Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in Chemical Engineering

Editor-in-Chief: Luss, Dan / Brauner, Neima

Editorial Board: Agar, David / Davis, Mark E. / Edgar, Thomas F. / Giorno, Lidietta / Joshi, J. B. / Khinast, Johannes / Kost, Joseph / Leal, L. Gary / Li, Jinghai / Mills, Patrick / Morbidelli, Massimo / Ng, Ka Ming / Schouten, Jaap C. / Seinfeld, John / Stitt, E. Hugh / Tronconi, Enrico / Vayenas, Constantinos G. / Zagoruiko, Andrey

6 Issues per year


IMPACT FACTOR 2017: 4.490

CiteScore 2017: 4.17

SCImago Journal Rank (SJR) 2017: 1.024
Source Normalized Impact per Paper (SNIP) 2017: 1.871

Online
ISSN
2191-0235
See all formats and pricing
More options …
Volume 34, Issue 5

Issues

Heterogeneous catalysts for gas-phase conversion of ethylene to higher olefins

Mohammad Ghashghaee
  • Corresponding author
  • Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, P.O. Box 14975-112, Tehran, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-09-13 | DOI: https://doi.org/10.1515/revce-2017-0003

Abstract

The reduced availability of propylene and C4 products from steam crackers continues to provoke on-purpose technologies for light olefins such that almost 30% of propylene in 2025 is predicted to be supplied from unconventional sources. Furthermore, the recent discoveries of natural gas reservoirs have urged interest in the conversion of surplus alkanes and alkenes, especially ethane and ethylene. The direct conversion of ethylene to propylene or a combination of value-added chemicals, including butylenes and oligomers in the range of gasoline and diesel fuel, provides the capability of responding to the fluctuations in the balance between supply and demand of the main petrochemicals. A comprehensive review of heterogeneous catalysts for the gas-phase conversion pathways is presented here in terms of catalytic performances (ethylene conversion and product selectivities), productivities, lifetimes, active sites, physicochemical properties, mechanisms, influence of operating conditions, deactivation and some unresolved/less-advanced aspects of the field. The addressed catalysts cover both zeolitic materials and transition metals, such as tungsten, molybdenum, rhenium and nickel. Efforts in both experimental and theoretical studies are taken into account. Aside from the potential fields of progress, the review reveals very promising performances for the emerging technologies to produce propylene, a mixture of propylene and butenes, or a liquid fuel from ethylene.

Keywords: ethylene; heterogeneous catalysts; propylene; transition metals; zeolites

References

  • Abbot J, Wojciechowski BW. Kinetics of reactions of C8 olefins on HY zeolite. J Catal 1987; 108: 346–355.CrossrefGoogle Scholar

  • Agapie T. Selective ethylene oligomerization: recent advances in chromium catalysis and mechanistic investigations. Coordin Chem Rev 2011; 255: 861–880.CrossrefGoogle Scholar

  • Aguayo AT, Gayubo AG, Vivanco R, Olazar M, Bilbao J. Role of acidity and microporous structure in alternative catalysts for the transformation of methanol into olefins. Appl Catal A-Gen 2005; 283: 197–207.CrossrefGoogle Scholar

  • Al-Jarallah AM, Anabtawi JA, Siddiqui MAB, Aitani AM, Al-Sa’doun AW. Ethylene dimerization and oligomerization to butene-1 and linear α-olefins. Catal Today 1992; 14: 1–121.CrossrefGoogle Scholar

  • Alvarado Perea L. Direct conversion of ethene to propene on Ni-alumino-mesostructured catalysts: synthesis, characterization and catalytic testing. Magdeburg, Germany: Otto-von-Guericke Universität, PhD., 2014.Google Scholar

  • Alvarado Perea L, Wolff T, Veit P, Hilfert L, Edelmann FT, Hamel C, Seidel-Morgenstern A. Alumino-mesostructured Ni catalysts for the direct conversion of ethene to propene. J Catal 2013; 305: 154–168.CrossrefGoogle Scholar

  • Alvarado Perea L, Wolff T, Hamel C, Seidel-Morgenstern A. Direct conversion of ethene to propene on Ni/AlMCM-41 – study of the reaction mechanism. Weimar, Germany: Jahrestreffen Deutscher Katalytiker, 2014.Google Scholar

  • Amakawa K. Active site for propene metathesis in silica-supported molybdenum oxide catalysts. Berlin, Germany: Technischen Universität Berlin, PhD., 2013.Google Scholar

  • Amakawa K, Wrabetz S, Kröhnert J, Tzolova-Müller G, Schlögl R, Trunschke A. In situ generation of active sites in olefin metathesis. J Am Chem Soc 2012; 134: 11462–11473.CrossrefPubMedGoogle Scholar

  • Amakawa K, Sun L, Guo C, Hävecker M, Kube P, Wachs IE, Lwin S, Frenkel AI, Patlolla A, Hermann K, Schlögl R, Trunschke A. How strain affects the reactivity of surface metal oxide catalysts. Angew Chem Int Ed 2013; 52: 13553–13557.CrossrefGoogle Scholar

  • Amakawa K, Kröhnert J, Wrabetz S, Frank B, Hemmann F, Jäger C, Schlögl R, Trunschke A. Active sites in olefin metathesis over supported molybdena catalysts. ChemCatChem 2015; 7: 4059–4065.CrossrefGoogle Scholar

  • Amin NAS, Anggoro DD. Dealuminated ZSM-5 zeolite catalyst for ethylene oligomerization to liquid fuels. J Nat Gas Chem 2002; 11: 79–86.Google Scholar

  • Andrei RD, Mureseanu M, Popa MI, Cammarano C, Fajula F, Hulea V. Ni-exchanged AlSBA-15 mesoporous materials as outstanding catalysts for ethylene oligomerization. Eur Phys J Special Topics 2015a; 224: 1831–1841.CrossrefGoogle Scholar

  • Andrei RD, Popa MI, Fajula F, Cammarano C, Khudhair AA, Bouchmella K, Mutin PH, Hulea V. Ethylene to propylene by one-pot catalytic cascade reactions. ACS Catal 2015b; 5: 2774–2777.CrossrefGoogle Scholar

  • Andrei RD, Popa MI, Fajula F, Hulea V. Heterogeneous oligomerization of ethylene over highly active and stable Ni-AlSBA-15 mesoporous catalysts. J Catal 2015c; 323: 76–84.CrossrefGoogle Scholar

  • Andrei RD, Popa MI, Cammarano C, Hulea V. Nickel and molybdenum containing mesoporous catalysts for ethylene oligomerization and metathesis. New J Chem 2016; 40: 4146–4152.CrossrefGoogle Scholar

  • Andreini A, Xiaoding X, Mol JC. Activity of Re2O7/SiO2·Al2O3 catalysts for propene metathesis and the influence of alkyltin promotors. Appl Catal 1986; 27: 31–40.CrossrefGoogle Scholar

  • Arganbright RP. USA Patent No. US3728415 A. US Patent, 1973.

  • Arlman EJ, Cossee P. Ziegler-Natta catalysis III. Stereospecific polymerization of propene with the catalyst system TiCl3-AlEt3. J Catal 1964; 3: 99–104.CrossrefGoogle Scholar

  • Asgharzadeh Shishavan R, Ghashghaee M, Karimzadeh R. Investigation of kinetics and cracked oil structural changes in thermal cracking of Iranian vacuum residues. Fuel Process Technol 2011; 92: 2226–2234.CrossrefGoogle Scholar

  • Azuma N, Kevan L. Electron spin resonance and electron spin echo modulation studies of Ni(I) in silicoaluminophosphate type 11: reducibility and location of nickel ions during various degrees of dehydration. J Phys Chem 1995; 99: 5083–5088.CrossrefGoogle Scholar

  • Baba T, Abe Y, Nomoto K, Inazu K, Echizen T, Ishikawa A, Murai K. Catalytic transformation of methane over in-loaded ZSM-5 zeolite in the presence of ethene. J Phys Chem B 2005; 109: 4263–4268.PubMedCrossrefGoogle Scholar

  • Balar M, Azizi Z, Ghashghaee M. Theoretical identification of structural heterogeneities of divalent nickel active sites in NiMCM-41 nanoporous catalysts. J Nanostruct Chem 2016; 6: 365–372.CrossrefGoogle Scholar

  • Balcar H, Čejka J. Mesoporous molecular sieves as advanced supports for olefin metathesis catalysts. Coordin Chem Rev 2013; 257: 3107–3124.CrossrefGoogle Scholar

  • Balcar H, Mishra D, Marceau E, Carrier X, Žilková N, Bastl Z. Molybdenum oxide catalysts for metathesis of higher 1-alkenes via supporting MoO2(acetylacetonate)2 and MoO2(glycolate)2 on SBA-15 mesoporous molecular sieves. Appl Catal A-Gen 2009; 359: 129–135.CrossrefGoogle Scholar

  • Banks RL. Catalytic olefin disproportionation catalysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 1972: pp. 39–69.Google Scholar

  • Banks RL, Bailey GC. Olefin Disproportionation. A new catalytic process. Ind Eng Chem Prod Res Dev 1964; 3: 170–173.CrossrefGoogle Scholar

  • Barnett KW, Glockner PW. USA Patent No. US3527839 A. US Patent, 1970.

  • Bartholomew CH. Mechanisms of catalyst deactivation. Appl Catal A-Gen 2001; 212: 17–60.CrossrefGoogle Scholar

  • Basrur AG, Patwardhan SR, Was SN. Propene metathesis over silica-supported tungsten oxide catalyst – catalyst induction mechanism. J Catal 1991; 127: 86–95.CrossrefGoogle Scholar

  • Basset J-M, Merle N, Stoffelbach F, Taoufik M, Thivolle-Cazat J. USA Patent No. US20100197482 A1. US Patent, 2010.

  • Bazan GC, Khosravi E, Schrock RR, Feast WJ, Gibson VC, O’Regan MB, Thomas JK, Davis WM. Living ring-opening metathesis polymerization of 2,3-difunctionalized norbornadienes by Mo(:CHBu-tert)(:NC6H3Pr-iso2-2,6)(OBu-tert)2. J Am Chem Soc 1990; 112: 8378–8387.CrossrefGoogle Scholar

  • Bazan GC, Oskam JH, Cho HN, Park LY, Schrock RR. Living ring-opening metathesis polymerization of 2,3-difunctionalized 7-oxanorbornenes and 7-oxanorbornadienes by Mo(CHCMe2R)(NC6H3-iso-Pr2-2,6)(O-tert-Bu)2 and Mo(CHCMe2R)(NC6H3-iso-Pr2-2,6)(OCMe2CF3)2. J Am Chem Soc 1991; 113: 6899–6907.CrossrefGoogle Scholar

  • Bernardi F, Bottoni A, Rossi I. A DFT Investigation of ethylene dimerization catalyzed by Ni complexes. J Am Chem Soc 1998; 120: 7770–7775.CrossrefGoogle Scholar

  • Bernardo CGPM, Gomes JANF. The Adsorption of acetylene and ethylene on transition metal surfaces. In: Lipscomb WN, Prigogine I, Maruani J, Wilson S, Ågren H, Avnir D, Cioslowski J, Daudel R, Gross EKU, Gunsteren WF, Hirao K, Hubač I, Levy MP, Malli GL, McWeeny R, Mezey PG, Nascimento MAC, Rychlewski J, Schwartz SD, Smeyers YG, Suhai S, Tapia O, Taylor PR, Woolley RG, editors. Theoretical aspects of heterogeneous catalysis. Dordrecht: Springer Netherlands, 2001a: 217–240.Google Scholar

  • Bernardo CGPM, Gomes JANF. The adsorption of ethylene on the (100) surfaces of platinum, palladium and nickel: a DFT study. J Mol Struct 2001b; 542: 263–271.CrossrefGoogle Scholar

  • Bessell S, Seddon D. The conversion of ethene and propene to higher hydrocarbons over ZSM-5. J Catal 1987; 105: 270–275.CrossrefGoogle Scholar

  • Bhasin MM. Is true ethane oxydehydrogenation feasible? Top Catal 2003; 23: 145–149.CrossrefGoogle Scholar

  • Bhasin MM, McCain JH, Vora BV, Imai T, Pujado PR. Dehydrogenation and oxydehydrogenation of paraffins to olefins. Appl Catal A-Gen 2001; 221: 397–419.CrossrefGoogle Scholar

  • Bhuiyan TI, Arudra P, Akhtar MN, Aitani AM, Abudawoud RH, Al-Yami MA, Al-Khattaf SS. Metathesis of 2-butene to propylene over W-mesoporous molecular sieves: A comparative study between tungsten containing MCM-41 and SBA-15. Appl Catal A-Gen 2013; 467: 224–234.CrossrefGoogle Scholar

  • Bonneviot L, Olivier D, Che M. Dimerization of olefins with nickel-surface complexes in X-type zeolite or on silica. J Mol Catal 1983; 21: 415–430.CrossrefGoogle Scholar

  • Bouhoute Y, Grekov D, Szeto KC, Merle N, De Mallmann A, Lefebvre F, Raffa G, Del Rosal I, Maron L, Gauvin RM, Delevoye L, Taoufik M. Accessing realistic models for the WO3-SiO2 industrial catalyst through the design of organometallic precursors. ACS Catal 2016; 6: 1–18.CrossrefGoogle Scholar

  • BPstats. BP statistical review of world energy June 2015: Natural Gas. 2015, Retrieved from http://www.bp.com/statisticalreview.

  • Bridges RS, Coleman ST. USA Patent No. US7550638 B2. US Patent, 2009.

  • Brogaard RY, Olsbye U. Ethene oligomerization in Ni-containing zeolites: theoretical discrimination of reaction mechanisms. ACS Catal 2016; 6: 1205–1214.CrossrefGoogle Scholar

  • Brückner A, Bentrup U, Zanthoff H, Maschmeyer D. The role of different Ni sites in supported nickel catalysts for butene dimerization under industry-like conditions. J Catal 2009; 266: 120–128.CrossrefGoogle Scholar

  • Buchanan JS, Santiesteban JG, Haag WO. Mechanistic considerations in acid-catalyzed cracking of olefins. J Catal 1996; 158: 279–287.CrossrefGoogle Scholar

  • Buluchevskii EA, Mikhailova MS, Lavreno AV. One-stage synthesis of propylene from ethylene using Pd-Re2O7/B2O3-Al2O3 catalyst. Chem Sustain Dev 2013; 21: 47–51.Google Scholar

  • Burattin P, Che M, Louis C. Molecular approach to the mechanism of deposition-precipitation of the Ni(II) phase on silica. J Phys Chem B 1998; 102: 2722–2732.CrossrefGoogle Scholar

  • Burnett RL, Hughes TR. Mechanism and poisoning of the molecular redistribution reaction of alkanes with a dual-functional catalyst system. J Catal 1973; 31: 55–64.CrossrefGoogle Scholar

  • Butler JR. USA Patent No. US20110077444 A1. US Patent, 2011.

  • Caeiro G, Carvalho RH, Wang X, Lemos MANDA, Lemos F, Guisnet M, Ribeiro FR. Activation of C2-C4 alkanes over acid and bifunctional zeolite catalysts. J Mol Catal A-Chem 2006; 255: 131–158.CrossrefGoogle Scholar

  • Cai T. Studies of a new alkene oligomerization catalyst derived from nickel sulfate. Catal Today 1999; 51: 153–160.CrossrefGoogle Scholar

  • Cai FX, Lepetit C, Kermarec M, Olivier D. Dimerization of ethylene into 1-butene over supported tailor-made nickel catalysts. J Mol Catal 1987; 43: 93–116.CrossrefGoogle Scholar

  • Cai T, Cao D, Li L. New alkene oligomerization catalyst NiSO4/γ-Al2O3 and its characteristics. Stud Surf Sci Catal 1993a; 75: 2753–2756.CrossrefGoogle Scholar

  • Cai T, Cao D, Song Z, Li L. Catalytic behavior of NiSO4/γ-Al2O3 for ethene dimerization. Appl Catal A-Gen 1993b; 95: L1–L7.Google Scholar

  • Castaño P, Ruiz-Martínez J, Epelde E, Gayubo AG, Weckhuysen BM. Spatial distribution of zeolite ZSM-5 within catalyst bodies affects selectivity and stability of methanol-to-hydrocarbons conversion. ChemCatChem 2013; 5: 2827–2831.CrossrefGoogle Scholar

  • Catani R, Mandreoli M, Rossini S, Vaccari A. Mesoporous catalysts for the synthesis of clean diesel fuels by oligomerisation of olefins. Catal Today 2002; 75: 125–131.CrossrefGoogle Scholar

  • Cavani F, Ballarini N, Cericola A. Oxidative dehydrogenation of ethane and propane: how far from commercial implementation? Catal Today 2007; 127: 113–131.CrossrefGoogle Scholar

  • Chang CD. Hydrocarbons from Methanol. Catalysis Reviews 1983; 25: 1–118.CrossrefGoogle Scholar

  • Chang CD, Penick JE, Socha RF. USA Patent No. US4542247 A. US Patent, 1985.

  • Chauvin Y. Olefin metathesis: the early days (Nobel lecture 2005). Adv Synth Catal 2007; 349: 27–33.CrossrefGoogle Scholar

  • Chauvin Y, Commereuc D. USA Patent No. US5449852 A. US Patent, 1995.

  • Chauvin Y, Commereuc D, Hugues F, Thivolle-cazat J. Nickel-based heterogeneous catalysts for olefin oligomerization: I. Support and anion effects. Appl Catal 1988; 42: 205–216.CrossrefGoogle Scholar

  • Chauvin Y, Commereuc D, Hugues F, Saussine L. USA Patent No. US4795734 A. US Patent, 1989.

  • Chen NY, Haag WO. USA Patent No. US4100218 A. US Patent, 1978.

  • Cheng Z, Lo CS. Propagation of Olefin metathesis to propene on WO3 catalysts: a mechanistic and kinetic study. ACS Catal 2015; 5: 59–72.CrossrefGoogle Scholar

  • Chen X, Zhang X, Chen P. Metallaoxetanes and carbenes from diolates in high-valent rhenium oxo chemistry: the importance of the coordination number. Angew Chem Int Edit 2003; 42: 3798–3801.CrossrefGoogle Scholar

  • Chen X, Dong M, Niu X, Wang K, Chen G, Fan W, Wang J, Qin Z. Influence of Zn species in HZSM-5 on ethylene aromatization. Chinese J Catal 2015; 36: 880–888.CrossrefGoogle Scholar

  • Choo H, Kevan L. Catalytic study of ethylene dimerization on Ni(II)-exchanged clinoptilolite. J Phys Chem B 2001; 105: 6353–6360.CrossrefGoogle Scholar

  • Choo H, Prakash AM, Park S-K, Kevan L. Electron spin resonance and electron spin echo modulation studies on the formation and adsorbate interactions of Ni(I) in synthetic clinoptilolite. J Phys Chem B 1999; 103: 6193–6199.CrossrefGoogle Scholar

  • Clark A, Finch JN. USA Patent No. US 3341620 A. US Patent, 1967.

  • Comyns AE. Encyclopedic dictionary of named processes in chemical technology, 4th ed. Boca Raton, FL, USA: Taylor and Francis, 2014.Google Scholar

  • Coperet C, Basset J-M, Thivolle-Cazat J, Le Roux E, Taoufik M. USA Patent No. US7638672 B2. US Patent, 2009.

  • Corma A, Orchillés AV. Current views on the mechanism of catalytic cracking. Micropor Mesopor Mat 2000; 35–36: 21–30.Google Scholar

  • Corma A, Martínez C, Doskocil E. Designing MFI-based catalysts with improved catalyst life for oligomerization to high-quality liquid fuels. J Catal 2013; 300: 183–196.CrossrefGoogle Scholar

  • Cossee P. On the reaction mechanism of the ethylene polymerization with heterogeneous Ziegler-Natta catalysts. Tetrahedron Lett 1960; 1: 12–16.CrossrefGoogle Scholar

  • Cossee P. Ziegler-Natta catalysis I. Mechanism of polymerization of α-olefins with Ziegler-Natta catalysts. J Catal 1964; 3: 80–88.CrossrefGoogle Scholar

  • Cui Z-M, Liu Q, Song W-G, Wan L-J. Insights into the mechanism of methanol-to-olefin conversion at zeolites with systematically selected framework structures. Angew Chem Int Edit 2006; 45: 6512–6515.CrossrefGoogle Scholar

  • Cui Z-M, Liu Q, Ma Z, Bian S-W, Song W-G. Direct observation of olefin homologations on zeolite ZSM-22 and its implications to methanol to olefin conversion. J Catal 2008; 258: 83–86.CrossrefGoogle Scholar

  • Dai W, Luo Q, Wang D. Review of propylene production through olefins conversion. Petrochem Technol 2008; 37: 425–433.Google Scholar

  • Dai W, Sun X, Tang B, Wu G, Li L, Guan N, Hunger M. Verifying the mechanism of the ethene-to-propene conversion on zeolite H-SSZ-13. J Catal 2014; 314: 10–20.CrossrefGoogle Scholar

  • Das N, Eckert H, Hu H, Wachs IE, Walzer JF, Feher FJ. Bonding states of surface vanadium(V) oxide phases on silica: structural characterization by vanadium-51 NMR and Raman spectroscopy. J Phys Chem 1993; 97: 8240–8243.CrossrefGoogle Scholar

  • Datka J, Turek AM, Jehng JM, Wachs IE. Acidic properties of supported niobium oxide catalysts: an infrared spectroscopy investigation. J Catal 1992; 135: 186–199.CrossrefGoogle Scholar

  • Davydov AA, Kantcheva M, Chepotko ML. FTIR spectroscopic study on nickel(II)-exchanged sulfated alumina: nature of the active sites in the catalytic oligomerization of ethene. Catal Lett 2002; 83: 97–108.CrossrefGoogle Scholar

  • de Klerk A, Leckel DO, Prinsloo NM. Butene oligomerization by phosphoric acid catalysis: separating the effects of temperature and catalyst hydration on product selectivity. Ind Eng Chem Res 2006; 45: 6127–6136.CrossrefGoogle Scholar

  • de Souza MO, Rodrigues LR, Gauvin RM, de Souza RF, Pastore HO, Gengembre L, Ruiz JAC, Gallo JMR, Milanesi TS, Milani MA. Support effect in ethylene oligomerization mediated by heterogenized nickel catalysts. Catal Commun 2010; 11: 597–600.CrossrefGoogle Scholar

  • Degnan TF, Jr. Applications of zeolites in petroleum refining. Top Catal 2000; 13: 349–356.CrossrefGoogle Scholar

  • Demirkan K. Influence of synthesis parameters on the properties of ZSM-5 and on their catalytic activity for 1-butene isomerization. İzmir, Turkey: İzmir Institute of Technology, MSc, 2002.Google Scholar

  • Desikan AN, Huang L, Oyama ST. Structure and dispersion of molybdenum oxide supported on alumina and titania. J Chem Soc, Faraday Trans 1992; 88: 3357–3365.CrossrefGoogle Scholar

  • Digne M, Sautet P, Raybaud P, Euzen P, Toulhoat H. Hydroxyl groups on γ-alumina surfaces: a DFT study. J Catal 2002; 211: 1–5.CrossrefGoogle Scholar

  • Digne M, Sautet P, Raybaud P, Euzen P, Toulhoat H. Use of DFT to achieve a rational understanding of acid-basic properties of γ-alumina surfaces. J Catal 2004; 226: 54–68.CrossrefGoogle Scholar

  • Ding X, Geng S, Li C, Yang C, Wang G. Effect of acid density of HZSM-5 on the oligomerization of ethylene in FCC dry gas. J Nat Gas Chem 2009a; 18: 156–160.CrossrefGoogle Scholar

  • Ding X, Geng S, Liu F-y, Li C-y, Yang C-h, Wang G-h. Oligomerization of ethene on ZSM-5 catalyst. J Fuel Chem Technol 2009b; 37: 560–566.Google Scholar

  • Ding X, Li C, Yang C. Study on the oligomerization of ethylene in fluidized catalytic cracking (FCC) dry gas over metal-loaded HZSM-5 catalysts. Energ Fuel 2010; 24: 3760–3763.CrossrefGoogle Scholar

  • Drake CA. USA Patent No. US4754098 A. US Patent, 1988.

  • du Toit JI, van Sittert CGCE, Vosloo HCM. Metal carbenes in homogeneous alkene metathesis: Computational investigations. J Organomet Chem 2013; 738: 76–91.CrossrefGoogle Scholar

  • du Toit JI, van Sittert CGCE, Vosloo HCM. Towards a better understanding of alkene metathesis: elucidating the properties of the major metal carbene catalyst types. Monatsh Chem 2015; 146: 1115–1129.CrossrefGoogle Scholar

  • Eleuterio HS. USA Patent No. US3074918 A. US Patent, 1963.

  • Eleuterio HS. Olefin metathesis: chance favors those minds that are best prepared. J Mol Catal 1991; 65: 55–61.CrossrefGoogle Scholar

  • Elev IV, Shelimov BN, Kazansky VB. The role of Ni+ ions in the activity of NiCaY zeolite catalysts for ethylene dimerization. J Catal 1984; 89: 470–477.CrossrefGoogle Scholar

  • Ellison A, Coverdale AK, Dearing PF. Catalytic metathesis of unsaturated esters by alumina supported rhenium oxide. Appl Catal 1983; 8: 109–121.CrossrefGoogle Scholar

  • Engelhardt J. Metathesis of propylene and transformation of ethylene and 2-butenes over a reduced molybdena-alumina catalyst treated with hydrogen. J Mol Catal 1980a; 8: 119–125.CrossrefGoogle Scholar

  • Engelhardt J. Transformation of ethylene over a molybdena-alumina catalyst reduced with hydrogen. J Catal 1980b; 62: 243–252.CrossrefGoogle Scholar

  • Engelhardt J, Goldwasser J, Hall WK. A tracer study of the metathesis of simple olefins over molybdena-alumina catalysts. J Catal 1981; 70: 364–374.CrossrefGoogle Scholar

  • Epelde E, Gayubo AG, Gamero M, Aguayo AT, Bilbao J. Propylene production from 1-butene and ethylene catalytic cracking: Study of the performance of HZSM-5 zeolites and silicoaluminophosphates SAPO-34 and SAPO-18. Bioenergy III: present and new perspectives on biorefineries. Bilbao, Spain: Departamento de Ingeniería Química, Universidad del País Vasco, 2011.Google Scholar

  • Epelde E, Aguayo AT, Olazar M, Bilbao J, Gayubo AG. Kinetic model for the transformation of 1-butene on a K-modified HZSM-5 catalyst. Ind Eng Chem Res 2014a; 53: 10599–10607.CrossrefGoogle Scholar

  • Epelde E, Aguayo AT, Olazar M, Bilbao J, Gayubo AG. Modifications in the HZSM-5 zeolite for the selective transformation of ethylene into propylene. Appl Catal A-Gen 2014b; 479: 17–25.CrossrefGoogle Scholar

  • Epelde E, Gayubo AG, Olazar M, Bilbao J, Aguayo AT. Intensifying propylene production by 1-butene transformation on a K modified HZSM-5 zeolite-catalyst. Ind Eng Chem Res 2014c; 53: 4614–4622.CrossrefGoogle Scholar

  • Epelde E, Gayubo AG, Olazar M, Bilbao J, Aguayo AT. Modified HZSM-5 zeolites for intensifying propylene production in the transformation of 1-butene. Chem Eng J 2014d; 251: 80–91.CrossrefGoogle Scholar

  • Epelde E, Ibañez M, Aguayo AT, Gayubo AG, Bilbao J, Castaño P. Differences among the deactivation pathway of HZSM-5 zeolite and SAPO-34 in the transformation of ethylene or 1-butene to propylene. Micropor Mesopor Mat 2014e; 195: 284–293.CrossrefGoogle Scholar

  • Epelde E, Santos JI, Florian P, Aguayo AT, Gayubo AG, Bilbao J, Castaño P. Controlling coke deactivation and cracking selectivity of MFI zeolite by H3PO4 or KOH modification. Appl Catal A-Gen 2015; 505: 105–115.CrossrefGoogle Scholar

  • Eramo M. Global ethylene market outlook: low cost feedstocks fuel the next wave of investments in North America and China. Inaugural Ethylene Forum, 2012.Google Scholar

  • Espinoza RL, Korf CJ, Nicolaides CP, Snel R. Catalytic oligomerization of ethene over nickel-exchanged amorphous silica-alumina; effect of the reaction conditions and modelling of the reaction. Appl Catal 1987a; 29: 175–184.CrossrefGoogle Scholar

  • Espinoza RL, Nicolaides CP, Korf CJ, Snel R. Catalytic oligomerization of ethene over nickel-exchanged amorphous silica-alumina; effect of the nickel concentration. Appl Catal 1987b; 31: 259–266.CrossrefGoogle Scholar

  • Espinoza RL, Snel R, Korf CJ, Nicolaides CP. Catalytic oligomerization of ethene over nickel-exchanged amorphous silica-aluminas; effect of the acid strength of the support. Appl Catal 1987c; 29: 295–303.CrossrefGoogle Scholar

  • Farona MF, Tucker RL. Studies on the mechanism of olefin metathesis promoted by a heterogeneous catalyst. J Mol Catal 1980; 8: 85–90.CrossrefGoogle Scholar

  • Feldman J, Schrock RR. Recent advances in the chemistry of “d0” alkylidene and metallacyclobutane complexes. Prog Inorg Chem 2007; 39: 1–74.Google Scholar

  • Ferdowsi D. Analysis of jam petrochemical complex [in Persian]. 2013, Retrieved from http://petrotahlil.ir/wp-content/uploads/2013/09/petrochimi-jam.pdf.

  • Fierro JLG. Metal oxides: chemistry and applications, vol. 108. Boca Raton: CRC Press, Taylor & Francis Group, 2006.Google Scholar

  • Finiels A, Fajula F, Hulea V. Nickel-based solid catalysts for ethylene oligomerization – a review. Catal Sci Technol 2014; 4: 2412–2426.CrossrefGoogle Scholar

  • Follmann S, Ernst S. Influence of the pore architecture on the selective conversion of ethene to propene and butenes over medium pore zeolites. New J Chem 2016; 40: 4414–4419.CrossrefGoogle Scholar

  • Follmann S, Vetter A, Ripperger S, Ernst S. Influence of the particle size of zeolite HZSM-5 on the catalytic performance in the ethene-to-propene reaction. New Technologies and Alternative Feedstocks in Petrochemistry and Refining, DGMK Conference, Dresden, Germany, 2013.Google Scholar

  • Forestière A, Olivier-Bourbigou H, Saussine L. Oligomerization of monoolefins by homogeneous catalysts. Oil and Gas Science and Technology-Revue de l‘IFP 2009; 64: 649–667.CrossrefGoogle Scholar

  • Forzatti P, Lietti L. Catalyst deactivation. Catal Today 1999; 52: 165–181.CrossrefGoogle Scholar

  • Frey AS, Hinrichsen O. Comparison of differently synthesized Ni(Al)MCM-48 catalysts in the ethene to propene reaction. Micropor Mesopor Mat 2012; 164: 164–171.CrossrefGoogle Scholar

  • Froment GF, Dehertog WJH, Marchi AJ. Zeolite catalysis in the conversion of methanol into olefins. In: Spivey JJ, editor. Catalysis, vol. 9, Cambridge, UK: Royal Society of Chemistry, 1992: 1–64.Google Scholar

  • Fujie H, Imura K, Matsumoto H, Noh T, Nakanishi K. USA Patent No. US5883036 A. US Patent, 1999.

  • Fujie H, Imura K, Matsumoto H, Nakanishi K, Noh T. Patent No. EP0734766 B1. Euro Patent, 2001.

  • Fürstner A. Alkene metathesis in organic synthesis. Berlin: Springer-Verlag, 1998.Google Scholar

  • Gao B, Yang M, Qiao Y, Li J, Xiang X, Wu P, Wei Y, Xu S, Tian P, Liu Z. A low-temperature approach to synthesize low-silica SAPO-34 nanocrystals and their application in the methanol-to-olefins (MTO) reaction. Catal Sci Technol 2016; 6: 7569–7578.CrossrefGoogle Scholar

  • Gärtner CA, van Veen AC, Lercher JA. Oxidative dehydrogenation of ethane: common principles and mechanistic aspects. ChemCatChem 2013; 5: 1–23.Google Scholar

  • Gattis SC, Peterson ER, Johnson MM. The ÉCLAIRS process for converting natural gas to hydrocarbon liquids. 2004, Retrieved from http://www.adktroutguide.com/files/Acetylene_to_Gasoline-_Synfuels_pdf.

  • Gayubo AG, Aguayo AT, Morán AL, Olazar M, Bilbao J. Role of water in the kinetic modeling of catalyst deactivation in the MTG process. AIChE J 2002; 48: 1561–1571.CrossrefGoogle Scholar

  • Gayubo AG, Alonso A, Valle B, Aguayo AT, Olazar M, Bilbao J. Hydrothermal stability of HZSM-5 catalysts modified with Ni for the transformation of bioethanol into hydrocarbons. Fuel 2010; 89: 3365–3372.CrossrefGoogle Scholar

  • Georgiev PA, Albinati A. Nonclassical hydrides of Ni+ in ZSM-5 zeolite structures: a hybrid DFT study. Chem Phys Lett 2012; 545: 66–70.CrossrefGoogle Scholar

  • Ghambarian M, Azizi Z, Ghashghaee M. Diversity of monomeric dioxo chromium species in Cr/silicalite-2 catalysts: a hybrid density functional study. Comp Mater Sci 2016; 118: 147–154.CrossrefGoogle Scholar

  • Ghambarian M, Azizi Z, Ghashghaee M. Cluster modeling and coordination structures of Cu+ ions in Al-incorporated Cu-MEL catalysts – a density functional theory study. J Mex Chem Soc 2017a; 61: 1–13.Google Scholar

  • Ghambarian M, Ghashghaee M, Azizi Z. Coordination and siting of Cu+ ion adsorbed into silicalite-2 porous structure: a density functional theory study. Phys Chem Res 2017b; 5: 135–152.Google Scholar

  • Ghashghaee M. Predictive correlations for thermal upgrading of petroleum residues. J Anal Appl Pyrol 2015; 115: 326–336.CrossrefGoogle Scholar

  • Ghashghaee M, Karimzadeh R. Dynamic modeling and simulation of steam cracking furnaces. Chem Eng Technol 2007; 30: 835–843.CrossrefGoogle Scholar

  • Ghashghaee M, Karimzadeh R. Multivariable optimization of thermal cracking severity. Chem Eng Res Des 2011; 89: 1067–1077.CrossrefGoogle Scholar

  • Ghashghaee M, Karimzadeh R. Applicability of protolytic mechanism to steady-state heterogeneous dehydrogenation of ethane revisited. Micropor Mesopor Mat 2013; 170: 318–330.CrossrefGoogle Scholar

  • Ghashghaee M, Farzaneh V, Mahdian M. Effect of temperature on propylene and ethylene production from LPG pyrolysis. Third International Conference on Oil, Gas and Petrochemical, Shahid Beheshti University, Tehran, Iran, 2015.Google Scholar

  • Ghashghaee M, Farzaneh V, Mahdian M. Low-temperature performance of spent Cr/MCM-41 catalyst for oxidative conversion of LPG to light olefins. 3rd International Congress of Chemistry and Chemical Engineering, Tehran, Iran, 2016a.Google Scholar

  • Ghashghaee M, Ghambarian M, Azizi Z. Characterization of extraframework Zn2+ cationic sites in silicalite-2: a computational study. Struct Chem 2016b; 27: 467–475.CrossrefGoogle Scholar

  • Gholampour N, Yusubov M, Verpoort F. Investigation of the preparation and catalytic activity of supported Mo, W, and Re oxides as heterogeneous catalysts in olefin metathesis. Catal Rev 2016; 58: 113–156.CrossrefGoogle Scholar

  • Ghosh AK, Kevan L. Electron spin resonance studies of ethylene dimerization catalyzed by nickel species on Y zeolites. J Phys Chem 1990; 94: 3117–3121.CrossrefGoogle Scholar

  • Ghosh AK, Tanaka K, Toyoshima I. A study of ethene homologation over supported MoO3 catalysts: effect of catalyst support and pretreatment. J Catal 1987; 105: 530–535.CrossrefGoogle Scholar

  • Grabowski R. Kinetics of Oxidative Dehydrogenation of C2-C3 alkanes on oxide catalysts. Catal Rev 2006; 48: 199–268.CrossrefGoogle Scholar

  • Grubbs RH. Olefin metathesis. Tetrahedron 2004; 60: 7117–7140.CrossrefGoogle Scholar

  • Grubbs RH. Olefin-metathesis catalysts for the preparation of molecules and materials (Nobel lecture). Angew Chem Int Edit 2006; 45: 3760–3765.CrossrefGoogle Scholar

  • Grubbs RH, Swetnick SJ. Mechanism of olefin metathesis over a supported molybdenum catalyst. J Mol Catal 1980; 8: 25–36.CrossrefGoogle Scholar

  • Grubbs RH, Wenzel AG. Handbook of metathesis: catalyst development and mechanism, 2nd ed., vol. 1. Weinheim: Wiley-VCH Verlag GmbH & Co., 2015.Google Scholar

  • Grünert W, Stakheev AY, Feldhaus R, Anders K, Shpiro ES, Minachev KM. Reduction and metathesis activity of MoO3/Al2O3 catalysts II. The activation of MoO3/Al2O3 catalysts. J Catal 1992; 135: 287–299.CrossrefGoogle Scholar

  • Haag WO, Lago RM, Rodewald PG. Aromatics, light olefins and gasoline from methanol: mechanistic pathways with ZSM-5 zeolite catalyst. J Mol Catal 1982; 17: 161–169.CrossrefGoogle Scholar

  • Haag WO, Dessau RM, Lago RM. Kinetics and mechanism of paraffin cracking with zeolite catalysts. Stud Surf Sci Catal 1991; 60: 255–265.CrossrefGoogle Scholar

  • Hahn T, Bentrup U, Armbrüster M, Kondratenko EV, Linke D. The enhancing effect of brønsted acidity of supported MoOx species on their activity and selectivity in ethylene/trans-2-butene metathesis. ChemCatChem 2014a; 6: 1664–1672.CrossrefGoogle Scholar

  • Hahn T, Kondratenko EV, Linke D. The effect of supported MoOX structures on the reaction pathways of propene formation in the metathesis of ethylene and 2-butene. Chem Commun 2014b; 50: 9060–9063.CrossrefGoogle Scholar

  • Hajheidary M, Ghashghaee M, Karimzadeh R. Olefins production from LPG via dehydrogenative cracking over three ZSM-5 catalysts. J Sci Ind Res 2013; 72: 760–766.Google Scholar

  • Hall KR. A new gas to liquids (GTL) or gas to ethylene (GTE) technology. Catal Today 2005; 106: 243–246.CrossrefGoogle Scholar

  • Hamdan H, Ramli Z. Characterization and reactivity study of rhenium-impregnated zeolite Y catalysed metathesis of olefins. Stud Surf Sci Catal 1997; 105: 957–964.CrossrefGoogle Scholar

  • Handzlik J. Theoretical study of propene metathesis proceeding on monomeric Mo centers of molybdena-alumina catalysts. J Catal 2003; 220: 23–34.CrossrefGoogle Scholar

  • Handzlik J. Degenerate propene metathesis on Mo-alkylidene centres of molybdena-alumina catalyst – a DFT study. J Mol Catal A-Chem 2004a; 218: 91–100.CrossrefGoogle Scholar

  • Handzlik J. Metathesis activity of monomeric Mo-methylidene centres on (100) and (110)C surfaces of γ-Al2O3 – a comparative DFT study. Surf Sci 2004b; 562: 101–112.CrossrefGoogle Scholar

  • Handzlik J. Metathesis activity and properties of Mo-alkylidene sites differently located on silica. A density functional theory study. J Phys Chem B 2005; 109: 20794–20804.PubMedCrossrefGoogle Scholar

  • Handzlik J. Computational study of the properties and metathesis activity of Mo methylidene species in HZSM-5 zeolite. J Mol Catal A-Chem 2010; 316: 106–111.CrossrefGoogle Scholar

  • Handzlik J, Ogonowski J. Theoretical study on active sites of molybdena-alumina catalyst for olefin metathesis. Stud Surf Sci Catal 2000; 130: 1181–1186.CrossrefGoogle Scholar

  • Handzlik J, Ogonowski J. Theoretical study on ethene metathesis proceeding on MoVI and MoIV methylidene centres of heterogeneous molybdena-alumina catalyst. J Mol Catal A-Chem 2001; 175: 215–225.CrossrefGoogle Scholar

  • Handzlik J, Ogonowski J. DFT study of ethene metathesis proceeding on monomeric MoVI centres of MoO3/Al2O3 catalyst: The role of the molybdacyclobutane intermediate. J Mol Catal A-Chem 2002; 184: 371–377.CrossrefGoogle Scholar

  • Handzlik J, Ogonowski J. Dynamic chemical counting of active centers of molybdena-alumina metathesis catalysts. Catal Lett 2003; 88: 119–122.CrossrefGoogle Scholar

  • Handzlik J, Sautet P. Active sites of olefin metathesis on molybdena-alumina system: a periodic DFT study. J Catal 2008; 256: 1–14.CrossrefGoogle Scholar

  • Handzlik J, Sautet P. Structure of dimeric molybdenum(VI) oxide species on γ-alumina: a periodic density functional theory study. J Phys Chem C 2010; 114: 19406–19414.CrossrefGoogle Scholar

  • Handzlik J, Ogonowski J. Structure of isolated molybdenum(VI) and molybdenum(IV) oxide species on silica: periodic and cluster DFT studies. J Phys Chem C 2012; 116: 5571–5584.CrossrefGoogle Scholar

  • Handzlik J, Kurleto K. Theoretical investigations of heterogeneous olefin metathesis catalysts. Curr Org Chem 2013; 17: 2796–2813.CrossrefGoogle Scholar

  • Handzlik J, Ogonowski J, Stoch J, Mikołajczyk M. Anchored and impregnated molybdena-alumina metathesis catalysts – a comparative study. Appl Catal A-Gen 2004; 273: 99–104.CrossrefGoogle Scholar

  • Handzlik J, Ogonowski J, Tokarz-Sobieraj R. Dependence of metathesis activity of Mo-methylidene sites on their location on (100) γ-Al2O3 – a theoretical study. Catal Today 2005; 101: 163–173.CrossrefGoogle Scholar

  • Hardcastle FD, Wachs IE, Horsley JA, Via GH. The structure of surface rhenium oxide on alumina from laser Raman spectroscopy and X-ray absorption near-edge spectroscopy. J Mol Catal 1988; 46: 15–36.CrossrefGoogle Scholar

  • Hartmann M, Pöppl A, Kevan L. Ethylene dimerization and butene isomerization in nickel-containing MCM-41 and AlMCM-41 mesoporous molecular sieves: an electron spin resonance and gas chromatography Study. J Phys Chem 1996; 100: 9906–9910.CrossrefGoogle Scholar

  • Hayashi M, Hara M, Yamaguchi M, Yoshikawa Y, Takewaki T, Setoyama T, Sakamoto N. USA Patent No. US20120203048 A1. US Patent, 2012a.

  • Hayashi M, Yamaguchi M, Yoshikawa Y, Takewaki T, Setoyama T. USA Patent No. US20120059139 A1. US Patent, 2012b.

  • Hayashi M, Hara M, Yamaguchi M, Yoshikawa Y, Takewaki T, Setoyama T, Sakamoto N. USA Patent No. US8647999 B2. US Patent, 2014a.

  • Hayashi M, Yamaguchi M, Yoshikawa Y, Takewaki T, Setoyama T. USA Patent No. US8759598 B2. US Patent, 2014b.

  • Haynes MT. Mechanistic understanding as a driving force for developments in nickel-catalyzed coupling methods. Ann Arbor, USA: University of Michigan, PhD., 2014.Google Scholar

  • Heckelsberg LF, Banks RL, Bailey GC. Olefin disproportionation catalysts. Ind Eng Chem Prod Res Dev 1969; 8: 259–261.CrossrefGoogle Scholar

  • Hermans S, de Bocarme TV. Atomically-precise methods for synthesis of solid catalysts. Cambridge: The Royal Society of Chemistry, 2015.Google Scholar

  • Heveling J, Nicolaides CP. Chain-length distributions obtained over nickel(II)-exchanged or impregnated silica-alumina catalysts for the oligomerization of lower alkenes. Catal Lett 2006; 107: 117–121.CrossrefGoogle Scholar

  • Heveling J, Nicolaides CP, Scurrell MS. Catalysts and conditions for the highly efficient, selective and stable heterogeneous oligomerisation of ethylene. Appl Catal A-Gen 1998; 173: 1–9.CrossrefGoogle Scholar

  • Heydenrych MD, Nicolaides CP, Scurrell MS. Oligomerization of ethene in a slurry reactor using a nickel(II)-exchanged silica-alumina catalyst. J Catal 2001; 197: 49–57.CrossrefGoogle Scholar

  • Hu DX. Industrial feedstock chemicals. Industrial Chemicals, Burns Group, 2013.Google Scholar

  • Hu H, Wachs IE, Bare SR. Surface structures of supported molybdenum oxide catalysts: characterization by Raman and Mo L3-edge XANES. J Phys Chem 1995; 99: 10897–10910.CrossrefGoogle Scholar

  • Hua D, Chen S, Yuan G, Wang Y. Synthesis and characterization of tungsten-incorporated mesoporous molecular sieve MCM-48 by one step. J Porous Mat 2010; 18: 729–734.Google Scholar

  • Hua D-r, Chen S-l, Zhou Z, Chen A-c, Liu H-b, Huang Q, Lu X-n. Effect of support on catalytic performance for metathesis of butene to propene. J Fuel Chem Technol 2014; 42: 865–869.Google Scholar

  • Huang S-j, Liu S-l, Xin W-j, Xie S-j, Wang C-d, Xu L-y. Effect of MgMo/MCM22 catalyst pretreatment on metathesis of ethylene and 2-butylene to propylene. Petrochem Technol 2003; 32: 743–746.Google Scholar

  • Huang S, Liu S, Xin W, Bai J, Xie S, Wang Q, Xu L. Metathesis of ethene and 2-butene to propene on W/Al2O3-HY catalysts with different HY contents. J Mol Catal A-Chem 2005; 226: 61–68.CrossrefGoogle Scholar

  • Huang S, Liu S, Xin W, Xie S, Wang Q, Xu L. Effect of reaction temperature and pressure on the metathesis reaction between ethene and 2-butene to propene on the WO3/Al2O3-HY catalyst. J Nat Gas Chem 2006; 15: 93–99.CrossrefGoogle Scholar

  • Huang S, Chen F, Liu S, Zhu Q, Zhu X, Xin W, Feng Z, Li C, Wang Q, Xu L. The influence of preparation procedures and tungsten loading on the metathesis activity of ethene and 2-butene over supported WO3 catalysts. J Mol Catal A-Chem 2007; 267: 224–233.CrossrefGoogle Scholar

  • Hulea V, Fajula F. Ni-exchanged AlMCM-41 – an efficient bifunctional catalyst for ethylene oligomerization. J Catal 2004; 225: 213–222.CrossrefGoogle Scholar

  • Hulea V, Lallemand M, Finiels A, Fajula F. Catalytic oligomerization of ethylene over Ni-containing MCM-22, MCM-41 and USY. Stud Surf Sci Catal 2005; 158: 1621–1628.CrossrefGoogle Scholar

  • Hydrocarbon Processing. Refining processes handbook. Houston, TX: Gulf Publishing Company, 2004.Google Scholar

  • Hydrocarbon Processing. Petrochemical processes handbook. Houston, TX: Gulf Publishing Company, 2010.Google Scholar

  • Ibbotson A, Lopes C. Global petrochemical overview: changing olefins markets. 34th Latin American Petrochemical Annual Meeting, Rio de Janeiro, Brazil, 2014.Google Scholar

  • Ikeda K, Kawamura Y, Yamamoto T, Iwamoto M. Effectiveness of the template-ion exchange method for appearance of catalytic activity of Ni-MCM-41 for the ethene to propene reaction. Catal Commun 2008; 9: 106–110.CrossrefGoogle Scholar

  • Inazu K, Koyama T, Miyaji A, Baba T. Propene production from ethene and methane using silver- and proton-exchanged zeolite catalysts. J Jpn Petrol Inst 2008; 51: 205–216.CrossrefGoogle Scholar

  • Ipatieff VN, Corson BB. Gasoline from ethylene by catalytic polymerization. Ind Eng Chem 1936; 28: 860–863.CrossrefGoogle Scholar

  • Iwamoto M. Conversion of ethene to propene on nickel ion-loaded mesoporous silica prepared by the template ion exchange method. Catal Surv Asia 2008; 12: 28–37.CrossrefGoogle Scholar

  • Iwamoto M. One step formation of propene from ethene or ethanol through metathesis on nickel ion-loaded silica. Molecules 2011; 16: 7844–7863.PubMedCrossrefGoogle Scholar

  • Iwamoto M, Tanaka Y. Preparation of metal ion-planted mesoporous silica by template ion-exchange method and its catalytic activity for asymmetric oxidation of sulfide. Catal Surv Jpn 2001; 5: 25–36.CrossrefGoogle Scholar

  • Iwamoto M, Kosugi Y. USA Patent No. WO2004022228 A1. WO Patent, 2004.

  • Iwamoto M, Kosugi Y. Highly selective conversion of ethene to propene and butenes on nickel ion-loaded mesoporous silica catalysts. J Phys Chem C 2007; 111: 13–15.CrossrefGoogle Scholar

  • Iwamoto M, Kasai K, Haishi T. Conversion of ethanols into polyolefin building blocks: reaction pathways on nickel ion-loaded mesoporous silica. ChemSusChem 2011; 4: 1055–1058.CrossrefPubMedGoogle Scholar

  • Iwasawa Y, Hamamura H. Mechanism for initial carbene formation in olefin metathesis over fixed Mo catalysts. J Chem Soc, Chem Commun 1983; 130–132.Google Scholar

  • Iwasawa Y, Kubo H, Hamamura H. Olefin metathesis over Al2O3 or SiO2-attached molybdenum catalysts: active structures and mechanism for initial carbene formation. J Mol Catal 1985; 28: 191–208.CrossrefGoogle Scholar

  • Iwase Y, Motokura K, Koyama T-r, Miyaji A, Baba T. Influence of Si distribution in framework of SAPO-34 and its particle size on propylene selectivity and production rate for conversion of ethylene to propylene. Phys Chem Chem Phys 2009; 11: 9268–9277.PubMedCrossrefGoogle Scholar

  • Jackson KT, Howe RF. Studies of zeolite single crystals: ethene oligomerization in HZSM-5. Stud Surf Sci Catal 1994; 83: 187–194.CrossrefGoogle Scholar

  • Jeong S, Fisher KJ, Howe RF, Willett GD. A Fourier transform mass spectrometry study of ethene oligomers in HMFI zeolite. Micropor Mesopor Mat 1998; 22: 369–377.CrossrefGoogle Scholar

  • Jin L, Hu H, Zhu S, Ma B. An improved dealumination method for adjusting acidity of HZSM-5. Catal Today 2010; 149: 207–211.CrossrefGoogle Scholar

  • Jović M. Structure-reactivity relationships in novel ruthenium and rhenium olefin metathesis catalysts. (PhD), Zurich: Eidgenössische Technische Hochschule ETH Zürich, 2014.Google Scholar

  • Jun J-W, Khan NA, Seo PW, Kim C-U, Kim HJ, Jhung SH. Conversion of Y into SSZ-13 zeolites and ethylene-to-propylene reactions over the obtained SSZ-13 zeolites. Chem Eng J 2016; 303: 667–674.CrossrefGoogle Scholar

  • Kaiser SW. Patent No. US4527001 A. Euro Patent, 1985.

  • Kanellopoulos N. Small-scale gas to liquid fuel synthesis. Boca Raton: Taylor and Francis Group, LLC, 2015.Google Scholar

  • Kapteijn F, Bredt HLG, Homburg E, Mol JC. Kinetics of the metathesis of propene over Re2O7/γ-Al2O3. Ind Eng Chem Prod Res Dev 1981; 20: 457–466.CrossrefGoogle Scholar

  • Kapteijn F, Homburg E, Mol JC. Thermodynamics of the metathesis of propene into ethene and 2-butene. J Chem Thermodyn 1983; 15: 147–152.CrossrefGoogle Scholar

  • Karimzadeh R, Ghashghaee M. Design of a flexible pilot plant reactor for the steam cracking process. Chem Eng Technol 2008; 31: 278–286.CrossrefGoogle Scholar

  • Karimzadeh R, Godini HR, Ghashghaee M. Flowsheeting of steam cracking furnaces. Chem Eng Res Des 2009; 87: 36–46.CrossrefGoogle Scholar

  • Karimzadeh R, Ghashghaee M, Nouri M. Effect of solvent dearomatization and operating conditions in steam pyrolysis of a heavy feedstock. Energ Fuel 2010; 24: 1899–1907.CrossrefGoogle Scholar

  • Karpova TR, Lavrenov AV, Buluchevskii EA, Gulyaeva TI, Buyal’skaya KS, Shilova AV, Leontieva NN, Arbuzov AB, Drozdov VA. Effect of chemical composition and method of preparation on the physicochemical properties of the NiO/B2O3-Al2O3 system and its catalytic activity in ethylene oligomerization. Catal Ind 2014; 6: 105–113.CrossrefGoogle Scholar

  • Kato Y, Nishioka Y, Wada T, Nakagawa K, Sotowa K-i, Sugiyama S. Catalytic conversion of ethylene to propylene over MCM-41. Int J Mod Phys B 2010; 24(15n16): 3253–3256.CrossrefGoogle Scholar

  • Kerkhof FPJM, Moulijn JA, Thomas R. Laser-Raman spectroscopy of the alumina-supported rhenium oxide metathesis catalyst. J Catal 1979; 56: 279–283.CrossrefGoogle Scholar

  • Kiessling D, Froment GF. Sorption of ethene and propene on amorphous nickel oxide-alumina/silica catalysts under oligomerization conditions. Appl Catal 1991; 71: 123–138.CrossrefGoogle Scholar

  • Kim DS, Wachs IE, Segawa K. Molecular structures and reactivity of supported molybdenum oxide catalysts. J Catal 1994; 149: 268–277.CrossrefGoogle Scholar

  • Kim DS, Ostromecki M, Wachs IE. Surface structures of supported tungsten oxide catalysts under dehydrated conditions. J Mol Catal A-Chem 1996; 106: 93–102.CrossrefGoogle Scholar

  • Kimura K, A-I H, Ozaki A. Tracer study of ethylene dimerization over nickel oxide-silica catalyst. J Catal 1970; 18: 271–280.CrossrefGoogle Scholar

  • Knottenbelt CD, Carl Dunlop KZ, Thomas M. Patent No. WO2006069407 A2. US Patents, 2006.

  • Knottenbelt CD, Carl Dunlop KZ, Thomas M. Patent No. US8552231 B2. US Patents, 2013.

  • Knözinger H, Ratnasamy P. Catalytic aluminas: surface models and characterization of surface sites. Catal Rev 1978; 17: 31–70.CrossrefGoogle Scholar

  • Kramer GJ, van Santen RA, Emeis CA, Nowak AK. Understanding the acid behaviour of zeolites from theory and experiment. Nature 1993; 363: 529–531.CrossrefGoogle Scholar

  • Kresnawahjuesa O, Kühl GH, Gorte RJ, Quierini CA. An examination of Brønsted acid sites in H-[Fe] ZSM-5 for olefin oligomerization and adsorption. J Catal 2002; 210: 106–115.CrossrefGoogle Scholar

  • Kubelková L, Nováková J, Wichterlová B, Jírů P. The effect of dehydroxylation of HNaY zeolites on the interaction with ethylene and propylene. Collect Czech Chem Commun 1980; 45: 2290–2299.CrossrefGoogle Scholar

  • Kulprathipanja S. Zeolites in industrial separation and catalysis. Weinheim: WILEY-VCH Verlag, 2010.Google Scholar

  • Kuo JC, Tabak SA. USA Patent No. US4749820 A. US Patent, 1988.

  • Labinger JA, Leitch DC, Bercaw JE, Deimund MA, Davis ME. Upgrading light hydrocarbons: a tandem catalytic system for alkane/alkene coupling. Top Catal 2015; 58: 494–501.CrossrefGoogle Scholar

  • Lacarriere A, Robin J, Świerczyński D, Finiels A, Fajula F, Luck F, Hulea V. Distillate-range products from non-oil-based sources by catalytic cascade reactions. ChemSusChem 2012; 5: 1787–1792.CrossrefPubMedGoogle Scholar

  • Lallemand M, Finiels A, Fajula F, Hulea V. Catalytic oligomerization of ethylene over Ni-containing dealuminated Y zeolites. Appl Catal A-Gen 2006; 301: 196–201.CrossrefGoogle Scholar

  • Lallemand M, Finiels A, Fajula F, Hulea V. Ethylene oligomerization over Ni-containing mesostructured catalysts with MCM-41, MCM-48 and SBA-15 topologies. Stud Surf Sci Catal 2007; 170: 1863–1869.CrossrefGoogle Scholar

  • Lallemand M, Rusu OA, Dumitriu E, Finiels A, Fajula F, Hulea V. Ni-MCM-36 and Ni-MCM-22 catalysts for the ethylene oligomerization. Stud Surf Sci Catal 2008a; 174: 1139–1142.CrossrefGoogle Scholar

  • Lallemand M, Rusu OA, Dumitriu E, Finiels A, Fajula F, Hulea V. NiMCM-36 and NiMCM-22 catalysts for the ethylene oligomerization: effect of zeolite texture and nickel cations/acid sites ratio. Appl Catal A-Gen 2008b; 338: 37–43.CrossrefGoogle Scholar

  • Lallemand M, Finiels A, Fajula F, Hulea V. Nature of the active sites in ethylene oligomerization catalyzed by Ni-containing molecular sieves: chemical and IR spectral investigation. J Phys Chem C 2009; 113: 20360–20364.CrossrefGoogle Scholar

  • Lallemand M, Finiels A, Fajula F, Hulea V. Continuous stirred tank reactor for ethylene oligomerization catalyzed by NiMCM-41. Chem Eng J 2011; 172: 1078–1082.CrossrefGoogle Scholar

  • Laverty DT, Rooney JJ, Stewart A. Possible role of hydrido-metal complexes in metathesis, isomerization, dimerization, and polymerization of alkenes. J Catal 1976; 45: 110–113.CrossrefGoogle Scholar

  • Lavrenov AV, Buluchevskiy EA, Karpova TR, Moiseenko MA, Mikhailova MS, Chumachenko YA, Skoplyuk AA, Gulyaeva TI, Arbuzov AB, Leontieva NN, Drozdov VA. Synthesis, structure and properties of borate-containing oxide catalysts for petrochemical processes and synthesizing the components of motor fuels. Chem Sustain Dev 2011; 19: 81–89.Google Scholar

  • Lavrenov AV, Saifulina LF, Buluchevskii EA, Bogdanets EN. Propylene production technology: today and tomorrow. Catal Ind 2015; 7: 175–187.CrossrefGoogle Scholar

  • Lavrenov AV, Karpova TR, Buluchevskii EA, Bogdanets EN. Heterogeneous oligomerization of light alkenes: 80 years in oil refining. Catal Ind 2016; 8: 316–327.CrossrefGoogle Scholar

  • Le Roux E, Taoufik M, Copéret C, de Mallmann A, Thivolle-Cazat J, Basset J-M, Maunders BM, Sunley GJ. Development of tungsten-based heterogeneous alkane metathesis catalysts through a structure-activity relationship. Angew Chem Int Edit 2005; 44: 6755–6758.CrossrefGoogle Scholar

  • Le Roux E, Taoufik M, Baudouin A, Cop C, Thivolle-Cazat J, Basset J-M, Maunders BM, Sunley GJ. Silica-alumina-supported, tungsten-based heterogeneous alkane metathesis catalyst: is it closer to a silica- or an alumina-supported system? Adv Synth Catal 2007; 349: 231–237.CrossrefGoogle Scholar

  • Ledoux N. Ruthenium olefin metathesis catalysts: tuning of the ligand environment. Ghent, Belgium: Ghent University, PhD., 2007.Google Scholar

  • Lefebvre F. Chapter 1: Synthesis of well-defined solid catalysts by surface organometallic chemistry atomically-precise methods for synthesis of solid catalysts. Cambridge, UK: The Royal Society of Chemistry, 2015: pp. 1–26.Google Scholar

  • Lehmann T, Seidel-Morgenstern A. Comment on “Effect of Pore Size and Nickel Content of Ni-MCM-41 on Catalytic Activity for Ethene Dimerization and Local Structures of Nickel Ions”. J Phys Chem C 2012; 116: 22646–22648.CrossrefGoogle Scholar

  • Lehmann T, Seidel-Morgenstern A. Thermodynamic appraisal of the gas phase conversion of ethylene or ethanol to propylene. Chem Eng J 2014; 242: 422–432.CrossrefGoogle Scholar

  • Lehmann T, Wolff T, Zahn VM, Veit P, Hamel C, Seidel-Morgenstern A. Preparation of Ni-MCM-41 by equilibrium adsorption – catalytic evaluation for the direct conversion of ethene to propene. Catal Commun 2011; 12: 368–374.CrossrefGoogle Scholar

  • Li C. Identifying the isolated transition metal ions/oxides in molecular sieves and on oxide supports by UV resonance Raman spectroscopy. J Catal 2003; 216: 203–212.CrossrefGoogle Scholar

  • Li J, Qi Y, Zhang D, Liu Z. Propylene production by co-reaction of ethylene and chloromethane over SAPO-34. From Zeolites to Porous MOF Materials – the 40th Anniversary of International Zeolite Conference, 2007: 1578–1582.Google Scholar

  • Li J, Qi Y, Liu Z, Liu G, Chang F. Influences of reaction conditions on ethene conversion to propene over SAPO-34. Chinese J Catal 2008a; 29: 660–664.Google Scholar

  • Li J, Qi Y, Liu Z, Liu G, Zhang D. Co-reaction of ethene and methylation agents over SAPO-34 and ZSM-22. Catal Lett 2008b; 121: 303–310.CrossrefGoogle Scholar

  • Li J, Qi Y, Xu L, Liu G, Meng S, Li B, Li M, Liu Z. Co-reaction of ethene and methanol over modified H-ZSM-5. Catal Commun 2008c; 9: 2515–2519.CrossrefGoogle Scholar

  • Li X, Guan J, Zhou D, Li G, Han X, Zhang W, Bao X. A DFT study of olefin metathesis over heterogeneous Mo/HBeta catalyst: the influence of Mo oxidation state. J Mol Struct 2009; 913: 167–172.CrossrefGoogle Scholar

  • Li X, Zheng A, Guan J, Han X, Zhang W, Bao X. The effect of support acidity on olefin metathesis over heterogeneous Mo/HBeta catalyst: A DFT study. Catal Lett 2010; 138: 116–123.CrossrefGoogle Scholar

  • Li J-H, Zhou D-H, Ren J. Theoretical study of ethylene dimerization on the Ga/HZSM-5 zeolite. Acta Phys Chim Sin 2011; 27: 1393–1399.Google Scholar

  • Li L, Palcheva R, Jens K-J. Conversion of ethene to propene by a dual function NiSO4/Re2O7/γ-Al2O3 Catalyst. Top Catal 2013; 56: 783–788.CrossrefGoogle Scholar

  • Li J, Li T, Ma H, Sun Q, Ying W, Fang D. Effect of impregnating Fe into P-Modified HZSM-5 in the coupling cracking of butene and pentene. Ind Eng Chem Res 2015a; 54: 1796–1805.CrossrefGoogle Scholar

  • Li J, Ma H, Zhang H, Sun Q, Ying W. Butene catalytic cracking to propylene over iron and phosphorus modified HZSM-5. Int J Chem Mol Eng 2015b; 2: 624–628.Google Scholar

  • Limsangkass W, Praserthdam P, Phatanasri S, Panpranot J, Chaemchuen S, Jareewatchara W, Kunjara Na Ayudhya S, Suriye K. Influence of micro- and nano-sized SiO2 excess support on the metathesis of ethylene and trans-2-butene to propylene over silica-supported tungsten catalysts. React Kinet Mech Cat 2014; 113: 225–240.CrossrefGoogle Scholar

  • Lin B, Zhang Q, Wang Y. Catalytic Conversion of ethylene to propylene and butenes over H-ZSM-5. Ind Eng Chem Res 2009; 48: 10788–10795.CrossrefGoogle Scholar

  • Lin C, Tao K, Yu H, Hua D, Zhou S. Enhanced catalytic performance of molybdenum-doped mesoporous SBA-15 for metathesis of 1-butene and ethene to propene. Catal Sci Technol 2014a; 4: 4010–4019.CrossrefGoogle Scholar

  • Lin L, Qiu C, Zhuo Z, Zhang D, Zhao S, Wu H, Liu Y, He M. Acid strength controlled reaction pathways for the catalytic cracking of 1-butene to propene over ZSM-5. J Catal 2014b; 309: 136–145.CrossrefGoogle Scholar

  • Lin S, Shi L, Zhang H, Zhang N, Yi X, Zheng A, Li X. Tuning the pore structure of plug-containing Al-SBA-15 by post-treatment and its selectivity for C16 olefin in ethylene oligomerization. Micropor Mesopor Mat 2014c; 184: 151–161.CrossrefGoogle Scholar

  • Liu B, Nakatani H, Terano M. Mechanistic implications of the unprecedented transformations of ethene into propene and butene over Phillips CrOx/SiO2 catalyst during induction period. J Mol Catal A-Chem 2003; 201: 189–197.CrossrefGoogle Scholar

  • Liu S, Li X, Xin W, Xie S, Zeng P, Zhang L, Xu L. Cross metathesis of butene-2 and ethene to propene over Mo/MCM-22-Al2O3 catalysts with different Al2O3 contents. J Nat Gas Chem 2010; 19: 482–486.CrossrefGoogle Scholar

  • Liu H, Huang S, Zhang L, Liu S, Xin W, Xu L. The preparation of active WO3 catalysts for metathesis between ethene and 2-butene under moist atmosphere. Catal Commun 2009a; 10: 544–548.CrossrefGoogle Scholar

  • Liu H, Zhang L, Li X, Huang S, Liu S, Xin W, Xie S, Xu L. Production of propene from 1-butene metathesis reaction on tungsten based heterogeneous catalysts. J Nat Gas Chem 2009b; 18: 331–336.CrossrefGoogle Scholar

  • Liu N, Ding S, Cui Y, Xue N, Peng L, Guo X, Ding W. Optimizing activity of tungsten oxides for 1-butene metathesis by depositing silica on γ-alumina support. Chem Eng Res Des 2013; 91: 573–580.CrossrefGoogle Scholar

  • Liu D, Choi WC, Kang NY, Lee YJ, Park HS, Shin C-H, Park Y-K. Inter-conversion of light olefins on ZSM-5 in catalytic naphtha cracking condition. Catal Today 2014a; 226: 52–66.CrossrefGoogle Scholar

  • Liu Z, He X, Cheng R, Eisen MS, Terano M, Scott SL, Liu B. Chapter three – chromium catalysts for ethylene polymerization and oligomerization. In: Guy BM, editor. Advances in chemical engineering, Vol. 44. San Diego, USA: Academic Press, 2014b: 127–191.Google Scholar

  • Liu P, Taylor BLH, Garcia-Lopez J, Houk KN. Computational studies of ruthenium-catalyzed olefin metathesis handbook of metathesis. Weinheim: Wiley-VCH Verlag GmbH and Co. KGaA, 2015: 199–252.Google Scholar

  • Loekman S. Cross-metathesis of propene using supported ionic liquid phase (SILP) catalysts. Erlangen, Germany: Universität Erlangen-Nürnberg, PhD., 2011.Google Scholar

  • Lok BM, Messina CA, Patton RL, Gajek RT, Cannan TR, Flanigen EM. USA Patent No. US4440871 A. US Patent, 1984.

  • López Nieto JM. The selective oxidative activation of light alkanes. From supported vanadia to multicomponent bulk V-containing catalysts. Top Catal 2006; 41: 3–15.CrossrefGoogle Scholar

  • Lu J, Zhao Z, Xu C, Duan A, Zhang P. CrHZSM-5 zeolites – highly efficient catalysts for catalytic cracking of isobutane to produce light olefins. Catal Lett 2006; 109: 65–70.CrossrefGoogle Scholar

  • Lucki SJ. USA Patent No. US3959400 A. US Patent, 1976.

  • Lunsford JH, Qiu P, Rosynek MP, Yu Z. Catalytic conversion of methane and ethylene to propylene. J Phys Chem B 1998; 102: 167–173.CrossrefGoogle Scholar

  • Lwin S, Wachs IE. Olefin metathesis by supported metal oxide catalysts. ACS Catal 2014; 4: 2505–2520.CrossrefGoogle Scholar

  • Lwin S, Wachs IE. Reaction mechanism and kinetics of olefin metathesis by supported ReOx/Al2O3 Catalysts. ACS Catal 2016; 6: 272–278.CrossrefGoogle Scholar

  • Maihom T, Probst M, Liktrakul J. A DFT study of tungsten – methylidene formation on a W/ZSM-5 Zeolite: the metathesis active site. ChemPhysChem 2015; 16: 3334–3339.CrossrefGoogle Scholar

  • Marin GB. Oxidative coupling of methane followed by oligomerization to liquids: towards sustainable production of high quality fuels and petrochemicals. 2014, Retrieved from www.ocmol.eu.

  • Martínez A, Arribas MA, Concepción P, Moussa S. New bifunctional Ni-H-Beta catalysts for the heterogeneous oligomerization of ethylene. Appl Catal A-Gen 2013; 467: 509–518.CrossrefGoogle Scholar

  • Martínez A, Arribas MA, Moussa S. Development of Bifunctional Ni-Based catalysts for the heterogeneous oligomerization of ethylene to liquids. In: Kanellopoulos N, editor. Small-scale gas to liquid fuel synthesis. Boca Raton, USA: CRC Press, 2015: 377–400.Google Scholar

  • Mastikhin VM, Nosov AV, Terskikh VV, Zamaraev KI, Wachs IE. 1H MAS NMR studies of alumina-supported metal oxide catalysts. J Phys Chem 1994; 98: 13621–13624.CrossrefGoogle Scholar

  • Mata R, Amina NAS, Ramlib Z, Bakarb WAWA. Ethylene conversion to higher hydrocarbon over copper loaded BZSM-5 in the presence of oxygen. Proceedings of the 1st International Conference on Natural Resources Engineering and Technology, Putrajaya, Malaysia, 2006.Google Scholar

  • Mathys G, Godsmark JS, Janssen M, Martens LR, Beckers HJ, Van Driessche ETA, Caers RFI, Shutt JR. USA Patent No. US6770791 B2. US Patent, 2004.

  • Matsuda T, Miura H, Sugiyama K, Ohno N, Keino S, Kaise A. Selectivity in ethylene dimerization over supported nickel oxide catalysts. J Chem Soc, Faraday Trans 1 1979; 75: 1513–1520.Google Scholar

  • Maxwell IE, Stork WHJ. Chapter 15 hydrocarbon processing with zeolites. Stud Surf Sci Catal 1991; 58: 571–630.CrossrefGoogle Scholar

  • Mazar MN, Al-Hashimi S, Bhan A, Cococcioni M. Alkane Metathesis by tantalum metal hydride on ferrierite: a computational study. J Phys Chem C 2011; 115: 10087–10096.CrossrefGoogle Scholar

  • Mazoyer E. Novel generation of tungsten-based catalysts grafted on oxides for propylene production. (PhD), Lyon: Université Claude Bernard Lyon 1, 2010.Google Scholar

  • Mazoyer E, Szeto KC, Norsic S, Garron A, Basset J-M, Nicholas CP, Taoufik M. Production of propylene from 1-butene on highly active “bi-functional single active site” catalyst: tungsten carbene-hydride supported on alumina. ACS Catal 2011; 1: 1643–1646.CrossrefGoogle Scholar

  • Mazoyer E, Szeto KC, Basset J-M, Nicholas CP, Taoufik M. High selectivity production of propylene from 2-butene: non-degenerate pathways to convert symmetric olefins via olefin metathesis. Chem Commun 2012; 48: 3611–3613.CrossrefGoogle Scholar

  • Mazoyer E, Szeto KC, Merle N, Norsic S, Boyron O, Basset J-M, Taoufik M, Nicholas CP. Study of ethylene/2-butene cross-metathesis over W-H/Al2O3 for propylene production: effect of the temperature and reactant ratios on the productivity and deactivation. J Catal 2013; 301: 1–7.CrossrefGoogle Scholar

  • Mazoyer E, Szeto KC, Merle N, Thivolle-Cazat J, Boyron O, Basset J-M, Nicholas CP, Taoufik M. Insights into the deactivation mechanism of supported tungsten hydride on alumina (W-H/Al2O3) catalyst for the direct conversion of ethylene to propylene. J Mol Catal A-Chem 2014; 385: 125–132.CrossrefGoogle Scholar

  • McCoy JR, Farona MF. Olefin metathesis over a Re2O7/Al2O3 metathesis catalyst: mechanism for initial metallacarbene formation. J Mol Catal 1991; 66: 51–58.CrossrefGoogle Scholar

  • McGuinness DS. Olefin Oligomerization via metallacycles: dimerization, trimerization, tetramerization, and beyond. Chem Rev 2011; 111: 2321–2341.CrossrefPubMedGoogle Scholar

  • Mestl G. In situ Raman spectroscopy – a valuable tool to understand operating catalysts. J Mol Catal A-Chem 2000; 158: 45–65.CrossrefGoogle Scholar

  • Meyers RA. Handbook of petroleum refining processes, 3rd ed., New York: McGraw-Hill, 2003.Google Scholar

  • Midorikawa H, Tsunoda T, Akagishi K, Yano H, Miyazaki R. USA Patent No. US20100197986 A1. US Patent, 2010.

  • Minnie RO. Patent No. WO2006091986 A1. WO Patents, 2006.

  • Minoura H, Takamatsu Y. USA Patent No. US20100204532 A1. US Patent, 2010.

  • Mlinar AN, Baur GB, Bong GG, Getsoian AB, Bell AT. Propene oligomerization over Ni-exchanged Na-X zeolites. J Catal 2012a; 296: 156–164.CrossrefGoogle Scholar

  • Mlinar AN, Zimmerman PM, Celik FE, Head-Gordon M, Bell AT. Effects of Brønsted-acid site proximity on the oligomerization of propene in H-MFI. J Catal 2012b; 288: 65–73.CrossrefGoogle Scholar

  • Mol JC. Olefin metathesis over supported rhenium oxide catalysts. Catal Today 1999; 51: 289–299.CrossrefGoogle Scholar

  • Mol JC. Industrial applications of olefin metathesis. J Mol Catal A-Chem 2004; 213: 39–45.CrossrefGoogle Scholar

  • Mol JC, Andreini A. Activity and selectivity of rhenium-based catalysts for alkene metathesis. J Mol Catal 1988; 46: 151–156.CrossrefGoogle Scholar

  • Motyl KM, Norton JR, Schauer CK, Anderson OP. Synthesis and structure of diosmacycloalkanes. Reversible addition of ethylene to a methylene-bridged dimer. J Am Chem Soc 1982; 104: 7325–7327.CrossrefGoogle Scholar

  • Moulijn JA, van Diepen AE, Kapteijn F. Deactivation and regeneration handbook of heterogeneous catalysis. Wiley-VCH Verlag GmbH and Co. KGaA, 2008.Google Scholar

  • Moussa S, Arribas MA, Concepción P, Martínez A. Heterogeneous oligomerization of ethylene to liquids on bifunctional Ni-based catalysts: the influence of support properties on nickel speciation and catalytic performance. Catal Today 2016; 277: 78–88.CrossrefGoogle Scholar

  • Nakamura R, Echigoya E. Structure and nature of active sites on an O2-/Re oxide/alumina metathesis catalyst. J Mol Catal 1982; 15: 147–156.CrossrefGoogle Scholar

  • Namuangruk S, Pantu P, Limtrakul J. Investigation of ethylene dimerization over faujasite zeolite by the ONIOM method. ChemPhysChem 2005; 6: 1333–1339.PubMedCrossrefGoogle Scholar

  • Nawaz Z, Tang X, Cui Y, Wei F. 1-Hexene catalytic cracking to propylene using shape selective molecular sieve SAPO-34 zeolite. Arab J Sci Eng 2010; 35: 15–24.Google Scholar

  • Negishi E-I, Takahashi T. Patterns of stoichiometric and catalytic reactions of organozirconium and related complexes of synthetic interest. Acc Chem Res 1994; 27: 124–130.CrossrefGoogle Scholar

  • Nelson DJ, Manzini S, Urbina-Blanco CA, Nolan SP. Key processes in ruthenium-catalysed olefin metathesis. Chem Commun 2014; 50: 10355–10375.CrossrefGoogle Scholar

  • Nexant. Petrochemical outlook: challenges and opportunities. EU-OPEC Energy Dialogue, Vienna, 2014.Google Scholar

  • Ng FTT, Creaser DC. Ethylene dimerization over modified nickel exchanged Y-zeolite. Appl Catal A-Gen 1994; 119: 327–339.CrossrefGoogle Scholar

  • Nguyen LH, Vazhnova T, Kolaczkowski ST, Lukyanov DB. Combined experimental and kinetic modelling studies of the pathways of propane and -butane aromatization over H-ZSM-5 catalyst. Chem Eng Sci 2006; 61: 5881–5894.CrossrefGoogle Scholar

  • Nicolaides CP, Scurrell MS, Semano PM. Nickel silica-alumina catalysts for ethene oligomerization – control of the selectivity to 1-alkene products. Appl Catal A-Gen 2003; 245: 43–53.CrossrefGoogle Scholar

  • Nkosi B, Ng FTT, Rempel GL. The oligomerization of butenes with partially alkali exchanged NiNaY zeolite catalysts. Appl Catal A-Gen 1997; 158: 225–241.CrossrefGoogle Scholar

  • Nyce G, Scher EC, Madgavkar A, Weinberger S, Iyer R, Peck L, Herger J, Saydah B. Patent No. US20140171707 A1. US Patents, 2014.

  • O’Neill PP, Rooney JJ. Direct transformation of ethylene to propylene on an olefin metathesis catalyst. J Am Chem Soc 1972; 94: 4383–4384.CrossrefGoogle Scholar

  • Oikawa H, Shibata Y, Inazu K, Iwase Y, Murai K, Hyodo S, Kobayashi G, Baba T. Highly selective conversion of ethene to propene over SAPO-34 as a solid acid catalyst. Appl Catal A-Gen 2006; 312: 181–185.CrossrefGoogle Scholar

  • Olsbye U, Svelle S, Bjørgen M, Beato P, Janssens TVW, Joensen F, Bordiga S, Lillerud KP. Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Angew Chem Int Edit 2012; 51: 5810–5831.CrossrefGoogle Scholar

  • Olsthoorn AA, Boelhouwer C. An infrared spectroscopic study of the Re2O7Al2O3 metathesis catalyst. J Catal 1976; 44: 207–216.CrossrefGoogle Scholar

  • Ono T, Anpo M, Kubokawa Y. Catalytic activity and structure of molybdenum trioxide highly dispersed on silica. J Phys Chem 1986; 90: 4780–4784.CrossrefGoogle Scholar

  • Oviol L, Bruns M, Fridman V, Merriam J, Urbancic M. Mind the gap. Hydrocarbon Eng 2012; 17: 70–73.Google Scholar

  • Pae Y-I, Sohn J-R. Characterization of NiSO4 supported on Fe2O3 and catalytic properties for ethylene dimerization. Bull Korean Chem Soc 2007; 28: 1273–1279.CrossrefGoogle Scholar

  • Pakiari AH, Pahlavan F. The electronic structures of small Nin (n=2–4) clusters and their interactions with ethylene and triplet oxygen: a theoretical study. ChemPhysChem 2014; 15: 4055–4066.CrossrefGoogle Scholar

  • Perry RH, Green DW. Perry’s chemical engineers’ handbook, 8th ed. New York: McGraw-Hill, 2007.Google Scholar

  • Popoff N, Mazoyer E, Pelletier J, Gauvin RM, Taoufik M. Expanding the scope of metathesis: a survey of polyfunctional, single-site supported tungsten systems for hydrocarbon valorization. Chem Soc Rev 2013; 42: 9035–9054.CrossrefPubMedGoogle Scholar

  • Potter T. Developments in energy and feedstock markets and the impact on petrochemicals. 34th Latin American Petrochemical Annual Meeting 2015.Google Scholar

  • Quann RJ, Green LA, Tabak SA, Krambeck FJ. Chemistry of olefin oligomerization over ZSM-5 catalyst. Ind Eng Chem Res 1988; 27: 565–570.CrossrefGoogle Scholar

  • Radhakrishnan R, Reed C, Oyama ST, Seman M, Kondo JN, Domen K, Ohminami Y, Asakura K. Variability in the structure of supported MoO3 catalysts: studies using Raman and X-ray absorption spectroscopy with ab initio calculations. J Phys Chem B 2001; 105: 8519–8530.CrossrefGoogle Scholar

  • Ramachandran B, Choi S, Gartside RJ, Kleindienst S, Ruettinger W, Alerasool S. USA Patent No. US8440874 B2. US Patent, 2013.

  • Ramachandran B, Choi S, Gartside RJ, Kleindienst S, Ruettinger W, Alerasool S. USA Patent No. US9023753 B2. US Patent, 2015.

  • Rappe AK, Goddard WA. Olefin metathesis – a mechanistic study of high-valent Group VI catalysts. J Am Chem Soc 1982; 104: 448–456.CrossrefGoogle Scholar

  • Razak M. Asian olefins amidst changing landscape. Platts Olefins Asia, 2014.Google Scholar

  • Reusser RE. USA Patent No. US3689589 A. US Patent, 1972.

  • Roscioni OM. A Computational study of supported rhodium catalysts. Southampton, UK: University of Southampton, PhD., 2009.Google Scholar

  • Rossini S. The impact of catalytic materials on fuel reformulation. Catal Today 2003; 77: 467–484.CrossrefGoogle Scholar

  • Rouhi AM. Olefin metathesis: the early days. Chem Eng News 2002; 80: 34–38.Google Scholar

  • Salameh A, Copéret C, Basset J-M, Böhm VPW, Röper M. Rhenium(VII) oxide/aluminum oxide: more experimental evidence for an oxametallacyclobutane intermediate and a pseudo-wittig initiation step in olefin metathesis. Adv Synth Catal 2007; 349: 238–242.CrossrefGoogle Scholar

  • Sanfilippo D, Miracca I. Dehydrogenation of paraffins: synergies between catalyst design and reactor engineering. Catal Today 2006; 111: 133–139.CrossrefGoogle Scholar

  • Sattler JJHB, Ruiz-Martinez J, Santillan-Jimenez E, Weckhuysen BM. Catalytic Dehydrogenation of light alkanes on metals and metal oxides. Chem Rev 2014; 114: 10613–10653.PubMedCrossrefGoogle Scholar

  • Sayfulina LF, Buluchevskiy EA, Lavrenov AV. Direct synthesis of propylene from ethylene over PdO-Re2O7/SO42-/ZrO2 Catalyst. J Siber Fed Univ Chem 2014; 4: 527–536.Google Scholar

  • Sayfulina LF, Buluchevskiy EA, Lavrenov AV, Gulyaeva TI, Trenikhin MD, Protasova OV, Gerasimov EY, Gulyaev RV, Drozdov VA. Direct synthesis of propylene from ethylene over palladium containing catalysts: influence of the support nature. Adv Mater Res 2015; 1085: 17–22.CrossrefGoogle Scholar

  • Schmidt LD, Siddall J, Bearden M. New ways to make old chemicals. AIChE J 2000; 46: 1492–1495.CrossrefGoogle Scholar

  • Scholz J. About the development of a process for the on-purpose production of propene out of ethene via a sequence of dimerization, isomerization and cross-metathesis. Erlangen, Germany: Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Technische Fakultät, PhD., 2013.Google Scholar

  • Scholz J, Hager V, Wang X, Kohler FTU, Sternberg M, Haumann M, Szesni N, Meyer K, Wasserscheid P. Ethylene to 2-butene in a continuous gas phase reaction using SILP-type cationic nickel catalysts. ChemCatChem 2014; 6: 162–169.CrossrefGoogle Scholar

  • Schrock RR. Olefin metathesis by molybdenum imido alkylidene catalysts. Tetrahedron 1999; 55: 8141–8153.CrossrefGoogle Scholar

  • Schrock RR, Hoveyda AH. Molybdenum and tungsten imido alkylidene complexes as efficient olefin-metathesis catalysts. Angew Chem Int Edit 2003; 42: 4592–4633.CrossrefGoogle Scholar

  • Schwab P, Höhn A. USA Patent No. US6271430 B2. Google Patents, 2001.

  • Scurrell M. Oligomerization of low concentrations of ethene. Appl Catal 1990; 63: N24–N25.Google Scholar

  • Sekhar MVC. Methylation of ethylene over Lewis-acid catalysts. ACS Fuel, Washington, 1994.Google Scholar

  • Serna P, Gates BC. A bifunctional mechanism for ethene dimerization: catalysis by rhodium complexes on zeolite HY in the absence of halides. Angew Chem Int Edit 2011; 50: 5528–5531.CrossrefGoogle Scholar

  • Setoyama T, Yoshikawa Y, Nakagawa K. USA Patent No. US20060229482 A1. US Patent, 2006.

  • Sibeijn M, Spronk R, Veen JAR, Mol JC. IR studies of Re2O7 metathesis catalysts supported on alumina and phosphated alumina. Catal Lett 1991; 8: 201–208.CrossrefGoogle Scholar

  • Singh OM. Metathesis catalysts: historical perspective, recent developments and practical applications. J Sci Ind Res 2006; 65: 957–965.Google Scholar

  • Sohn J. Correlation between acidic properties of nickel catalysts and catalytic activities for ethylene dimerization and butene isomerization. Catal Surv Asia 2004; 8: 249–263.CrossrefGoogle Scholar

  • Sohn JR, Ozaki A. Structure of NiO-SiO2 catalyst for ethylene dimerization as observed by infrared absorption. J Catal 1979; 59: 303–310.CrossrefGoogle Scholar

  • Sohn JR, Ozaki A. Acidity of nickel silicate and its bearing on the catalytic activity for ethylene dimerization and butene isomerization. J Catal 1980; 61: 29–38.CrossrefGoogle Scholar

  • Sohn J-R, Kim H-J. New synthesis of solid catalyst for ethylene dimerization. Bull Korean Chem Soc 1985; 6: 248–249.Google Scholar

  • Sohn JR, Park JH. Characterization of dealuminated NiY zeolite and catalytic activity for ethylene dimerization. J Ind Eng Chem 1998a; 4: 308–313.Google Scholar

  • Sohn JR, Park WC. Nickel sulfate supported on γ-Al2O3 for ethylene dimerization. J Mol Catal A-Chem 1998b; 133: 297–301.CrossrefGoogle Scholar

  • Sohn JR, Park WC. New NiSO4/ZrO2 Catalyst for ethylene dimerization. Bull Korean Chem Soc 1999; 20: 1261–1262.Google Scholar

  • Sohn J, Park W. Ethylene dimerization catalyst of nickel sulfate supported on silica-alumina. Korean J Chem Eng 2000a; 17: 727–730.CrossrefGoogle Scholar

  • Sohn JR, Park WC. New Syntheses of active solid catalysts for ethylene dimerization. Bull Korean Chem Soc 2000b; 21: 1063–1064.Google Scholar

  • Sohn JR, Park JH. Characterization of dealuminated NiY zeolite and effect of dealumination on catalytic activity for ethylene dimerization. Appl Catal A-Gen 2001; 218: 229–234.CrossrefGoogle Scholar

  • Sohn J, Park W, Park S-E. Characterization of nickel sulfate supported on SiO2-Al2O3 for ethylene dimerization and its relationship to acidic properties. Catal Lett 2002a; 81: 259–264.CrossrefGoogle Scholar

  • Sohn JR, Park WC, Kim HW. Characterization of nickel sulfate supported on γ-Al2O3 for ethylene dimerization and its relationship to acidic properties. J Catal 2002b; 209: 69–74.CrossrefGoogle Scholar

  • Sohn JR, Lee MH, Shin DC. Promoting effect of Al2O3 on catalytic activity of NiSO4/SiO2 for acid catalysis. J Ind Eng Chem 2006a; 12: 710–719.Google Scholar

  • Sohn JR, Park WC, Shin DC. Characterization of nickel sulfate supported on SiO2 for ethylene dimerization and promoting effect of Al2O3 on catalytic activity. J Mol Catal A-Chem 2006b; 256: 156–163.CrossrefGoogle Scholar

  • Speiser F, Braunstein P, Saussine L. Catalytic ethylene dimerization and oligomerization: recent developments with nickel complexes containing P, N-chelating ligands. Acc Chem Res 2005; 38: 784–793.CrossrefPubMedGoogle Scholar

  • Spoto G, Bordiga S, Ricchiardi G, Scarano D, Zecchina A, Borello E. IR study of ethene and propene oligomerization on H-ZSM-5: hydrogen-bonded precursor formation, initiation and propagation mechanisms and structure of the entrapped oligomers. J Chem Soc, Faraday Trans 1994; 90: 2827–2835.CrossrefGoogle Scholar

  • Spronk R, Mol JC. Regeneration of rhenium-based catalysts for the metathesis of propene. Appl Catal 1991; 76: 143–152.CrossrefGoogle Scholar

  • Stanley S, Barros Jd, Gardner F. Increasing petrochemicals project earnings by upgrading steam cracker C4s and C5s. 1st Indian Oil Petrochemical Conclave, 2012.Google Scholar

  • Suib SL. New and future developments in catalysis: hybrid materials, composites, and organocatalysts. Amsterdam: Elsevier, 2013.Google Scholar

  • Sumner C. USA Patent No. US7223895 B2. US Patent, 2007.

  • Sun W-H, Zhang S, Zuo W. Our variations on iron and cobalt catalysts toward ethylene oligomerization and polymerization. C R Chim 2008; 11: 307–316.CrossrefGoogle Scholar

  • Suzuki T. Homologation of ethylene without metathesis on silica supported ruthenium catalyst. React Kinet Catal Lett 2004; 81: 327–331.CrossrefGoogle Scholar

  • Suzuki T. Selective ethene homologation reaction on silica supported cobalt catalyst. React Kinet Catal Lett 2007; 90: 61–68.CrossrefGoogle Scholar

  • Suzuki T, Hayashi S, Hirai T, Tanaka K, Toyoshima I. Modification of molybdena-silica catalyst for ethylene homologation reaction. React Kinet Catal Lett 1989a; 40: 1–6.CrossrefGoogle Scholar

  • Suzuki T, Tanaka K, Toyoshima I. Discrimination of active sites for ethylene homologation and ethylene metathesis on molybdena silica catalyst. React Kinet Catal Lett 1989b; 38: 209–213.CrossrefGoogle Scholar

  • Suzuki T, Hirai T, Hayashi S. Enhancement of the ethylene conversion to propylene on reduced molybdena silica catalyst in the presence of hydrogen. Int J Hydrogen Energ 1991; 16: 345–348.CrossrefGoogle Scholar

  • Svelle S, Kolboe S, Swang O. Theoretical investigation of the dimerization of linear alkenes catalyzed by acidic zeolites. J Phys Chem B 2004; 108: 2953–2962.CrossrefGoogle Scholar

  • SynFuels. Carbon conversion and product yield for different hydrocarbons in the synfuels process. 2013a, Retrieved from http://www.synfuels.com/Heavy_Conversion_001.pdf.

  • SynFuels. The ethane crisis. 2013b, Retrieved from http://www.synfuels.com/ETG.html.

  • SynFuels. Internal rate of return for ethane to gasoline blendstock (ETG). 2013c, Retrieved from http://www.synfuels.com.

  • SynFuels. Synfuels gas to liquids (GTL). 2013d, Retrieved from http://www.synfuels.com/GTL.html.

  • Szanyi J, Paffett MT. Ethylene dimerization over a model Sn/Pt(111) catalyst. Catal Lett 1994; 29: 133–143.CrossrefGoogle Scholar

  • Szeto KC, Hardou L, Merle N, Basset J-M, Thivolle-Cazat J, Papaioannou C, Taoufik M. Selective conversion of butane into liquid hydrocarbon fuels on alkane metathesis catalysts. Catal Sci Technol 2012; 2: 1336–1339.CrossrefGoogle Scholar

  • Takahashi N, Fujiwara Y, Mijin A. Reaction of ethylene/propylene mixture over Rh-Y zeolite. Zeolites 1985; 5: 363–364.CrossrefGoogle Scholar

  • Takai T, Ikenaga H, Kotani M, Miyazoe S. USA Patent No. US20110152595 A1. US Patent, 2011.

  • Takamatsu Y, Miyazaki R. USA Patent No. US8450551 B2. US Patent, 2013.

  • Tanaka K, Tanaka K-i. Selective promotion of the catalytic ethene homologation reaction by KOH on an MoOx/SiO2 catalyst. J Chem Soc, Chem Commun 1984; 1626–1627.Google Scholar

  • Tanaka K, Tanaka K-i. Reactive intermediates for the ethene homologation reaction on molybdena-silica catalysts. J Chem Soc, Faraday Trans 1 1987; 83: 1859–1868.CrossrefGoogle Scholar

  • Tanaka M, Itadani A, Kuroda Y, Iwamoto M. Effect of pore size and nickel content of Ni-MCM-41 on catalytic activity for ethene dimerization and local structures of nickel ions. J Phys Chem C 2012a; 116: 5664–5672.CrossrefGoogle Scholar

  • Tanaka M, Kuroda Y, Iwamoto M. Reply to “Comment on ‘Effect of Pore Size and Nickel Content of Ni-MCM-41 on Catalytic Activity for Ethene Dimerization and Local Structures of Nickel Ions’”. J Phys Chem C 2012b; 116: 22649–22651.CrossrefGoogle Scholar

  • Taoufik M, Le Roux E, Thivolle-Cazat J, Copéret C, Basset J-M, Maunders B, Sunley GJ. Alumina supported tungsten hydrides, new efficient catalysts for alkane metathesis. Top Catal 2006; 40: 65–70.CrossrefGoogle Scholar

  • Taoufik M, Le Roux E, Thivolle-Cazat J, Basset J-M. Direct transformation of ethylene into propylene catalyzed by a tungsten hydride supported on alumina: trifunctional single-site catalysis. Angew Chem 2007a; 119: 7340–7343.CrossrefGoogle Scholar

  • Taoufik M, Le Roux E, Thivolle-Cazat J, Basset J-M. Direct transformation of ethylene into propylene catalyzed by a tungsten hydride supported on alumina: trifunctional single-site catalysis. Angew Chem Int Ed 2007b; 46: 7202–7205.CrossrefGoogle Scholar

  • Thomas JM. The societal significance of catalysis and the growing practical importance of single-site heterogeneous catalysts. P Roy Soc A-Math Phy 2012; 468: 1884–1903.CrossrefGoogle Scholar

  • Thomas R, Moulijn JA. A comparative study of γ-alumina supported molybdenum and tungsten oxide: relation between metathesis activity and reducibility. J Mol Catal 1982; 15: 157–172.CrossrefGoogle Scholar

  • Toch K, Thybaut JW, Arribas MA, Martinez A, Marin GB. Ethylene Oligomerization catalyst optimization using fundamental kinetic modeling. 2011 AIChE Annual Meeting, Minneapolis, U.S., 2011.Google Scholar

  • Toch K, Thybaut JW, Marin GB. Industrial reactor design for heterogeneously catalyzed ethene oligomerization. Annual Meeting, 2013.Google Scholar

  • Toch K, Thybaut JW, Marin GB. Ethene oligomerization on Ni-SiO2-Al2O3: experimental investigation and single-event microkinetic modeling. Appl Catal A-Gen 2015; 489: 292–304.CrossrefGoogle Scholar

  • Tognetti V, Buchard A, Auffrant A, Ciofini I, Le Floch P, Adamo C. Ethylene dimerization catalyzed by mixed phosphine-iminophosphorane nickel(II) complexes: a DFT investigation. J Mol Model 2013; 19: 2107–2118.CrossrefPubMedGoogle Scholar

  • Turek AM, Wachs IE, DeCanio E. Acidic properties of alumina-supported metal oxide catalysts: an infrared spectroscopy study. J Phys Chem 1992; 96: 5000–5007.CrossrefGoogle Scholar

  • Urabe K, Koga M, Izumi Y. Synthetic Ni-substituted saponite as a catalyst for selective dimerization of ethene. J Chem Soc, Chem Commun 1989: 807–808.Google Scholar

  • van den Berg JP, Wolthuizen JP, Clague ADH, Hays GR, Huis R, van Hooff JHC. Low-temperature oligomerization of small olefins on zeolite H-ZSM-5. An investigation with high-resolution solid-state 13C-NMR. J Catal 1983; 80: 130–138.CrossrefGoogle Scholar

  • van Leeuwen PWNM, Chadwick JC. Homogeneous catalysts: activity-stability-deactivation. Weinheim: Wiley-VCH Verlag and Co. KGaA, 2011.Google Scholar

  • Vang RT, Honkala K, Dahl S, Vestergaard EK, Schnadt J, Lægsgaard E, Clausen BS, Nørskov JK, Besenbacher F. Ethylene dissociation on flat and stepped Ni(111): a combined STM and DFT study. Surf Sci 2006; 600: 66–77.CrossrefGoogle Scholar

  • Veljanovski D. Synthesis and characterization of heterogeneous rhenium and molybdenum catalysts: applications in olefin metathesis and olefin epoxidation. (PhD): Technische Universität München, 2009.Google Scholar

  • Vikulov KA, Elev IV, Shelimov BN, Kazansky VB. IR and UV-vis spectroscopic studies of the stable Mo=CH2 carbene complexes over photoreduced silica-molybdena catalysts with chemisorbed cyclopropane, and their role in olefin metathesis reactions. J Mol Catal 1989; 55: 126–145.CrossrefGoogle Scholar

  • Vikulov KA, Shelimov BN, Kazansky VB. Determination of the Mo=C bond energy in Mo=CH2 carbene complex on the surface of photoreduced silica – molybdena catalysts based on calorimetric measurements. J Mol Catal 1992; 72: 1–11.CrossrefGoogle Scholar

  • Vikulov KA, Shelimov BN, Kazansky VB, Mol JC. Deactivation mechanism of photoreduced and cyclopropane-treated molybdena/silica catalysts for olefin metathesis. J Mol Catal 1994; 90: 61–67.CrossrefGoogle Scholar

  • von Aretin T, Standl S, Tonigold M, Hinrichsen O. Optimization of the product spectrum for 1-pentene cracking on ZSM-5 using single-event methodology. Part 1: Two-zone reactor. Chem Eng J 2017; 309: 886–897.CrossrefGoogle Scholar

  • Vuurman MA, Stufkens DJ, Oskam A, Wachs IE. Structural determination of surface rhenium oxide on various oxide supports (Al2O3, ZrO2, TiO2 and SiO2). J Mol Catal 1992; 76: 263–285.CrossrefGoogle Scholar

  • Vuurman MA, Wachs IE. In situ Raman spectroscopy of alumina-supported metal oxide catalysts. J Phys Chem 1992; 96: 5008–5016.CrossrefGoogle Scholar

  • Wachs IE. Infrared spectroscopy of supported metal oxide catalysts. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1995; 105: 143–149.CrossrefGoogle Scholar

  • Wan VY. Propylene production via metathesis of ethylene and butenes (Report No. PEP Review 2011-04). 2011, Retrieved from Process Economics Program.Google Scholar

  • Wan VY. Propylene Production via the ethylene dimerization and OCT technology (Report No. PEP Review 2013-05). 2013, Retrieved from Process Economics Program.Google Scholar

  • Wang L, Hall WK. The preparation and properties of rhenia-alumina catalysts. J Catal 1983; 82: 177–184.CrossrefGoogle Scholar

  • Wang S, Zhu ZH. Catalytic conversion of alkanes to olefins by carbon dioxide oxidative dehydrogenations – a review. Energ Fuel 2004; 18: 1126–1139.CrossrefGoogle Scholar

  • Wendt G, Fritsch E, Deininger D, Schöllner R. Studies on nickel oxide mixed catalysts, V. Propene dimerization on NiO-Al2O3/SiO2 catalysts. React Kinet Catal Lett 1981; 16: 137–141.CrossrefGoogle Scholar

  • Wendt G, Hentschel D, Finster J, Schollner R, Hanafi S, Mikhail RS. Studies on nickel oxide mixed catalysts. Part 12. Characterization of NiO/Al2O3-SiO2 catalysts. J Chem Soc, Faraday Trans 1 1983; 79: 2013–2025.CrossrefGoogle Scholar

  • Wilson S, Barger P. The characteristics of SAPO-34 which influence the conversion of methanol to light olefins. Micropor Mesopor Mat 1999; 29: 117–126.CrossrefGoogle Scholar

  • Xiaoding X, Boelhouwer C, Vonk D, Benecke J, Mol JC. A model for the generation of active sites of rhenium-containing metathesis catalysts. J Mol Catal 1986; 36: 47–66.CrossrefGoogle Scholar

  • Xu W, Lin C, Liu H, Yu H, Tao K, Zhou S. Tandem catalytic conversion of 1-butene and ethene to propene over combined mesoporous W-FDU-12 and MgO catalysts. RSC Advances 2015; 5: 23981–23989.CrossrefGoogle Scholar

  • Yablonsky GS, Redekop EA, Constales D, Gleaves JT, Marin GB. Rate-reactivity model: a new theoretical basis for systematic kinetic characterization of heterogeneous catalysts. Int J Chem Kinet 2016; 48: 304–317.CrossrefGoogle Scholar

  • Yamaguchi T, Tanaka Y, Tanabe K. Isomerization and disproportionation of olefins over tungsten oxides supported on various oxides. J Catal 1980; 65: 442–447.CrossrefGoogle Scholar

  • Yamaguchi T, Nakamura S, Tanabe K. Homologation of ethene over supported tungsten oxide; abnormal formation of branched products. J Chem Soc, Chem Commun 1982; 621–622.Google Scholar

  • Yamamura M, Chaki K, Wakatsuki T, Okado H, Fujimoto K. Synthesis of ZSM-5 zeolite with small crystal size and its catalytic performance for ethylene oligomerization. Zeolites 1994; 14: 643–649.CrossrefGoogle Scholar

  • Yang H, Tsang SCE. Transformation of ethylene to higher hydrocarbons on silica-supported Ir catalysts: the nature of carbonaceous deposits. Appl Petrochem Res 2012; 2: 85–91.CrossrefGoogle Scholar

  • Yaws CL. Yaws’ Handbook of thermodynamic and physical properties of chemical compounds. Norwich, New York: McGraw-Hill, 2003.Google Scholar

  • Ye M, Li H, Zhao Y, Zhang T, Liu Z. Chapter five – MTO processes development: the key of mesoscale studies. In: Marin GB, Li J, editors. Advances in chemical engineering, Vol. 47. London, UK: Academic Press, 2015: 279–335.Google Scholar

  • Yide X, Xinguang W, Yingzhen S, Yihua Z, Xiexian G. Effect of various pretreatments on rhenium oxide-alumina catalysts: the structure and activity of active sites for propene metathesis. J Mol Catal 1986; 36: 79–89.CrossrefGoogle Scholar

  • Yilmazer ND, Fellah MF, Onal I. A density functional theory study of ethylene adsorption on Ni10(111), Ni13(100) and Ni10(110) surface cluster models and Ni13 nanocluster. Appl Surf Sci 2010; 256: 5088–5093.CrossrefGoogle Scholar

  • Zahn VM, Wolff T, Lehmann T, Hamel C, Seidel-Morgenstern A. Direct synthesis of propene using supported bifunctional nickel catalysts: preparation and potential. ISCRE 21–21st International Symposium on Chemical Reaction Engineering, 2010.Google Scholar

  • Zhang Q, Dalla Lana IG. An analysis of mass transfer and kinetics during ethylene oligomerization over nickel/sulfated alumina catalyst in a slurry reactor. Chem Eng Sci 1997; 52: 4187–4195.CrossrefGoogle Scholar

  • Zhang B, Li Y, Lin Q, Jin D. A study of MoO3/SiO2 metathesis catalyst break-in: active site formation and characterisation. J Mol Catal 1988; 46: 229–241.CrossrefGoogle Scholar

  • Zhang B, Liu N, Lin Q, Jin D. The effects of Mo oxidation states on olefin metathesis. J Mol Catal 1991; 65: 15–28.CrossrefGoogle Scholar

  • Zhang H, Li X, Zhang Y, Lin S, Li G, Chen L, Fang Y, Xin H, Li X. Ethylene oligomerization over heterogeneous catalysts. Energ Environ Focus 2014; 3: 246–256.CrossrefGoogle Scholar

  • Zhao Q, Chen S, Gao J, Xu C, Li D, Zhao Z. Direct synthesis of W-SBA-15 catalysts and their catalytic performance for metathesis of ethylene and 2-butene to propylene. CIESC J 2009; 60: 75–82.Google Scholar

  • Zhao Z-J, Chiu C-c, Gong J. Molecular understandings on the activation of light hydrocarbons over heterogeneous catalysts. Chem Sci 2015; 6: 4403–4425.PubMedCrossrefGoogle Scholar

  • Zheng A, Zhang H, Chen L, Yue Y, Ye C, Deng F. Relationship between 1H chemical shifts of deuterated pyridinium ions and Brønsted acid strength of solid acids. J Phys Chem B 2007; 111: 3085–3089.CrossrefPubMedGoogle Scholar

  • Zhu X, Liu S, Song Y, Xu L. Butene catalytic cracking to propene and ethene over potassium modified ZSM-5 catalysts. Catal Lett 2005; 103: 201–210.CrossrefGoogle Scholar

  • Zhu Q, Kondo JN, Setoyama T, Yamaguchi M, Domen K, Tatsumi T. Activation of hydrocarbons on acidic zeolites: superior selectivity of methylation of ethene with methanol to propene on weakly acidic catalysts. Chem Commun 2008; 5164–5166.Google Scholar

  • Zhu X, Li X, Xie S, Liu S, Xu G, Xin W, Huang S, Xu L. Two new on-purpose processes enhancing propene production: catalytic cracking of C4 alkenes to propene and metathesis of ethene and 2-butene to propene. Catal Surv Asia 2009; 13: 1–8.CrossrefGoogle Scholar

  • Zhu F, Wang L, Yu H. Recent research progress in preparation of ethylene oligomers with chromium-based catalytic systems. Des Monomers Polym 2011; 14: 1–23.CrossrefGoogle Scholar

  • Zikánová A, Derewiński M, Sarv P, Hudec P, Hrabánek P, Kočiřík M. The effect of immobilization/mobilization processes on the temperature onset of a catalyst bed production studied with ethylene oligomerization on HZSM-5 zeolites. Catal Today 2006; 114: 248–256.CrossrefGoogle Scholar

About the article

Mohammad Ghashghaee

Mohammad Ghashghaee received his BSc in Chemical Engineering (Petrochemical Engineering) from AmirKabir University of Technology (Polytechnic of Tehran) and his MSc in Chemical Engineering (Process Design) from Tarbiat Modares University (TMU). He earned his PhD in Chemical Engineering (Process Design, Simulation, and Control) from TMU in 2012 and joined the Faculty of Petrochemicals at Iran Polymer and Petrochemical Institute in 2014 as an assistant professor. His research interests in the area of petrochemicals include process design for the production of light olefins and biomonomers with applications that span different reactions such as cracking, dehydrogenation, hydrogenation, oligomerization, and metathesis, as well as different aspects such as catalysis, kinetics, adsorption, simulation, and control.


Received: 2017-01-20

Accepted: 2017-07-21

Published Online: 2017-09-13

Published in Print: 2018-08-28


Citation Information: Reviews in Chemical Engineering, Volume 34, Issue 5, Pages 595–655, ISSN (Online) 2191-0235, ISSN (Print) 0167-8299, DOI: https://doi.org/10.1515/revce-2017-0003.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[3]
Mohammad Ghashghaee and Mehdi Ghambarian
Computational Materials Science, 2018, Volume 155, Page 197
[4]
Mohammad Ghashghaee and Samira Shirvani
Industrial & Engineering Chemistry Research, 2018

Comments (0)

Please log in or register to comment.
Log in