle Scholar

  • Kumbharkar SC, Bhavsar RS, Kharul UK. Film forming polymeric ionic liquids (PILs) based on polybenzimidazoles for CO2 separation. RSC Adv 2014; 4: 4500–4503.CrossrefGoogle Scholar

  • Li P, Ge B, Zhang S, Chen S, Zhang Q, Zhao Y. CO2 capture by polyethylenimine-modified fibrous adsorbent. Langmuir 2008; 24: 6567–6574.CrossrefGoogle Scholar

  • Li P, Pramoda K, Chung T-S. CO2 separation from flue gas using polyvinyl-(room temperature ionic liquid)-room temperature ionic liquid composite membranes. Ind Eng Chem Res 2011; 50: 9344–9353.CrossrefGoogle Scholar

  • Li P, Paul D, Chung T-S. High performance membranes based on ionic liquid polymers for CO2 separation from the flue gas. Green Chem 2012; 14: 1052–1063.CrossrefGoogle Scholar

  • Lu J, Yan F, Texter J. Advanced applications of ionic liquids in polymer science. Prog Polym Sci 2009; 34: 431–448.CrossrefGoogle Scholar

  • Luis P, van Gerven T, van der Bruggen B. Recent developments in membrane-based technologies for CO2 capture. Prog Energy Combust Sci 2012; 38: 419–448.CrossrefGoogle Scholar

  • Lutz JF. Polymerization of oligo (ethylene glycol)(meth) acrylates: toward new generations of smart biocompatible materials. J Polym Sci A Polym Chem 2008; 46: 3459–3470.CrossrefGoogle Scholar

  • Magalhaes T, Aquino A, Dalla Vecchia F, Bernard F, Seferin M, Menezes S, Ligabue R, Einloft S. Syntheses and characterization of new poly(ionic liquid)s designed for CO2 capture. RSC Adv 2014; 4: 18164–18170.CrossrefGoogle Scholar

  • Marcilla R, Blazquez JA, Fernandez R, Grande H, Pomposo JA, Mecerreyes D. Synthesis of novel polycations using the chemistry of ionic liquids. Macromol Chem Phys 2005; 206: 299–304.Google Scholar

  • Meisen A, Shuai X. Research and development issues in CO2 capture. Energy Convers Manage 1997; 38: S37–S42.CrossrefGoogle Scholar

  • Mogri Z, Paul D. Gas sorption and transport in poly(alkyl (meth) acrylate)s. II. Sorption and diffusion properties. Polymer 2001; 42: 7781–7789.CrossrefGoogle Scholar

  • Mondal MK, Balsora HK, Varshney P. Progress and trends in CO2 capture/separation technologies: a review. Energy 2012; 46: 431–441.CrossrefGoogle Scholar

  • Orme CJ, Klaehn JR, Harrup MK, Luther TA, Peterson ES, Stewart FF. Gas permeability in rubbery polyphosphazene membranes. J Membr Sci 2006; 280: 175–184.Google Scholar

  • Petkovic M, Seddon KR, Rebelo LPN, Pereira CS. Ionic liquids: a pathway to environmental acceptability. Chem Soc Rev 2011; 40: 1383–1403.CrossrefGoogle Scholar

  • Pont A-L, Marcilla R, de Meatza I, Grande H, Mecerreyes D. Pyrrolidinium-based polymeric ionic liquids as mechanically and electrochemically stable polymer electrolytes. J Power Sources 2009; 188: 558–563.Google Scholar

  • Raeissi S, Peters CJ. Carbon dioxide solubility in the homologous 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide family. J Chem Eng Data 2008; 54: 382–386.Google Scholar

  • Reijerkerk SR, Knoef MH, Nijmeijer K, Wessling M. Poly(ethylene glycol) and poly(dimethyl siloxane): combining their advantages into efficient CO2 gas separation membranes. J Membr Sci 2010; 352: 126–135.Google Scholar

  • Robeson LM. Correlation of separation factor versus permeability for polymeric membranes. J Membr Sci 1991; 62: 165–185.Google Scholar

  • Robeson LM. The upper bound revisited. J Membr Sci 2008; 320: 390–400.Google Scholar

  • Salamone J, Israel S, Taylor P, Snider B. Synthesis and homopolymerization studies of vinylimidazolium salts. Polymer 1973; 14: 639–644.CrossrefGoogle Scholar

  • Samadi A, Kemmerlin RK, Husson SM. Polymerized ionic liquid sorbents for CO2 separation. Energy Fuels 2010; 24: 5797–5804.CrossrefGoogle Scholar

  • Scovazzo P. Determination of the upper limits, benchmarks, and critical properties for gas separations using stabilized room temperature ionic liquid membranes (SILMs) for the purpose of guiding future research. J Membr Sci 2009; 343: 199–211.Google Scholar

  • Shaplov AS, Lozinskaya EI, Ponkratov DO, Malyshkina IA, Vidal F, Aubert P-H, Okatova OGV, Pavlov GM, Komarova LI, Wandrey C. Bis(trifluoromethylsulfonyl) amide based “polymeric ionic liquids”: synthesis, purification and peculiarities of structure-properties relationships. Electrochim Acta 2011; 57: 74–90.Google Scholar

  • Shaplov AS, Marcilla R, Mecerreyes D. Recent advances in innovative polymer electrolytes based on poly(ionic liquid)s. Electrochim Acta 2015; 175: 18–34.Google Scholar

  • Simons K. Membrane Technologies for CO2 Capture. Netherlands: University of Twente, 2010.Google Scholar

  • Soosaiprakasam IR, Veawab A. Corrosion and polarization behavior of carbon steel in MEA-based CO2 capture process. Int J Greenhouse Gas Control 2008; 2: 553–562.Google Scholar

  • Su F, C Lu, Kuo S-C, Zeng W. Adsorption of CO2 on amine-functionalized Y-type zeolites. Energy Fuels 2010; 24: 1441–1448.CrossrefGoogle Scholar

  • Supasitmongkol S, Styring P. High CO2 solubility in ionic liquids and a tetraalkylammonium-based poly(ionic liquid). Energy Environ Sci 2010; 3: 1961–1972.Google Scholar

  • Swaidan R, Ghanem B, Pinnau I. Fine-tuned intrinsically ultramicroporous polymers redefine the permeability/selectivity upper bounds of membrane-based air and hydrogen separations. ACS Macro Lett 2015; 4: 947–951.CrossrefGoogle Scholar

  • Tang H, Tang J, Ding S, Radosz M, Shen Y. Atom transfer radical polymerization of styrenic ionic liquid monomers and carbon dioxide absorption of the polymerized ionic liquids. J Polym Sci A Polym Chem 2005a; 43: 1432–1443.CrossrefGoogle Scholar

  • Tang J, Sun W, Tang H, Radosz M, Shen Y. Enhanced CO2 absorption of poly(ionic liquid)s. Macromolecules 2005b; 38: 2037–2039.CrossrefGoogle Scholar

  • Tang J, Tang H, Sun W, Plancher H, Radosz M, Shen Y. Poly(ionic liquid)s: a new material with enhanced and fast CO2 absorption. Chem Commun (Camb) 2005c; 3325–3327. Epub 2005 May 27.Google Scholar

  • Tang J, Tang H, Sun W, Radosz M, Shen Y. Low-pressure CO2 sorption in ammonium-based poly(ionic liquid)s. Polymer 2005d; 46: 12460–12467.CrossrefGoogle Scholar

  • Tang J, Tang H, Sun W, Radosz M, Shen Y. Poly(ionic liquid)s as new materials for CO2 absorption. J Polym Sci A Polym Chem 2005e; 43: 5477–5489.CrossrefGoogle Scholar

  • Tang J, Radosz M, Shen Y. Poly(ionic liquid)s as optically transparent microwave-absorbing materials. Macromolecules 2008; 41: 493–496.CrossrefGoogle Scholar

  • Tang J, Shen Y, Radosz M, Sun W. Isothermal carbon dioxide sorption in poly(ionic liquid)s. Ind Eng Chem Res 2009; 48: 9113–9118.CrossrefGoogle Scholar

  • Tomé LC, Mecerreyes D, Freire CS, Rebelo LPN, Marrucho IM. Pyrrolidinium-based polymeric ionic liquid materials: new perspectives for CO2 separation membranes. J Membr Sci 2013; 428: 260–266.Google Scholar

  • Tomé LC, Gouveia AS, Freire CS, Mecerreyes D, Marrucho IM. Polymeric ionic liquid-based membranes: influence of polycation variation on gas transport and CO2 selectivity properties. J Membr Sci 2015a; 486: 40–48.Google Scholar

  • Tomé LC, Isik M, Freire CSR, Mecerreyes D, Marrucho IM. Novel pyrrolidinium-based polymeric ionic liquids with cyano counter-anions: high performance membrane materials for post-combustion CO2 separation. J Membr Sci 2015b; 483: 155–165.Google Scholar

  • Uchytil P, Schauer J, Petrychkovych R, Setnickova K, Suen S. Ionic liquid membranes for carbon dioxide-methane separation. J Membr Sci 2011; 383: 262–271.Google Scholar

  • Wilke A, Yuan J, Antonietti M, Weber J. Enhanced carbon dioxide adsorption by a mesoporous poly(ionic liquid). ACS Macro Lett 2012; 1: 1028–1031.CrossrefGoogle Scholar

  • Xiong Y, Wang Y, Wang H, Wang R. A facile one-step synthesis to ionic liquid-based cross-linked polymeric nanoparticles and their application for CO2 fixation. Polymer Chem 2011; 2: 2306–2315.CrossrefGoogle Scholar

  • Yu G, Li Q, Li N, Man Z, Pu C, Asumana C, Chen X. Synthesis of new crosslinked porous ammonium–based poly(ionic liquid) and application in CO2 adsorption. Polymer Eng Sci 2014; 54: 59–63.CrossrefGoogle Scholar

  • Yu X, Yang J, Yan J, Tu ST. Membrane technologies for CO2 capture. Handbook of Clean Energy Systems. Hoboken, NJ, USA: Wiley Online Library, 2015.Google Scholar

  • Yuan J, Antonietti M. Poly(ionic liquid)s: polymers expanding classical property profiles. Polymer 2011; 52: 1469–1482.CrossrefGoogle Scholar

  • Yuan J, Mecerreyes D, Antonietti M. Poly(ionic liquid)s: an update. Prog Polym Sci 2013; 38: 1009–1036.CrossrefGoogle Scholar

  • Zhang Y, Sunarso J, Liu S, Wang R. Current status and development of membranes for CO2 CH4 separation: a review. Int J Greenhouse Gas Control 2013; 12: 84–107.Google Scholar

  • Zhang G-J, Zhou X, Zang X-H, Li Z, Wang C, Wang Z. Original article analysis of nitrobenzene compounds in water and soil samples by graphene composite-based solid-phase microextraction coupled with gas chromatography-mass spectrometry. Chin Chem Lett 2014; 25: 1449–1454.CrossrefGoogle Scholar

  • Zhang L, Qu R, Sha Y, Wang X, Yang L. Membrane gas absorption for CO2 capture from flue gas containing fine particles and gaseous contaminants. Int J Greenhouse Gas Control 2015; 33: 10–17.Google Scholar

  • Zhao Q, Anderson JL. Selective extraction of CO2 from simulated flue gas using polymeric ionic liquid sorbent coatings in solid-phase microextraction gas chromatography. J Chromatogr A 2010; 1217: 4517–4522.Google Scholar

  • Zhao Z, Dong H, Zhang X. The research progress of CO2 capture with ionic liquids. Chin J Chem Eng 2012; 20: 120–129.Google Scholar

  • Zulfiqar S, Sarwar MI, Mecerreyes D. Polymeric ionic liquids for CO2 capture and separation: potential, progress and challenges. Polymer Chem 2015; 6: 6435–6451.CrossrefGoogle Scholar

About the article

Mahsa Sadeghpour

Mahsa Sadeghpour received her BSc degree and MSc degree in applied chemistry from Iran in 2009 and 2011, respectively. She joined the University of Malaya, Malaysia, as a doctoral candidate in 2013. Her research interests include separation processes, synthesis of PILs for CO2 capture, and water treatment.

Rozita Yusoff

Rozita Yusoff is currently a deputy director at the University of Malaya Curriculum Development Center (UMCDC) and an associate professor at the Department of Chemical Engineering, University of Malaya. Her research interests are mainly in the area of separation processes (microwave-assisted extraction of active ingredient from herbal plant, CO2 absorption by alkanolamines, and ionic liquids) and advanced material processing using microwave heating. To date, she has published more than 50 papers in journals and conference proceedings both locally and internationally.

Mohamed Kheireddine Aroua

Mohamed Kheireddine Aroua is a senior professor at the Chemical Engineering Department and a deputy dean at the Institute of Graduate Studies, University of Malaya, Malaysia. He is also head of the Center for Separation Science and Technology. His research interests include CO2 capture, membrane processes, electrochemical processes using activated carbon, biodiesel production, and conversion of bioglycerol to value-added chemicals. He has published more than 130 papers in ISI-ranked journals with more than 3000 citations. His h-index is 31.

Received: 2015-12-01

Accepted: 2016-06-07

Published Online: 2016-08-09

Published in Print: 2017-04-01

Citation Information: Reviews in Chemical Engineering, Volume 33, Issue 2, Pages 183–200, ISSN (Online) 2191-0235, ISSN (Print) 0167-8299, DOI: https://doi.org/10.1515/revce-2015-0070.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Franciele L. Bernard, Leonardo M. dos Santos, Marina B. Schwab, Barbara B. Polesso, Jailton F. do Nascimento, and Sandra Einloft
Journal of Applied Polymer Science, 2019, Page 47536
Andreia S.L. Gouveia, Lucas Ventaja, Liliana C. Tomé, and Isabel M. Marrucho
Membranes, 2018, Volume 8, Number 4, Page 124
Chenhua Shu, Lina Wang, Peijun Kong, and Meizhu Gao
Separation Science and Technology, 2018, Page 1
Alexander Weyman, Markus Bier, Christian Holm, and Jens Smiatek
The Journal of Chemical Physics, 2018, Volume 148, Number 19, Page 193824
Mahsa Sadeghpour, Rozita Yusoff, Mohamed Kheireddine Aroua, and Mojtaba Tabandeh
Greenhouse Gases: Science and Technology, 2017
M. Oschatz and M. Antonietti
Energy Environ. Sci., 2017
Xinjuan Li, Kai Wang, Nana Ma, and Xianbin Jia
Frontiers in Chemistry, 2017, Volume 5
Shaojuan Zeng, Xiangping Zhang, Lu Bai, Xiaochun Zhang, Hui Wang, Jianji Wang, Di Bao, Mengdie Li, Xinyan Liu, and Suojiang Zhang
Chemical Reviews, 2017, Volume 117, Number 14, Page 9625

Comments (0)

Please log in or register to comment.
Log in