Atmakidis T, Kenig EY. CFD-based analysis of the wall effect on the pressure drop in packed beds with moderate tube/particle diameter ratios in the laminar flow regime. Chem Eng J 2009; 155: 404–410. CrossrefGoogle Scholar

Atmakidis T, Kenig EY. Numerical analysis of mass transfer in packed-bed reactors with irregular particle arrangements. Chem Eng Sci 2012; 81: 77–83. CrossrefGoogle Scholar

Atmakidis T, Kenig EY. Numerical investigations of packed bed reactors with irregular particle arrangements. Comput Aided Chem Eng 2014; 33: 217–222. CrossrefGoogle Scholar

Augier F, Idoux F, Delenne J. Numerical simulations of transfer and transport properties inside packed beds of spherical particles. Chem Eng Sci 2010; 65: 1055–1064. CrossrefGoogle Scholar

Auwerda GJ, Kloosterman JL, Winkelman AJM, Groen J, Van Dijk V. Comparison of experiments and calculations of void fraction distributions in randomly stacked pebble beds. PHYSOR 2010-Advances in Reactor Physics to Power the Nuclear Renaissance, Pittsburgh, Pennsylvania, USA, 2010: pp. 9–14. Google Scholar

Baerns M, Behr A, Brehm A, Gmehling J, Hofmann H, Onken U, Renken A. Technische Chemie. Berlin: Wiley-VCH-Verlag, 2006. Google Scholar

Bai H, Theuerkauf J, Gillis PA, Witt PM. A coupled DEM and CFD simulation of flow field and pressure drop in fixed bed reactor with randomly packed catalyst particles. Ind Eng Chem Res 2009; 48: 4060–4074. CrossrefGoogle Scholar

Baker MJ. CFD simulation of flow through packed beds using the finite volume technique. PhD thesis, University of Exeter, 2011. Google Scholar

Bartholomew CH, Farrauto RJ. Fundamentals of industrial catalytic processes, 2nd ed., New York: Wiley, 2006. Google Scholar

Behnam M, Dixon AG, Nijemeisland M, Stitt EH. Catalyst deactivation in 3D CFD resolved particle simulations of propane dehydrogenation. Ind Eng Chem Res 2010; 49: 10641–10650. CrossrefGoogle Scholar

Behnam M, Dixon AG, Wright PM, Nijemeisland M, Stitt EH. Comparison of CFD simulations to experiment under methane steam reforming reacting conditions. Chem Eng J 2012; 207–208: 690–700. Google Scholar

Behnam M, Dixon AG, Nijemeisland M, Stitt EH. A new approach to fixed bed radial heat transfer modeling using velocity fields from computational fluid dynamics simulations. Ind Eng Chem Res, NASCRE 3, 2013: 15244–15261. Google Scholar

Bey O, Eigenberger G. Fluid flow through catalyst filled tubes. Chem Eng Sci 1997; 52: 1365–1376. CrossrefGoogle Scholar

Bird RB, Stewart WE, Lightfoot EN. Transport phenomena, volume 2. New York: Wiley, 2007. Google Scholar

Blasi JM, Kee RJ. In situ adaptive tabulation (ISAT) to accelerate transient computational fluid dynamics with complex heterogeneous chemical kinetics. Comput Chem Eng 2016; 84: 36–42. CrossrefGoogle Scholar

Blender-Foundation 2015. Blender. www.blender.org. Accessed on May 11, 2017.

Boccardo G, Augier F, Haroun Y, Ferré D, Marchisio DL. Validation of a novel open-source work-flow for the simulation of packed-bed reactors. Chem Eng J 2015; 279: 809–820. CrossrefGoogle Scholar

Bracconi M, Maestri M, Cuoci A. In situ adaptive tabulation for the CFD simulation of heterogeneous reactors based on operator-splitting algorithm. AIChE J 2017; 63: 95–104. CrossrefGoogle Scholar

Brad R, Fairweather M, Tomlin A, Griffiths J. A polynomial repro-model applied to propane cracking. In: Puigjaner L, Espuña A, editors. European Symposium on Computer-Aided Process Engineering-15, 38th European Symposium of the Working Party on Computer Aided Process Engineering, volume 20 of *Computer Aided Chemical Engineering*. Amsterdam: Elsevier, 2005: 373–378. Google Scholar

Brad R, Tomlin A, Fairweather M, Griffiths J. The application of chemical reduction methods to a combustion system exhibiting complex dynamics. Proc Combust Inst 2007; 31: 455–463. CrossrefGoogle Scholar

Bu S, Yang J, Zhou M, Li S, Wang Q, Guo Z. On contact point modifications for forced convective heat transfer analysis in a structured packed bed of spheres. Nuc Eng Des 2014; 270: 21–33. CrossrefGoogle Scholar

Caulkin R, Jia X, Fairweather M, Williams RA. Lattice approaches to packed column simulations. Particuology 2008; 6: 404–411. CrossrefGoogle Scholar

Caulkin R, Ahmad A, Fairweather M, Jia X, Williams R. Digital predictions of complex cylinder packed columns. Comp Chem Eng 2009a; 33: 10–21. CrossrefGoogle Scholar

Caulkin R, Jia X, Xu C, Fairweather M, Williams RA, Stitt H, Nijemeisland M, Aferka S, Crine M, Léonard A, Toye D, Marchot P. Simulations of structures in packed columns and validation by X-ray tomography. Ind Eng Chem Res 2009b; 48: 202–213. CrossrefGoogle Scholar

Caulkin R, Jia X, Fairweather M, Williams R. Predictions of porosity and fluid distribution through nonspherical-packed columns. AIChE J 2012; 58: 1503–1512. CrossrefGoogle Scholar

Caulkin R, Tian W, Pasha M, Hassanpour A, Jia X. Impact of shape representation schemes used in discrete element modelling of particle packing. Comp Chem Eng 2015; 76: 160–169. CrossrefGoogle Scholar

CD-adapco 2014. STAR-CCM+9.06. www.cd-adapco.com. Accessed on March 17, 2017.

Cheng S-H, Chang H, Chen Y-H, Chen H-J, Chao Y-K, Liao Y-H. Computational fluid dynamics-based multiobjective optimization for catalyst design. Ind Eng Chem Res 2010; 49: 11079–11086. CrossrefGoogle Scholar

Cortright R, Dumesic J. Kinetics of heterogeneous catalytic reactions: analysis of reaction schemes. Adv Catal 2001; 46: 161–264. Google Scholar

Coussirat M, Guardo A, Mateos B, Egusquiza E. Performance of stress-transport models in the prediction of particle-to-fluid heat transfer in packed beds. Chem Eng Sci 2007; 62: 6897–6907. CrossrefGoogle Scholar

Cundall P, Strack O. A discrete numerical model for granular assemblies. Géotechnique 1979; 29: 47–65. CrossrefGoogle Scholar

de Klerk A. Voidage variation in packed beds at small column to particle diameter ratio. AIChE J 2003; 49: 2022–2029. CrossrefGoogle Scholar

Delgado KH, Maier L, Tischer S, Zellner A, Stotz H, Deutschmann O. Surface reaction kinetics of steam- and CO_{2}-reforming as well as oxidation of methane over nickel-based catalysts. Catalysts 2015; 5: 871–904. CrossrefGoogle Scholar

Deutschmann O. Computational fluid dynamics simulation of catalytic reactors, chapter 6.6. In: Ertl G, Knötziger H, Schuth F, Weitkamp J, editors. Handbook of heterogeneous catalysis. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2008. Google Scholar

Deutschmann O, Knözinger H, Kochloefl K, Turek T. Heterogeneous catalysis and solid catalysts, 1. fundamentals. In Ullmann’s Encyclopedia of Industrial Chemistry. Berlin: Wiley-VCH Verlag GmbH & Co. KGaA, 2009. Google Scholar

Deutschmann O, Tischer S, Correa C, Chatterjee D, Kleditzsch S, Janardhanan V, Mladenov N, Minh HD, Karadeniz H, Hettel M. DETCHEM Software package. Karlsruhe, 2.5 edition, 2014. Google Scholar

Dhole S, Chhabra R, Eswaran V. A numerical study on the forced convection heat transfer from an isothermal and isoflux sphere in the steady symmetric flow regime. Int J Heat Mass Transfer 2006; 49: 984–994. CrossrefGoogle Scholar

Di Renzo A, Di Maio FP. Comparison of contact-force models for the simulation of collisions in dem-based granular flow codes. Chem Eng Sci 2000; 59: 525–541. Google Scholar

Dixon AG. Correlations for wall and particle shape effects on fixed bed bulk voidage. Can J Chem Eng 1988; 66: 705–708. CrossrefGoogle Scholar

Dixon AG. Fixed bed catalytic reactor modelling – the radial heat transfer problem. Can J Chem Eng 2012; 90: 507–527. CrossrefGoogle Scholar

Dixon AG, Nijemeisland M, Stitt EH. Packed tubular reactor modeling and catalyst design using computational fluid dynamics. In: Marin GB, editor. Computational fluid dynamics, volume 31 of Advances in Chemical Engineering. Amsterdam: Academic Press, 2006: 307–389. Google Scholar

Dixon AG, Taskin ME, Stitt EH, Nijemeisland M. 3d CFD simulations of steam reforming with resolved intraparticle reaction and gradients. Chem Eng Sci 2007; 62: 4963–4966. CrossrefGoogle Scholar

Dixon AG, Taskin ME, Nijemeisland M, Stitt EH. Wall-to-particle heat transfer in steam reformer tubes: CFD comparison of catalyst particles. Chem Eng Sci 2008; 63: 2219–2224. CrossrefGoogle Scholar

Dixon AG, Taskin ME, Nijemeisland M, Stitt EH. CFD method to couple three-dimensional transport and reaction inside catalyst particles to the fixed bed flow field. Ind Eng Chem Res 2010; 49: 9012–9025. CrossrefGoogle Scholar

Dixon AG, Taskin ME, Nijemeisland M, Stitt EH. Systematic mesh development for 3D CFD simulation of fixed beds: single sphere study. Comp Chem Eng 2011; 35: 1171–1185. CrossrefGoogle Scholar

Dixon AG, Boudreau J, Rocheleau A, Troupel A, Taskin ME, Nijemeisland M, Stitt EH. Flow, transport, and reaction interactions in shaped cylindrical particles for steam methane reforming. Ind Eng Chem Res 2012a; 51: 15839–15854. CrossrefGoogle Scholar

Dixon AG, Walls G, Stanness H, Nijemeisland M, Stitt EH. Experimental validation of high reynolds number CFD simulations of heat transfer in a pilot-scale fixed bed tube. Chem Eng J 2012b; 200-02: 344–356. Google Scholar

Dixon AG, Gurnon AK, Nijemeisland M, Stitt EH. CFD testing of the pointwise use of the Zehner-Schlünder formulas for fixed-bed stagnant thermal conductivity. Int Commun Heat Mass 2013a; 42: 1–4. CrossrefGoogle Scholar

Dixon AG, Nijemeisland M, Stitt EH. Systematic mesh development for 3D CFD simulation of fixed beds: contact points study. Comp Chem Eng 2013b; 48: 135–153. CrossrefGoogle Scholar

Dong Y, Sosna B, Korup O, Rosowski F, Horn R. Investigation of radial heat transfer in a fixed-bed reactor: CFD simulations and profile measurements. Chem Eng J 2017; 317: 204–214. CrossrefGoogle Scholar

Dybbs A, Edwards R. A new look at porous media fluid mechanics – darcy to turbulent. In: Bear J, Corapcioglu M, editors. Fundamentals of transport phenomena in porous media. volume 82 of *NATO ASI Series*. Dordrecht: Springer Netherlands, 1984: 199–256. Google Scholar

Eigenberger G. Handbook of heterogeneous catalysis, chapter 10.1 Catalytic Fixed-Bed Reactors. Berlin: Wiley-VCH Verlag GmbH & Co. KGaA, 2008. Google Scholar

Eisfeld B, Schnitzlein K. The influence of confining walls on the pressure drop in packed beds. Chem Eng Sci 2001; 56: 4321–4329. CrossrefGoogle Scholar

Eppinger T, Seidler K, Kraume M. DEM-CFD simulations of fixed bed reactors with small tube to particle diameter ratios. Chem Eng J 2011; 166: 324–331. CrossrefGoogle Scholar

Eppinger T, Jurtz N, Aglave R. Automated workflow for spatially resolved packed bed reactors with spherical and non-spherical particles. In 10^{th} International Conference on CFD in Oil & Gas, Metallurgical and Process Industries, pp. 1–10. SINTEF, Trondheim, Norway, 2014a. Google Scholar

Eppinger T, Wehinger G, Kraume M. Parameter optimization for the oxidative coupling of methane in a fixed bed reactor by combination of response surface methodology and computational fluid dynamics. Chem Eng Res Des 2014b; 92: 1693–1703. CrossrefGoogle Scholar

Eppinger T, Wehinger GD, Jurtz N, Aglave R, Kraume M. A numerical optimization study on the catalytic dry reforming of methane in a spatially resolved fixed-bed reactor. *Chemical Engineering Research and Design* 115, Part B:374–381. 10th European Congress of Chemical Engineering, 2016. CrossrefGoogle Scholar

Ergun S. Fluid flow through packed columns. Chem Eng Prog 1952; 48: 89–94. Google Scholar

Ertl G. Dynamics of reactions at surfaces. In: Gates BC, Knözinger H, editors. Impact of Surface Science on Catalysis, volume 45 of *Advances in Catalysis*. Amsterdam: Academic Press, 2000: 1–69. Google Scholar

Esterl S, Debus K, Nirschl H, Delgado A. Three dimensional calculations of the flow through packed beds. In: Papailiou KD, editor. Fluid dynamics and process automation. Eur Comput Fluid Dyn Conf volume 4, Berlin: Wiley, 1998: 692–696. Google Scholar

Feng Y, Han K, Owen D. A generic contact detection framework for cylindrical particles in discrete element modelling. Comput Methods Appl Mech Eng 2017; 315: 632–651. CrossrefGoogle Scholar

Fernández-Ramos A, Miller JA, Klippenstein SJ, Truhlar DG. Modeling the kinetics of bimolecular reactions. Chem Rev 2006; 106: 4518–4584. PubMedCrossrefGoogle Scholar

Ferng YM, Lin K-Y. Investigating effects of BCC and FCC arrangements on flow and heat transfer characteristics in pebbles through CFD methodology. Nuclear Eng Design 2013; 258: 66–75. CrossrefGoogle Scholar

Ferziger JH, Peric M. Computational methods for fluid dynamics. Berlin: Springer Science & Business Media, 1999. Google Scholar

Fishtik I, Callaghan CA, Datta R. Reaction route graphs. i. theory and algorithm. J Phys Chem B 2004; 108: 5671–5682. CrossrefGoogle Scholar

Foumeny E, Roshani S. Mean voidage of packed beds of cylindrical particles. Chem Eng Sci 1991; 46: 2363–2364. CrossrefGoogle Scholar

Freund H, Zeiser T, Huber F, Klemm E, Brenner G, Durst F, Emig G. Numerical simulations of single phase reacting flows in randomly packed fixed-bed reactors and experimental validation. Chem Eng Sci 2003; 58: 903–910. CrossrefGoogle Scholar

Freund H, Bauer J, Zeiser T, Emig G. Detailed simulation of transport processes in fixed-beds. Ind Eng Chem Res 2005; 44: 6423–6434. CrossrefGoogle Scholar

Gallei EF, Hesse M, Schwab E. Development of Industrial Catalysts, chapter 2.1. In: Ertl G, Knötziger H, Schuth F, Weitkamp J, editors. Handbook of Heterogeneous Catalysis. Berlin: Wiley-VCH Verlag GmbH & Co. KGaA, 2008. Google Scholar

Giese M, Rottschafer K, Vortmeyer D. Measured and modeled superficial flow profiles in packed beds with liquid flow. AIChE J 1998; 44: 484–490. CrossrefGoogle Scholar

Goldin GM, Ren Z, Zahirovic S. A cell agglomeration algorithm for accelerating detailed chemistry in CFD. Combus Theor Modell 2009; 13: 721–739. CrossrefGoogle Scholar

Goodwin DG, Moffat HK, Speth RL. Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. http://www.cantera.org. Version 2.2.1, 2016.

Guardo A, Coussirat M, Larrayoz MA, Recasens F, Egusquiza E. CFD flow and heat transfer in nonregular packings for fixed bed equipment design. Ind Eng Chem Res 2004; 43: 7049–7056. CrossrefGoogle Scholar

Guardo A, Coussirat M, Larrayoz M, Recasens F, Egusquiza E. Influence of the turbulence model in CFD modeling of wall-to-fluid heat transfer in packed beds. Chem Eng Sci 2005; 60: 1733–1742. CrossrefGoogle Scholar

Guardo A, Coussirat M, Recasens F, Larrayoz M, Escaler X. CFD studies on particle-to-fluid mass and heat transfer in packed beds: free convection effects in supercritical fluids. Chem Eng Sci 62: 5503–5511. 19th International Symposium on Chemical Reaction Engineering – From Science to Innovative Engineering ISCRE-19, 2007. Google Scholar

Hayes R, Liu B, Moxom R, Votsmeier M. The effect of washcoat geometry on mass transfer in monolith reactors. Chem Eng Sci 2004; 59: 3169–3181. CrossrefGoogle Scholar

He K, Androulakis IP, Ierapetritou MG. On-the-fly reduction of kinetic mechanisms using element flux analysis. Chem Eng Sci 2010; 65: 1173–1184. CrossrefGoogle Scholar

Hettel M, Diehm C, Bonart H, Deutschmann O. Numerical simulation of a structured catalytic methane reformer by DUO: The new computational interface for OpenFOAM^{®} and DETCHEM™. Catalysis Today, 2015; 258(Part 2): 230–240. CrossrefGoogle Scholar

Hoang D, Chan S, Ding O. Kinetic and modelling study of methane steam reforming over sulfide nickel catalyst on a gamma alumina support. Chem Eng J 2005; 112: 1–11. CrossrefGoogle Scholar

Horn R, Korup O, Geske M, Zavyalova U, Oprea I, Schlögl R. Reactor for in situ measurements of spatially resolved kinetic data in heterogeneous catalysis. Rev Sci Instrum 2010; 81: 064102. PubMedCrossrefGoogle Scholar

Hosseini SM, Kholghi M, Vagharfard H. Numerical and meta-modeling of nitrate transport reduced by nano-Fe/Cu particles in packed sand column. Transport in Porous Media 2012; 94: 149–174. CrossrefGoogle Scholar

Jacobsen CJ, Dahl S, Boisen A, Clausen BS, Topsœ H, Logadottir A, Nørskov JK. Optimal catalyst curves: connecting density functional theory calculations with industrial reactor design and catalyst selection. J Catal 2002; 205: 382–387. CrossrefGoogle Scholar

Karadeniz H, Karakaya C, Tischer S, Deutschmann O. Numerical modeling of stagnation-flows on porous catalytic surfaces: CO oxidation on Rh/Al_{2}O_{3}. Chem Eng Sci 2013; 104: 899–907. CrossrefGoogle Scholar

Karadeniz H, Karakaya C, Tischer S, Deutschmann O. Mass transfer effects in stagnation flows on a porous catalyst: water-gas-shift reaction over Rh/Al_{2}O_{3}. Zeitschrift für Physikalische Chemie 2015; 229: 709–737. Google Scholar

Karakaya C, Deutschmann O. Kinetics of hydrogen oxidation on Rh/Al_{2}O_{3} catalysts studied in a stagnation-flow reactor. Chem Eng Sci 2013; 89: 171–184. CrossrefGoogle Scholar

Karst F, Maestri M, Freund H, Sundmacher K. Reduction of microkinetic reaction models for reactor optimization exemplified for hydrogen production from methane. Chem Eng J 2015; 281: 981–994. CrossrefGoogle Scholar

Karthik GM, Buwa VV. Effect of particle shape on fluid flow and heat transfer for methane steam reforming reactions in a packed bed. AIChE J 2017; 63: 366–377. CrossrefGoogle Scholar

Kee R, Rupley F, Miller J. The Chemkin thermodynamic data base; Sandia Report. SAND87-8215B, Livermore, CA, 1987. Google Scholar

Kee RJ, Colin ME, Glarborg P. Chemically reacting flow, theory and pratice. Hoboken, NJ: Wiley, 2003. Google Scholar

Keil FJ. Modeling reactions in porous media. In: Modeling and simulation of heterogeneous catalytic reactions. Berlin: Wiley-VCH Verlag GmbH & Co. KGaA, 2011: 149–186. Google Scholar

Kerkhof PJAM, Geboers MAM. Toward a unified theory of isotropic molecular transport phenomena. AIChE J 2005; 51: 79–121. CrossrefGoogle Scholar

Klingenberger M, Hirsch O, Votsmeier M. Efficient interpolation of precomputed kinetic data employing reduced multivariate hermite splines. Comput Chem Eng 2017; 98: 21–30. CrossrefGoogle Scholar

Kloosterman J, Ougouag A. Comparison and extension of dancoff factors for pebble-bed reactors. Nuclear Sci Eng 2007; 157: 16–29. CrossrefGoogle Scholar

Kloss C, Goniva C, Hager A, Amberger S, Pirker S. Models, algorithms and validation for opensource DEM and CFD-DEM. Prog Comput Fluid Dynamics 2012; 12: 140–152. CrossrefGoogle Scholar

Kodam M, Bharadwaj R, Curtis J, Hancock B, Wassgren C. Cylindrical object contact detection for use in discrete element method simulations. part i – contact detection algorithms. Chem Eng Sci 2010a; 65: 5852–5862. CrossrefGoogle Scholar

Kodam M, Bharadwaj R, Curtis J, Hancock B, Wassgren C. Cylindrical object contact detection for use in discrete element method simulations, part ii – experimental validation. Chem Eng Sci 2010b; 65: 5863–5871. CrossrefGoogle Scholar

Krischke AM. Modellierung und experimentelle untersuchung von Transportprozessen in durchströmten Schüttungen (in German). Fortschritt-Berichte VDI-Verl., 2001. Google Scholar

Kumar A, Mazumder S. Adaptation and application of the in situ adaptive tabulation (ISAT) procedure to reacting flow calculations with complex surface chemistry. Comput Chem Eng 2011; 35: 1317–1327. CrossrefGoogle Scholar

Kunz L, Maier L, Tischer S, Deutschmann O. Modeling the rate of heterogeneous reactions, chapter 4. In: Deutschmann O, editor. Modeling and simulation of heterogeneous catalysic reactions: from the molecular process to the technical system. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. Google Scholar

Kuroki M, Ookawara S, Street D, Ogawa K. High-fidelity CFD modeling of particle-to-fluid heat transfer in packed bed reactors. In Proceedings of European Congress of Chemical Engineering (ECCE-6), Copenhagen, 16–20 September 2007, 2007. Google Scholar

Kuroki M, Ookawara S, Ogawa K. A high-fidelity CFD model of methane steam reforming in a packed bed reactor. J Chem Eng Jpn 2009; 42: s73–s78. CrossrefGoogle Scholar

Lee J-J, Yoon S-J, Park G-C, Lee W-J. Turbulence-induced heat transfer in PBMR core using LES and RANS. J Nucl Sci Tec 2007; 44: 985–996. CrossrefGoogle Scholar

Lekhal A, Glasser BJ, Khinast JG. Impact of drying on the catalyst profile in supported impregnation catalysts. Chem Eng Sci 2001; 56: 4473–4487. CrossrefGoogle Scholar

Li X, Cai J, Xin F, Huai X, Guo J. Lattice Boltzmann simulation of endothermal catalytic reaction in catalyst porous media. Appl Thermal Eng 2013; 50: 1194–1200. CrossrefGoogle Scholar

Maas U, Pope S. Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust Flame 1992; 88: 239–264. CrossrefGoogle Scholar

Maestri M, Vlachos DG, Beretta A, Groppi G, Tronconi E. Steam and dry reforming of methane on Rh: microkinetic analysis and hierarchy of kinetic models. J Catal 2008; 259: 211–222. CrossrefGoogle Scholar

Maestri M, Cuoci A. 2013a. Catalytic FOAM. www.catalyticfoam.polimi.it. Accessed on May 11, 2017.

Maestri M, Cuoci A. Coupling CFD with detailed microkinetic modeling in heterogeneous catalysis. Chem Eng Sci 2013b; 96: 106–117. CrossrefGoogle Scholar

Maffei T, Gentile G, Rebughini S, Bracconi M, Manelli F, Lipp S, Cuoci A, Maestri M. A multiregion operator-splitting CFD approach for coupling microkinetic modeling with internal porous transport in heterogeneous catalytic reactors. Chem Eng J 2016; 283: 1392–1404. CrossrefGoogle Scholar

Magnico P. Pore-scale simulations of unsteady flow and heat transfer in tubular fixed beds. AIChE J 2009; 55: 849–867. CrossrefGoogle Scholar

Majumder D, Broadbelt LJ. A multiscale scheme for modeling catalytic flow reactors. AIChE J 2006; 52: 4214–4228. CrossrefGoogle Scholar

Mallard W, Westley F, Herron J, Hampson R, Frizzell D. NIST chemical kinetics database, volume 126. Gaithersburg: National Institute of Standards and Technology, 1992. Google Scholar

Manjhi N, Verma N, Salem K, Mewes D. Simulation of 3d velocity and concentration profiles in a packed bed adsorber by lattice boltzmann methods. Chem Eng Sci 2006; 61: 7754–7765. CrossrefGoogle Scholar

Marek M. Numerical generation of a fixed bed structure. Chem Proc Eng 2013; 34: 347–359. CrossrefGoogle Scholar

Martin H, Nilles M. Radiale Wärmeleitung in durchströmten Schüttungsrohren. Chem Ing Tec 1993; 65: 1468–1477. CrossrefGoogle Scholar

Mason E, Malinauskas A. Gas transport in porous media: the dusty-gas model. Number Bd. 17 in Chemical engineering monographs. Amsterdam: Elsevier, 1983. Google Scholar

Matera S, Reuter K. First-principles approach to heat and mass transfer effects in model catalyst studies. Catal Lett 2009; 133: 156–159. CrossrefGoogle Scholar

Matera S, Maestri M, Cuoci A, Reuter K. Predictive-quality surface reaction chemistry in real reactor models: Integrating first-principles kinetic Monte Carlo simulations into computational fluid dynamics. ACS Catal 2014; 4: 4081–4092. CrossrefGoogle Scholar

Mazumder S. Adaptation of the in situ adaptive tabulation (ISAT) procedure for efficient computation of surface reactions. Comput Chem Eng 2005; 30: 115–124. CrossrefGoogle Scholar

McBride BJ, Gordon S. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications II. User’s Manual and Program Description. National Aeronautics and Space Administration, 1971. Google Scholar

Mehta D, Hawley MC. Wall effect in packed columns. Ind Eng Chem Proc Design Dev 1969; 8: 280–282. CrossrefGoogle Scholar

Mhadeshwar A, Vlachos D. Is the water-gas shift reaction on Pt simple?: computer-aided microkinetic model reduction, lumped rate expression, and rate-determining step. Catal Today 2005; 105: 162–172. Google Scholar

Mhadeshwar AB, Wang H, Vlachos DG. Thermodynamic consistency in microkinetic development of surface reaction mechanisms. J Phys Chem B 2003; 107: 12721–12733. CrossrefGoogle Scholar

Mitsos A, Oxberry G, Barton P, Green W. Optimal automatic reaction and species elimination in kinetic mechanisms. Combus Flame 2008; 155: 118–132. CrossrefGoogle Scholar

Mladenov N, Koop J, Tischer S, Deutschmann O. Modeling of transport and chemistry in channel flows of automotive catalytic converters. Chem Eng Sci 2010; 65: 812–826. CrossrefGoogle Scholar

Motlagh AA, Hashemabadi S. 3d cfd simulation and experimental validation of particle-to-fluid heat transfer in a randomly packed bed of cylindrical particles. Int Commun Heat Mass 2008; 35: 1183–1189. CrossrefGoogle Scholar

Mousazadeh F, van Den Akker H, Mudde RF. Direct numerical simulation of an exothermic gas-phase reaction in a packed bed with random particle distribution. Chem Eng Sci 2013; 100: 259–265. CrossrefGoogle Scholar

Mrafko P. Homogeneous and isotropic hard sphere model of amorphous metals. Le Journal de Physique Colloques 1980; 41: C8-222–C8-325. Google Scholar

Mueller GE. Radial void fraction distributions in randomly packed fixed beds of uniformly sized spheres in cylindrical containers. Powder Technol 1992; 72: 269–275. CrossrefGoogle Scholar

Niegodajew P, Marek M. Analysis of orientation distribution in numerically generated random packings of raschig rings in a cylindrical container. Powder Technol 2016; 297: 193–201. CrossrefGoogle Scholar

Nijemeisland M, Dixon AG. CFD study of fluid flow and wall heat transfer in a fixed bed of spheres. AIChE J 2004; 50: 906–921. CrossrefGoogle Scholar

Ookawara S, Kuroki M, Street D, Ogawa K. High-fidelity DEM-CFD modeling of packed bed reactors for process intensification. Proceedings of European Congress of Chemical Engineering (ECCE-6), Copenhagen, 2007. Google Scholar

Partopour B, Dixon AG. Computationally efficient incorporation of microkinetics into resolved-particle CFD simulations of fixed-bed reactors. Comput Chem Eng 2016a; 88: 126–134. CrossrefGoogle Scholar

Partopour B, Dixon AG. Reduced microkinetics model for computational fluid dynamics (CFD) simulation of the fixed-bed partial oxidation of ethylene. Ind Eng Chem Res 2016b; 55: 7296–7306. CrossrefGoogle Scholar

Partopour B, Dixon AG. Resolved-particle fixed bed CFD with microkinetics for ethylene oxidation. AIChE J 2017; 63: 87–94. CrossrefGoogle Scholar

Peng W, Xu M, Huai X, Liu Z. 3D CFD simulations of acetone hydrogenation in randomly packed beds for an isopropanol-acetone-hydrogen chemical heat pump. Appl Thermal Eng 2016; 94: 238–248. CrossrefGoogle Scholar

Peric M. Flow simulation using control volumes of arbitrary polyhedral shape. ERCOFTAC Bulletin 62; 2004. Google Scholar

Pope S. Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combus Theor Modell 1997; 1: 41–63. CrossrefGoogle Scholar

Prasad V, Karim AM, Arya A, Vlachos DG. Assessment of overall rate expressions and multiscale, microkinetic model uniqueness via experimental data injection: ammonia decomposition on Ru/*γ*-Al_{2}O_{3} for hydrogen production. Ind Eng Chem Res 2009; 48: 5255–5265. CrossrefGoogle Scholar

Ranade VV. Computational flow modeling for chemical reactor engineering. New York: Academic Press, 2002. Google Scholar

Rebughini S, Cuoci A, Maestri M. Handling contact points in reactive cfd simulations of heterogeneous catalytic fixed bed reactors. Chem Eng Sci 2016; 141: 240–249. CrossrefGoogle Scholar

Rebughini S, Cuoci A, Dixon AG, Maestri M. Cell agglomeration algorithm for coupling microkinetic modeling and steady-state CFD simulations of catalytic reactors. Comput Chem Eng 2017; 97: 175–182. CrossrefGoogle Scholar

Reichelt W. Zur Berechnung des Druckverlustes einphasig durchströmter Kugel- und Zylinderschüttungen. Chem Ing Tec 1972; 44: 1068–1071. CrossrefGoogle Scholar

Richter A, Nikrityuk PA, Meyer B. Three-dimensional calculation of a chemically reacting porous particle moving in a hot O_{2}/CO_{2} atmosphere. Int J Heat Mass Transfer 2015; 83: 244–258. CrossrefGoogle Scholar

Roshani S. Elucidation of local and global structural properties of packed bed configurations. PhD thesis, University of Leeds, 1990. Google Scholar

Sabbe MK, Reyniers M-F, Reuter K. First-principles kinetic modeling in heterogeneous catalysis: an industrial perspective on best-practice, gaps and needs. Catal Sci Technol 2012; 2: 2010–2024. CrossrefGoogle Scholar

Safronov D, Kestel M, Nikrityuk P, Meyer B. Particle resolved simulations of carbon oxidation in a laminar flow. Can J Chem Eng 2014; 92: 1669–1686. CrossrefGoogle Scholar

Sahu PK, Schulze S, Nikrityuk P. 2-D approximation of a structured packed bed column. Can J Chem Eng 2016; 94: 1599–1611. CrossrefGoogle Scholar

Salciccioli M, Stamatakis M, Caratzoulas S, Vlachos D. A review of multiscale modeling of metal-catalyzed reactions: mechanism development for complexity and emergent behavior. Chem Eng Sci 2011; 66: 4319–4355. CrossrefGoogle Scholar

Schaefer C, Jansen APJ. Coupling of kinetic Monte Carlo simulations of surface reactions to transport in a fluid for heterogeneous catalytic reactor modeling. J Chem Phys 2013; 138: 054102. CrossrefGoogle Scholar

Scopus 2017. Abstract and citation database. www.scopus.com. Accessed on May 11, 2017.

Shams A, Roelofs F, Komen E, Baglietto E. Large eddy simulation of a nuclear pebble bed configuration. Nuc Eng Des 2013a; 261: 10–19. CrossrefGoogle Scholar

Shams A, Roelofs F, Komen E, Baglietto E. Quasi-direct numerical simulation of a pebble bed configuration. Part I: flow (velocity) field analysis. Nuc Eng Des 2013b; 263: 473–489. CrossrefGoogle Scholar

Shams A, Roelofs F, Komen E, Baglietto E. Large eddy simulation of a randomly stacked nuclear pebble bed. Comp Fluids 2014; 96: 302–321. CrossrefGoogle Scholar

Shams A, Roelofs F, Komen E, Baglietto E. Numerical simulation of nuclear pebble bed configurations. Nuclear Eng Design 2015; 290: 51–64. CrossrefGoogle Scholar

Slavin AJ, Londry FA, Harrison J. A new model for the effective thermal conductivity of packed beds of solid spheroids: alumina in helium between 100 and 500 c. Int J Heat Mass Transfer 2000; 43: 2059–2073. CrossrefGoogle Scholar

Slavin A, Arcas V, Greenhalgh C, Irvine E, Marshall D. Theoretical model for the thermal conductivity of a packed bed of solid spheroids in the presence of a static gas, with no adjustable parameters except at low pressure and temperature. Int J Heat Mass Transfer 2002; 45: 4151–4161. CrossrefGoogle Scholar

Succi S. The lattice Boltzmann equation: for fluid dynamics and beyond. London: Oxford University Press, 2001. Google Scholar

Taskin ME, Troupel A, Dixon AG, Nijemeisland M, Stitt EH. Flow, transport, and reaction interactions for cylindrical particles with strongly endothermic reactions. Ind Eng Chem Res 2010; 49: 9026–9037. CrossrefGoogle Scholar

Theuerkauf J, Witt P, Schwesig D. Analysis of particle porosity distribution in fixed beds using the discrete element method. Powder Technol 2006; 165: 92–99. CrossrefGoogle Scholar

Touitou J, Aiouache F, Burch R, Douglas R, Hardacre C, Morgan K, Sá J, Stewart C, Stewart J, Goguet A. Evaluation of an in situ spatial resolution instrument for fixed beds through the assessment of the invasiveness of probes and a comparison with a micro-kinetic model. J Catal 2014; 319: 239–246. CrossrefGoogle Scholar

Veldsink J, van Damme R, Versteeg G, van Swaaij W. The use of the dusty-gas model for the description of mass transport with chemical reaction in porous media. Chem Eng J BioChem Eng J 1995; 57: 115–125. CrossrefGoogle Scholar

Votsmeier M. Efficient implementation of detailed surface chemistry into reactor models using mapped rate data. Chem Eng Sci 2009; 64: 1384–1389. CrossrefGoogle Scholar

Votsmeier M, Scheuer A, Drochner A, Vogel H, Gieshoff J. Simulation of automotive NH3 oxidation catalysts based on pre-computed rate data from mechanistic surface kinetics. Catal Today 2010; 151: 271–277. CrossrefGoogle Scholar

Wang Z, Afacan A, Nandakumar K, Chuang K. Porosity distribution in random packed columns by gamma ray tomography. Chem Eng Proc 2001; 40: 209–219. CrossrefGoogle Scholar

Wehinger GD. Particle-resolved CFD simulations of catalytic flow reactors. PhD thesis, Technische Universität Berlin, 2016. Google Scholar

Wehinger GD, Kraume M. CFD als Designtool für Festbettreaktoren mit kleinem Rohr-zu-Pelletdurchmesser-Verhältnis: Heute oder in Zukunft? Chem Ing Tech 2017; 89: 447–453. CrossrefGoogle Scholar

Wehinger GD, Eppinger T, Kraume M. Detailed numerical simulations of catalytic fixed-bed reactors: Heterogeneous dry reforming of methane. Chem Eng Sci 2015a; 122: 197–209. CrossrefGoogle Scholar

Wehinger GD, Eppinger T, Kraume M. Evaluating catalytic fixed-bed reactors for dry reforming of methane with detailed CFD. Chem Ing Tech 2015b; 87: 734–745. CrossrefGoogle Scholar

Wehinger GD, Heitmann H, Kraume M. An artificial structure modeler for 3D CFD simulations of catalytic foams. Chem Eng J 2016a; 284: 543–556. CrossrefGoogle Scholar

Wehinger GD, Kraume M, Berg V, Korup O, Mette K, Schlögl R, Behrens M, Horn R. Investigating dry reforming of methane with spatial reactor profiles and particle-resolved CFD simulations. AIChE J 2016b; 62: 4436–4452. CrossrefGoogle Scholar

Wehinger GD, Fütterer C, Kraume M. Contact modifications for CFD simulations of fixed-bed reactors: cylindrical particles. Ind Eng Chem Res 2017a; 56: 87–99. CrossrefGoogle Scholar

Wehinger GD, Klippel F, Kraume M. Modeling pore processes for particle-resolved CFD simulations of catalytic fixed-bed reactors. Comput Chem Eng 2017b; 101: 11–22. CrossrefGoogle Scholar

Wilcox D. Turbulence modeling for CFD. Number Bd. 1 in turbulence modeling for CFD. Cambridge: DCW Industries, 2006. Google Scholar

Xu J, Froment GF. Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics. AIChE J 1989; 35: 88–96. CrossrefGoogle Scholar

Xu C, Jia X, Williams RA, Stitt EH, Nijemeisland M, El-bachir S, Sederman AJ, Gladden LF. Property predictions for packed columns using random and distinct element digital packing algorithms. In Fifth World Congress on Particle Technology, Orlando, FL, 2006. Google Scholar

Yang J, Wang Q, Zeng M, Nakayama A. Computational study of forced convective heat transfer in structured packed beds with spherical or ellipsoidal particles. Chem Eng Sci 2010; 65: 726–738. CrossrefGoogle Scholar

Yang X, Scheibe TD, Richmond MC, Perkins WA, Vogt SJ, Codd SL, Seymour JD, McKinley MI. Direct numerical simulation of pore-scale flow in a bead pack: comparison with magnetic resonance imaging observations. Adv Water Resour 2013; 54: 228–241. CrossrefGoogle Scholar

Zeiser T, Lammers P, Klemm E, Li YW, Bernsdorf J, Brenner G. CFD-calculation of flow, dispersion and reaction in a catalyst filled tube by the lattice boltzmann method. Chem Eng Sci 2001; 56: 1697–1704. CrossrefGoogle Scholar

Zeiser T, Steven M, Freund H, Lammers P, Brenner G, Durst F, Bernsdorf J. Analysis of the flow field and pressure drop in fixed-bed reactors with the help of lattice Boltzmann simulations. Philos Trans R Soc London Series A 2002; 360: 507–520. CrossrefGoogle Scholar

Zhou X, Duan Y, Huai X, Li X. 3D CFD modeling of acetone hydrogenation in fixed bed reactor with spherical particles. Particuology 2013; 11: 715–722. CrossrefGoogle Scholar

Zhu H, Zhou Z, Yang R, Yu A. Discrete particle simulation of particulate systems: theoretical developments. Chem Eng Sci 2007; 62: 3378–3396. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.