Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in Chemical Engineering

Editor-in-Chief: Luss, Dan / Brauner, Neima

Editorial Board: Agar, David / Davis, Mark E. / Edgar, Thomas F. / Giorno, Lidietta / Joshi, J. B. / Khinast, Johannes / Kost, Joseph / Leal, L. Gary / Li, Jinghai / Mills, Patrick / Morbidelli, Massimo / Ng, Ka Ming / Schouten, Jaap C. / Seinfeld, John / Stitt, E. Hugh / Tronconi, Enrico / Vayenas, Constantinos G. / Zagoruiko, Andrey

6 Issues per year

IMPACT FACTOR 2017: 4.490

CiteScore 2017: 4.17

SCImago Journal Rank (SJR) 2017: 1.024
Source Normalized Impact per Paper (SNIP) 2017: 1.871

See all formats and pricing
More options …
Volume 33, Issue 2


A critical review of bioelectrochemical membrane reactor (BECMR) as cutting-edge sustainable wastewater treatment

Pranav H. Nakhate / Nandkumar T. Joshi / Kumudini V. Marathe
Published Online: 2016-08-17 | DOI: https://doi.org/10.1515/revce-2016-0012


Reclamation of wastewater along with minimum energy utilization has been the paramount concern today. Tremendous industrialization and corresponding demographic resulted in elevated water and energy demand; however, scarcity of sufficient water and energy resource triggers rigorous research for sustainable water treatment technology. Recent technologies like activated sludge, filtration, adsorption, coagulation, and oxidation have been considered as promising sustainable technologies, but high cost, low efficiency, and efficacy are the major concerns so far. Wastewater is food for billions of bacteria, where some exceptional bacterial species have the ability to transport electrons that are produced during metabolism to outside the cell membrane. Indeed, wastewater can itself be considered as a prominent candidate to resolve the problem of sustainability. Bioelectrochemical membrane reactor is a promising technology, which is an integration of microbial fuel cell (MFC) to membrane bioreactor (MBR). It promises the benefit of harvesting electricity while biologically treating any type of wastewater to the highest extent while passing wastewater through anaerobic, aerobic, and integrated membrane compartments in successive manner. In this review, we provide critical rethinking to take this idea of integration of MFC-MBR and apply them to produce a fully functional prototype of bioelectrochemical membrane reactor that could be used commercially.

Keywords: bioelectrochemical membrane reactor (BECMR); membrane bioreactor (MBR); microbial fuel cell (MFC)


  • Abrevaya XC, Sacco NJ, Bonetto MC, Hilding-Ohlsson A, Cortón E. Analytical applications of microbial fuel cells. Part II: toxicity, microbial activity and quantification, single analyte detection and other uses. Biosens Bioelectron 2015; 63: 591–601.CrossrefGoogle Scholar

  • Aelterman P, Rabaey K, Clauwaert P, Verstraete W. Microbial fuel cells for wastewater treatment. Water Sci Technol 2006; 54: 9.CrossrefGoogle Scholar

  • Anglada Á, Urtiaga A, Ortiz I. Contributions of electrochemical oxidation to waste-water treatment: Fundamentals and review of applications. J Chem Technol Biotechnol 2009; 84: 1747–1755.CrossrefGoogle Scholar

  • Asghar A, Abdul Raman AA, Daud WMAW. Recent advances, challenges and prospects of in situ production of hydrogen peroxide for textile wastewater treatment in microbial fuel cells. J Chem Technol Biotechnol 2014; 89: 1466–1480.CrossrefGoogle Scholar

  • Baysoy DY, Ozkaya B. Novel design of a multitube microbial fuel cell (UM 2 FC) for energy recovery and treatment of membrane concentrates. Biomass Bioenergy 2014; 69: 58–65.Google Scholar

  • Belleville P, Strong PJ, Dare PH, Gapes DJ. Influence of nitrogen limitation on performance of a microbial fuel cell. Water Sci Technol 2011; 63: 1752–1757.CrossrefGoogle Scholar

  • Chang S. Anaerobic membrane bioreactors (AnMBR) for wastewater treatment. Adv Chem Eng Sci 2014; 04: 56–61.CrossrefGoogle Scholar

  • Cheng S, Logan BE. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem Commun 2007; 9: 492–496.CrossrefGoogle Scholar

  • Choi C, Hu N, Lim B. Cadmium recovery by coupling double microbial fuel cells. Bioresour Technol 2014; 170: 361–369.CrossrefGoogle Scholar

  • Chung K, Fujiki I, Okabe S. Effect of formation of biofilms and chemical scale on the cathode electrode on the performance of a continuous two-chamber microbial fuel cell. Bioresour Technol 2011; 102: 355–360.CrossrefGoogle Scholar

  • Cusick RD, Bryan B, Parker DS, Merrill MD, Mehanna M, Kiely PD, Liu G, Logan BE. Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater. Appl Microbiol Biotechnol 2011; 89: 2053–2063.CrossrefGoogle Scholar

  • Dai W, Xu X, Liu B, Yang F. Toward energy-neutral wastewater treatment: a membrane combined process of anaerobic digestion and nitritation-anammox for biogas recovery and nitrogen removal. Chem Eng J 2015; 279: 725–734.Google Scholar

  • Drews A, Vocks M, Iversen V, Lesjean B, Kraume M. Influence of unsteady membrane bioreactor operation on EPS formation and filtration resistance. Desalination 2006; 192: 1–9.CrossrefGoogle Scholar

  • Duc D, Hao H, Soo Y. Bioresource technology: a new hybrid treatment system of bioreactors and electrocoagulation for superior removal of organic and nutrient pollutants from municipal wastewater. Bioresour Technol 2014; 153: 116–125.CrossrefGoogle Scholar

  • Exall K, Marsalek J. A coagulant survey for chemically enhanced primary treatment of synthetic CSOs. Water Air Soil Pollut 2013; 224: 1–9.Google Scholar

  • Eyvaz M, Gürbulak E, Kara S. Preventing of cathode passivation/deposition in electrochemical treatment methods—a case study on winery wastewater with electrocoagulation. In: Aliofkhazraei M, editor. Modern electrochemical methods in nano, surface and corrosion science. Croatia: InTech Publishing, 2014: 201–238.Google Scholar

  • Feng C, Huang L, Yu H, Yi X, Wei C. Simultaneous phenol removal, nitrification and denitrification using microbial fuel cell technology. Water Res 2015; 76: 104–108.CrossrefGoogle Scholar

  • Foley JM, Rozendal R, Hertle CK, Lant PA, Rabaey K. Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells. Environ Sci Technol 2010; 44: 3629–3637.CrossrefGoogle Scholar

  • Franks AE, Nevin KP. Microbial fuel cells, a current review. Energies 2010; 3: 899–919.CrossrefGoogle Scholar

  • Freguia S, Tsujimura S, Kano K. Electron transfer pathways in microbial oxygen biocathodes. Electrochim Acta 2010; 55: 813–818.CrossrefGoogle Scholar

  • Gaber B. Bio-removal of nitrogen from waste water – a review. Nat Sci 2010; 8: 210–228.Google Scholar

  • Ganzenko O, Huguenot D, van Hullebusch ED, Esposito G, Oturan MA. Electrochemical advanced oxidation and biological processes for wastewater treatment: a review of the combined approaches. Environ Sci Pollut Res 2014; 21: 8493–8524.CrossrefGoogle Scholar

  • Ge Z, Ping Q, Xiao L, He Z. Reducing effluent discharge and recovering bioenergy in an osmotic microbial fuel cell treating domestic wastewater. Desalination 2013; 312: 52–59.CrossrefGoogle Scholar

  • Ghangrekar MM, Shinde VB. Wastewater treatment in microbial fuel cell and electricity generation: a sustainable approach. Int Sustain Dev Res Conf 2006: 1–9.Google Scholar

  • Gude VG, Kokabian B. Role of membranes in bioelectrochemical systems. Membrane Water Treatment 2015; 6: 53.Google Scholar

  • Guo K, Donose BC, Soeriyadi AH, Prévoteau A, Patil SA, Freguia S, Justin Gooding J, Rabaey K. Flame oxidation of stainless steel felt enhanced anodic biofilm formation and current output in bioelectrochemical systems. Environ. Sci. Technol 2014; 48: 7151–7156.CrossrefGoogle Scholar

  • Guo K, Prévoteau A, Patil S A, Rabaey K. Engineering electrodes for microbial electrocatalysis. Curr Opin Biotechnol 2015; 33: 149–156.CrossrefGoogle Scholar

  • Guo K, Hidalgo D, Tommasi T, Rabaey K. Pyrolytic carbon-coated stainless steel felt as a high-performance anode for bioelectrochemical systems. Bioresour Technol 2016; 211: 664–668.CrossrefGoogle Scholar

  • Gupta VK, Ali I, Saleh TA, Nayak A, Agarwal S. Chemical treatment technologies for waste-water recycling—an overview. RSC Adv 2012; 2: 6380–6388.CrossrefGoogle Scholar

  • Han TH, Khan MM, Kalathil S, Lee J, Cho MH. Simultaneous enhancement of methylene blue degradation and power generation in a microbial fuel cell by gold nanoparticles. Ind Eng Chem Res 2013; 52: 8174–8181.CrossrefGoogle Scholar

  • Hu Z. Electricity generation by a baffle-chamber membraneless microbial fuel cell. J Power Sources 2008; 179: 27–33.CrossrefGoogle Scholar

  • Huang J, Wang Z, Zhu C, Ma J, Zhang X, Wu Z. Identification of microbial communities in open and closed circuit bioelectrochemical MBRs by high-throughput 454 pyrosequencing. PLoS One 2014; 9: e93842.CrossrefGoogle Scholar

  • I-Corp Industry Report. India Water and Wastewater. I-Corp Industry 2015.Google Scholar

  • Jacobson KS, Drew DM, He Z. Use of a liter-scale microbial desalination cell as a platform to study bioelectrochemical desalination with salt solution or artificial seawater. Environ Sci Technol 2011; 45: 4652–4657.CrossrefGoogle Scholar

  • Jeganathan J. Process optimization of chemical phosphorus removal in wastewater treatment facilities. Influents 2011; 6: 73–75.Google Scholar

  • Kalathil S, Khan MM, Lee J, Cho MH. Production of bioelectricity, bio-hydrogen, high value chemicals and bioinspired nanomaterials by electrochemically active biofilms. Biotechnol Adv 2013; 31: 915–924.CrossrefGoogle Scholar

  • Karmakar S, Kundu K, Kundu S. Design and development of microbial fuel cells. In: Vilas MA, editor. Current research technology and development topics in applied microbiology and microbial biotechnology. Microbiology Book Series. Spain: Formatex, 2010; 2: 1029–1034.Google Scholar

  • Katuri KP, Enright AM, O’Flaherty V, Leech D. Microbial analysis of anodic biofilm in a microbial fuel cell using slaughterhouse wastewater. Bioelectrochem 2012; 87: 164–171.CrossrefGoogle Scholar

  • Katuri KP, Werner CM, Jimenez-Sandoval RJ, Chen W, Jeon S, Logan BE, Lai Z, Amy GL, Saikaly PE. A novel anaerobic electrochemical membrane bioreactor (AnEMBR) with conductive hollow-fiber membrane for treatment of low-organic strength solutions. Environ Sci Technol 2014; 48: 12833–12841.CrossrefGoogle Scholar

  • Keerthi, Suganthi V, Mahalakshmi M, Balasubramanian N. Development of hybrid membrane bioreactor for tannery effluent treatment. Desalination 2013a; 309: 231–236.Google Scholar

  • Keerthi, Vinduja V, Balasubramanian N. Electrocoagulation-integrated hybrid membrane processes for the treatment of tannery wastewater. Environ Sci Pollut Res 2013b; 20: 7441–7449.CrossrefGoogle Scholar

  • Khan AA, Gaur RZ, Tyagi VK, Khursheed A, Lew B, Mehrotra I, Kazmi AA. Sustainable options of post treatment of UASB effluent treating sewage: a review. Resour Conserv Recycl 2011; 55: 1232–1251.CrossrefGoogle Scholar

  • Kim GT, Webster G, Wimpenny JWT, Kim BH, Kim HJ, Weightman AJ. Bacterial community structure, compartmentalization and activity in a microbial fuel cell. J Appl Microbiol 2006; 101: 698–710.CrossrefGoogle Scholar

  • Kim JR, Jung SH, Regan JM, Logan BE. Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresour Technol 2007; 98: 2568–2577.CrossrefGoogle Scholar

  • Kim J, Kim K, Ye H, Lee E, Shin C, McCarty PL, Bae J. Anaerobic fluidized bed membrane bioreactor for wastewater treatment. Environ Sci Technol 2011a; 45: 576–581.CrossrefGoogle Scholar

  • Kim KY, Chae KJ, Choi MJ, Ajayi FF, Jang A, Kim CW, Kim IS. Enhanced Coulombic efficiency in glucose-fed microbial fuel cells by reducing metabolite electron losses using dual-anode electrodes. Bioresour Technol 2011b; 102: 4144–4149.CrossrefGoogle Scholar

  • Larsen TA, Alder AC, Eggen RIL, Maurer M, Lienert J. Source separation: will we see a paradigm shift in wastewater handling? Environ Sci Technol 2009; 43: 6121–6125.CrossrefGoogle Scholar

  • Lateef SK, Soh BZ, Kimura K. Direct membrane filtration of municipal wastewater with chemically enhanced backwash for recovery of organic matter. Bioresour Technol 2013; 150: 149–155.CrossrefGoogle Scholar

  • Lefebvre O, Uzabiaga A, Chang IS, Kim BH, Ng HY. Microbial fuel cells for energy self-sufficient domestic wastewater treatment – a review and discussion from energetic consideration. Appl Microbiol Biotechnol 2011; 89: 259–270.CrossrefGoogle Scholar

  • Lepage G, Albernaz FO, Perrier G, Merlin G. Bioresource technology characterization of a microbial fuel cell with reticulated carbon foam electrodes. Bioresour Technol 2012; 124: 199–207.CrossrefGoogle Scholar

  • Li C, Ding L, Cui H, Zhang L, Xu K, Ren H. Application of conductive polymers in biocathode of microbial fuel cells and microbial community. Bioresour Technol 2012; 116: 459–465.CrossrefGoogle Scholar

  • Li W-W, Yu H-Q, He Z. Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy Environ Sci 2013; 7: 911–924.CrossrefGoogle Scholar

  • Li J, Ge Z, He Z. A fluidized bed membrane bioelectrochemical reactor for energy-efficient wastewater treatment. Bioresour Technol 2014a; 167: 310–315.Google Scholar

  • Li J, Ge Z, He Z. Advancing membrane bioelectrochemical reactor (MBER) with hollow-fiber membranes installed in the cathode compartment. J Chem Technol Biotechnol 2014b; 89: 1330–1336.CrossrefGoogle Scholar

  • Liu JL, Lowy DA, Baumann RG, Tender LM. Influence of anode pretreatment on its microbial colonization. J Appl Microbiol 2007; 102: 177–183.CrossrefGoogle Scholar

  • Liu J, Liu L, Gao B, Yang F. Integration of bio-electrochemical cell in membrane bioreactor for membrane cathode fouling reduction through electricity generation. J Memb Sci 2013; 430: 196–202.Google Scholar

  • Liu W, Cheng S. Microbial fuel cells for energy production from wastewaters: the way toward practical application. J Zhejiang Univ Sci A 2014b; 15: 841–861.CrossrefGoogle Scholar

  • Liu J, Liu L, Gao B, Yang F, Crittenden J, Ren N. Integration of microbial fuel cell with independent membrane cathode bioreactor for power generation, membrane fouling mitigation and wastewater treatment. Int J Hydrogen Energy 2014; 39: 17865–17872.CrossrefGoogle Scholar

  • Logan BE. Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol 2010; 85: 1665–1671.CrossrefGoogle Scholar

  • Logan BE. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 2013; 337: 686–690.CrossrefGoogle Scholar

  • Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K. Microbial fuel cells: Methodology and technology. Environ Sci Technol 2006; 40: 5181–5192.CrossrefGoogle Scholar

  • Lovley DR. The microbe electric: conversion of organic matter to electricity. Curr Opin Biotechnol 2008; 19: 564–571.CrossrefGoogle Scholar

  • Lowy DA, Tender LM, Zeikus JG, Park DH, Lovley DR. Harvesting energy from the marine sediment–water interface II. Biosens Bioelectron 2006; 21: 2058–2063.CrossrefGoogle Scholar

  • Luo H, Jenkins PE, Ren Z. Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells. Environ Sci Technol 2011; 45: 340–344.CrossrefGoogle Scholar

  • Ma J, Wang Z, Xu Y, Wang Q, Wu Z, Grasmick A. Organic matter recovery from municipal wastewater by using dynamic membrane separation process. Chem Eng J 2013; 219: 190–199.CrossrefGoogle Scholar

  • Ma J, Wang Z, He D, Li Y, Wu Z. Long-term investigation of a novel electrochemical membrane bioreactor for low-strength municipal wastewater treatment. Water Res 2015; 78: 98–110.CrossrefGoogle Scholar

  • Majumder D, Maity J, Tseng M-J, Nimje V, Chen H-R, Chen C-C, Cheng Y-F, Yang T-C, Chen C-Y. Electricity generation and wastewater treatment of oil refinery in microbial fuel cells using Pseudomonas putida. Int J Mol Sci 2014; 15: 16772–16786.CrossrefGoogle Scholar

  • Malaeb L, Katuri KP, Logan BE, Maab H, Nunes SP, Saikaly PE. A hybrid microbial fuel cell membrane bioreactor with a conductive ultrafiltration membrane biocathode for wastewater treatment. Environ Sci Technol 2013; 47: 11821–11828.CrossrefGoogle Scholar

  • Mansoorian HJ, Mahvi AH, Jafari AJ, Khanjani N. Evaluation of dairy industry wastewater treatment and simultaneous bioelectricity generation in a catalyst-less and mediator-less membrane microbial fuel cell. J Saudi Chem Soc 2016; 20: 88–100.CrossrefGoogle Scholar

  • Mathuriya AS, Yakhmi JV. Microbial fuel cells to recover heavy metals. Environ Chem Lett 2014; 12: 483–494.CrossrefGoogle Scholar

  • McCarty PL, Bae J, Kim J. Domestic wastewater treatment as a net energy producer – can this be achieved? Environ Sci Technol 2011; 45: 7100–7106.CrossrefGoogle Scholar

  • Miran W, Nawaz M, Kadam A, Shin S, Heo J, Jang J, Lee DS. Microbial community structure in a dual chamber microbial fuel cell fed with brewery waste for azo dye degradation and electricity generation. Environ Sci Pollut Res 2015a; 22: 13477–13485.CrossrefGoogle Scholar

  • Miran W, Rasool K, Nawaz M, Kadam A, Shin S, Heo J, Jang J, Lee DS. Simultaneous electricity production and Direct Red 80 degradation using a dual chamber microbial fuel cell. Desalin Water Treat 2015b; 57: 9051–9059.Google Scholar

  • Mohan SV, Mohanakrishna G, Srikanth S, Sarma PN. Harnessing of bioelectricity in microbial fuel cell (MFC) employing aerated cathode through anaerobic treatment of chemical wastewater using selectively enriched hydrogen producing mixed consortia. Fuel 2008; 87: 2667–2676.CrossrefGoogle Scholar

  • Mohan SV, Raghavulu SV, Peri D, Sarma PN. Integrated function of microbial fuel cell (MFC) as bio-electrochemical treatment system associated with bioelectricity generation under higher substrate load. Biosens Bioelectron 2009; 24: 2021–2027.CrossrefGoogle Scholar

  • Mohan SV, Chandrasekhar K. Self-induced bio-potential and graphite electron accepting conditions enhances petroleum sludge degradation in bio-electrochemical system with simultaneous power generation. Bioresour Technol 2011; 102: 9532–9541.CrossrefGoogle Scholar

  • Mohanakrishna G, Venkata Mohan S, Sarma PN. Bio-electrochemical treatment of distillery wastewater in microbial fuel cell facilitating decolorization and desalination along with power generation. J Hazard Mater 2010; 177: 487–494.CrossrefGoogle Scholar

  • Nielsen ME, Reimers CE, Stecher HA. Enhanced power from chambered benthic microbial fuel cells. Environ Sci Technol 2007; 41: 7895–7900.CrossrefGoogle Scholar

  • Oh ST, Kim JR, Premier GC, Lee TH, Kim C, Sloan WT. Sustainable wastewater treatment: how might microbial fuel cells contribute. Biotechnol Adv 2010; 28: 871–881.CrossrefGoogle Scholar

  • Oliveira VB, Simões M, Melo LF, Pinto a. MFR. Overview on the developments of microbial fuel cells. Biochem Eng J 2013; 73: 53–64.CrossrefGoogle Scholar

  • Pant D, Bogaert G Van, Diels L, Vanbroekhoven K. Bioresource technology: a review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 2010; 101: 1533–1543.CrossrefGoogle Scholar

  • Park DH, Zeikus JG. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol Bioeng 2003; 81: 348–355.CrossrefGoogle Scholar

  • Pearce G. An Introduction to membrane bioreactors. Filtr Separat 2008; 45: 32–35.CrossrefGoogle Scholar

  • Potter MC. Electrical effects accompanying the decomposition of organic compounds. Proceedings of the Royal Society B 1911; 84: 260–276.CrossrefGoogle Scholar

  • Rai B. Pollution and conservation of Ganga River in modern India. Int J Sci Res Publ 2013; 3: 1–4.Google Scholar

  • Rashed MN. Adsorption technique for the removal of organic pollutants from water and wastewater. In: Rasheed MN, editor. InTech environmental sciences. Croatia: InTech publishing, 2013; 167–194.Google Scholar

  • Ravazzini AM, van Nieuwenhuijzen AF, van der Graaf JHMJ. Direct ultrafiltration of municipal wastewater: comparison between filtration of raw sewage and primary clarifier effluent. Desalination 2005; 178: 51–62.CrossrefGoogle Scholar

  • Ren L, Ahn Y, Logan BE. A two-stage microbial fuel cell and anaerobic fluidized bed membrane bioreactor (MFC-AFMBR) system for effective domestic wastewater treatment. Environ Sci Technol 2014; 48: 4199–4206.CrossrefGoogle Scholar

  • Rinaldi A, Mecheri B, Garavaglia V, Licoccia S, Di Nardo P, Traversa E. Engineering materials and biology to boost performance of microbial fuel cells: a critical review. Energy Environ Sci 2008; 1: 417.CrossrefGoogle Scholar

  • Rozendal RA, Hamelers HVM, Rabaey K, Keller J, Buisman CJN. Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol 2008; 26: 450–459.CrossrefGoogle Scholar

  • Shi Y, Hu S, Lou J, Lu P, Keller J, Yuan Z. Nitrogen removal from wastewater by coupling anammox and methane-dependent denitrification in a membrane biofilm reactor. Environ Sci Technol 2013; 47: 11577–11583.CrossrefGoogle Scholar

  • Shoener BD, Bradley IM, Cusick RD, Guest JS. Energy positive domestic wastewater treatment: the roles of anaerobic and phototrophic technologies. Environ Sci Process Impacts 2014; 16: 1204–1222.CrossrefGoogle Scholar

  • Singh P, Kansal A, Carliell-Marquet C. Energy and carbon footprints of sewage treatment methods. J Environ Manage 2016; 165: 22–30.CrossrefGoogle Scholar

  • Su X, Tian Y, Sun Z, Lu Y, Li Z. Performance of a combined system of microbial fuel cell and membrane bioreactor: wastewater treatment, sludge reduction, energy recovery and membrane fouling. Biosens Bioelectron 2013; 49: 92–98.CrossrefGoogle Scholar

  • Tao HC, Zhang LJ, Gao ZY, Wu WM. Copper reduction in a pilot-scale membrane-free bioelectrochemical reactor. Bioresour Technol 2011; 102: 10334–10339.CrossrefGoogle Scholar

  • Tian Y, Ji C, Wang K, Le-Clech P. Assessment of an anaerobic membrane bio-electrochemical reactor (AnMBER) for wastewater treatment and energy recovery. J Memb Sci 2014; 450: 242–248.Google Scholar

  • Torres CI, Krajmalnik-Brown R, Parameswaran P, Marcus AK, Wanger G, Gorby YA, Rittmann BE. Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization. Environ Sci Technol 2009; 43: 9519–9524.CrossrefGoogle Scholar

  • Velvizhi G, Venkata Mohan S. Biocatalyst behavior under self-induced electrogenic microenvironment in comparison with anaerobic treatment: evaluation with pharmaceutical wastewater for multi-pollutant removal. Bioresour Technol 2011; 102: 10784–10793.CrossrefGoogle Scholar

  • Venkata Mohan S, Mohanakrishna G, Velvizhi G, Babu VL, Sarma PN. Bio-catalyzed electrochemical treatment of real field dairy wastewater with simultaneous power generation. Biochem Eng J 2010; 51: 32–39.CrossrefGoogle Scholar

  • Vidakovic-Koch T, Martinez IG, Kuwertz R, Kunz U, Turek T, Sundmacher K. Electrochemical membrane reactors for sustainable chlorine recycling. Membranes 2012; 2: 510–528.CrossrefGoogle Scholar

  • Wang YK, Sheng GP, Li WW, Huang YX, Yu YY, Zeng RJ, Yu HQ. Development of a novel bioelectrochemical membrane reactor for wastewater treatment. Environ Sci Technol 2011; 45: 9256–9261.CrossrefGoogle Scholar

  • Wang AJ, Cui D, Cheng HY, Guo YQ, Kong FY, Ren NQ, Wu WM. A membrane-free, continuously feeding, single chamber up-flow biocatalyzed electrolysis reactor for nitrobenzene reduction. J Hazard Mater 2012a; 199–200: 401–409.Q13Q17.Google Scholar

  • Wang YP, Liu XW, Li WW, Li F, Wang YK, Sheng GP, Zeng RJ, Yu H-Q. A microbial fuel cell-membrane bioreactor integrated system for cost-effective wastewater treatment. Appl Energy 2012b; 98: 230–235.CrossrefGoogle Scholar

  • Wang YK, Sheng GP, Shi BJ, Li WW, Yu HQ. A novel electrochemical membrane bioreactor as a potential net energy producer for sustainable wastewater treatment. Sci Rep 3 2013a, Article no. 1864. .CrossrefGoogle Scholar

  • Wang Z, Huang J, Zhu C, Ma J, Wu Z. A Bioelectrochemically-assisted membrane bioreactor for simultaneous wastewater treatment and energy production. Chem Eng Technol 2013b; 36: 2044–2050.CrossrefGoogle Scholar

  • Wang H, Ren ZJ. Bioelectrochemical metal recovery from wastewater: a review. Water Res 2014; 66: 219–232.CrossrefGoogle Scholar

  • Wang J, Zheng Y, Jia H, Zhang H. Bioelectricity generation in an integrated system combining microbial fuel cell and tubular membrane reactor: effects of operation parameters performing a microbial fuel cell-based biosensor for tubular membrane bioreactor. Bioresour Technol 2014; 170: 483–490.CrossrefGoogle Scholar

  • Wang H, Park J, Ren ZJ. Practical energy harvesting for microbial fuel cells: a review. Environ Sci Technol [Internet]. 2015a; 150211042126005. Available from: http://pubs.acs.org/doi/abs/10.1021/es5047765.Crossref

  • Wang Q, Huang L, Yu H, Quan X, Li Y, Fan G, Li L. Assessment of five different cathode materials for Co(II) reduction with simultaneous hydrogen evolution in microbial electrolysis cells. Int J Hydrogen Energy 2015b; 40: 184–196.CrossrefGoogle Scholar

  • Wei J, Liang P, Huang X. Recent progress in electrodes for microbial fuel cells. Bioresour Technol 2011; 102: 9335–9344.CrossrefGoogle Scholar

  • Wild D, Buffle MO, Hafner-Cai J. Water: the market of the future. RobecoSAM Industry Report. Robecosam, 2010.Google Scholar

  • Yazdi HR, Christy AD, A DB. Conjugation of methoxypolyethylene glycol to the surface of bovine red blood cells. Biotechnol Bioeng 2007; 97: 1398–1407.Google Scholar

  • You SJ, Ren NQ, Zhao QL, Kiely PD, Wang JY, Yang FL, Fu L, Peng L. Improving phosphate buffer-free cathode performance of microbial fuel cell based on biological nitrification. Biosens Bioelectron 2009; 24: 3698–3701.CrossrefGoogle Scholar

  • Zhao Z, Zhang Y, Chen S, Quan X, Yu Q. Bioelectrochemical enhancement of anaerobic methanogenesis for high organic load rate wastewater treatment in a up-flow anaerobic sludge blanket (UASB) reactor. Sci Rep 4 2014, Article no. 6658. .CrossrefGoogle Scholar

  • Zheng S, Yang F, Chen S, Liu L, Xiong Q, Yu T, Zhao F, Schröder U, Hou H. Binder-free carbon black/stainless steel mesh composite electrode for high-performance anode in microbial fuel cells. J Power sources 2015; 284: 252–257.CrossrefGoogle Scholar

  • Zuo K, Liang S, Liang P, Zhou X, Sun D, Zhang X, Huang X. Carbon filtration cathode in microbial fuel cell to enhance wastewater treatment. Bioresour Technol. 2015; 185: 426–430.CrossrefGoogle Scholar

About the article

Received: 2016-02-29

Accepted: 2016-06-09

Published Online: 2016-08-17

Published in Print: 2017-04-01

Citation Information: Reviews in Chemical Engineering, Volume 33, Issue 2, Pages 143–161, ISSN (Online) 2191-0235, ISSN (Print) 0167-8299, DOI: https://doi.org/10.1515/revce-2016-0012.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in