Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews on Environmental Health

Editor-in-Chief: Carpenter, David O. / Sly, Peter

Editorial Board: Brugge, Doug / Edwards, John W. / Field, R.William / Garbisu, Carlos / Hales, Simon / Horowitz, Michal / Lawrence, Roderick / Maibach, H.I. / Shaw, Susan / Tao, Shu / Tchounwou, Paul B.

IMPACT FACTOR 2018: 1.616

CiteScore 2018: 1.69

SCImago Journal Rank (SJR) 2018: 0.508
Source Normalized Impact per Paper (SNIP) 2018: 0.664

See all formats and pricing
More options …
Volume 28, Issue 2-3


Using the Hill viewpoints from 1965 for evaluating strengths of evidence of the risk for brain tumors associated with use of mobile and cordless phones1)

Lennart Hardell / Michael Carlberg
Published Online: 2013-11-06 | DOI: https://doi.org/10.1515/reveh-2013-0006


Background: Wireless phones, i.e., mobile phones and cordless phones, emit radiofrequency electromagnetic fields (RF-EMF) when used. An increased risk of brain tumors is a major concern. The International Agency for Research on Cancer (IARC) at the World Health Organization (WHO) evaluated the carcinogenic effect to humans from RF-EMF in May 2011. It was concluded that RF-EMF is a group 2B, i.e., a “possible”, human carcinogen. Bradford Hill gave a presidential address at the British Royal Society of Medicine in 1965 on the association or causation that provides a helpful framework for evaluation of the brain tumor risk from RF-EMF.

Methods: All nine issues on causation according to Hill were evaluated. Regarding wireless phones, only studies with long-term use were included. In addition, laboratory studies and data on the incidence of brain tumors were considered.

Results: The criteria on strength, consistency, specificity, temporality, and biologic gradient for evidence of increased risk for glioma and acoustic neuroma were fulfilled. Additional evidence came from plausibility and analogy based on laboratory studies. Regarding coherence, several studies show increasing incidence of brain tumors, especially in the most exposed area. Support for the experiment came from antioxidants that can alleviate the generation of reactive oxygen species involved in biologic effects, although a direct mechanism for brain tumor carcinogenesis has not been shown. In addition, the finding of no increased risk for brain tumors in subjects using the mobile phone only in a car with an external antenna is supportive evidence. Hill did not consider all the needed nine viewpoints to be essential requirements.

Conclusion: Based on the Hill criteria, glioma and acoustic neuroma should be considered to be caused by RF-EMF emissions from wireless phones and regarded as carcinogenic to humans, classifying it as group 1 according to the IARC classification. Current guidelines for exposure need to be urgently revised.

Keywords: acoustic neuroma; causation; glioma; Hill criteria; wireless phones


  • 1.

    Post-och Telestyrelsen. Svensk Telemarknad första halvåret 2011. Available at: http://www.pts.se/upload/Rapporter/Tele/2011/sv-telemarknad-halvar-2011-pts-er-2011-21.pdf. Accessed on May 31, 2013.

  • 2.

    International Telecommunication Union. The world in 2011 – ICT facts and figures. Available at: http://www.itu.int/ITU-D/ict/facts/2011/material/ICTFactsFigures2011.pdf. Accessed on May 31, 2013.

  • 3.

    Hardell L, Carlberg M, Hansson Mild K. Pooled analysis of two case-control studies on the use of cellular and cordless telephones and the risk of benign brain tumours diagnosed during 1997–2003. Int J Oncol 2006;28:509–18.Google Scholar

  • 4.

    Hardell L, Carlberg M, Hansson Mild K. Pooled analysis of two case-control studies on use of cellular and cordless telephones and the risk for malignant brain tumours diagnosed in 1997–2003. Int Arch Occup Environ Health 2006;79:630–9.Google Scholar

  • 5.

    Hardell L, Carlberg M. Mobile phones, cordless phones and the risk for brain tumours. Int J Oncol 2009;35:5–17.PubMedGoogle Scholar

  • 6.

    Hardell L, Carlberg M, Hansson Mild K. Pooled analysis of case-control studies on malignant brain tumours and the use of mobile and cordless phones including living and deceased subjects. Int J Oncol 2011;38:1465–74.Google Scholar

  • 7.

    Hardell L, Carlberg M, Hansson Mild K. Re-analysis of risk for glioma in relation to mobile telephone use: comparison with the results of the Interphone international case-control study. Int J Epidemiol 2011;40:1126–8.CrossrefGoogle Scholar

  • 8.

    Hardell L, Carlberg M, Hansson Mild K. Use of mobile phones and cordless phones is associated with increased risk for glioma and acoustic neuroma. Pathophysiology 2013;20:85–110.CrossrefGoogle Scholar

  • 9.

    Cardis E, Deltour I, Mann S, Moissonnier M, Taki M, et al. Distribution of RF energy emitted by mobile phones in anatomical structures of the brain. Phys Med Biol 2008;53:2771–83.PubMedCrossrefGoogle Scholar

  • 10.

    Gandhi OP, Morgan LL, de Salles AA, Han YY, Herberman RB, et al. Exposure limits: the underestimation of absorbed cell phone radiation, especially in children. Electromagn Biol Med 2012;31:34–51.PubMedCrossrefGoogle Scholar

  • 11.

    Interphone Study Group. Brain tumour risk in relation to mobile telephone use: results of the INTERPHONE international case-control study. Int J Epidemiol 2010;39:675–94.Google Scholar

  • 12.

    Interphone Study Group. Acoustic neuroma risk in relation to mobile telephone use: results of the INTERPHONE international case-control study. Cancer Epidemiol 2011; 35:453–64.Google Scholar

  • 13.

    Schüz J, Jacobsen R, Olsen JH, Boice JD Jr, McLaughlin JK, et al. Cellular telephone use and cancer risk: update of a nationwide Danish cohort. J Natl Cancer Inst 2006;98:1707–13.PubMedCrossrefGoogle Scholar

  • 14.

    Baan R, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, et al. Carcinogenicity of radiofrequency electromagnetic fields. Lancet Oncol 2011;12:624–6.CrossrefPubMedGoogle Scholar

  • 15.

    Söderqvist F, Carlberg M, Hardell L. Review of four publications on the Danish cohort study on mobile phone subscribers and risk of brain tumours. Rev Environ Health 2012;27:51–8.PubMedGoogle Scholar

  • 16.

    IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Non-ionizing radiation, Part 2: radiofrequency electromagnetic fields. Volume 102. Available at: http://monographs.iarc.fr/ENG/Monographs/vol102/mono102.pdf. Accessed on May 31, 2013.

  • 17.

    Hill AB. The environment and disease: association or causation? Proc R Soc Med 1965;58:295–300.PubMedGoogle Scholar

  • 18.

    Rothman KJ. Causation and causal inference. In: Schottenfeld D, Fraumeni JF, editors. Cancer epidemiology and prevention. Philadelphia: WB Saunders, 1982:15–22.Google Scholar

  • 19.

    Hardell L, Carlberg M, Gee D. Mobile phone use and brain tumour risk: early warnings, early actions? In: Late lessons from early warnings, part 2. Copenhagen, Denmark: European Environment Agency, 2013. Available at: http://www.eea.europa.eu/publications/late-lessons-2/late-lessons-chapters/late-lessons-ii-chapter-21/at_download/file. Accessed on May 31, 2013.

  • 20.

    BioInitiative Working Group. The BioInitiative Report 2012. A rationale for biologically-based public exposure standards for electromagnetic fields (ELF and RF). Available at: http://www.bioinitiative.org. Accessed on May 31, 2013.

  • 21.

    Hardell L, Carlberg M, Söderqvist F, Hansson Mild K. Case-control study of the association between malignant brain tumors diagnosed 2007–2009 and mobile and cordless phone use. Int J Oncol 2013 [in press].Google Scholar

  • 22.

    Hardell L, Carlberg M, Söderqvist F, Hansson Mild K. Pooled analysis of case-control studies on acoustic neuroma diagnosed 1997–2003 and 2007–2009 and use of mobile and cordless phones. Int J Oncol 2013;43:1036–44.Google Scholar

  • 23.

    Carlberg M, Söderqvist F, Hansson Mild K, Hardell L. Meningioma patients diagnosed 2007–2009 and the association with use of mobile and cordless phones. Environ Health 2013;12:60.Google Scholar

  • 24.

    Redmayne M, Inyang I, Dimitriadis C, Benke G, Abramson MJ. Cordless telephone use: implications for mobile phone research. J Environ Monit 2010;12:809–12.PubMedCrossrefGoogle Scholar

  • 25.

    Ohgaki H, Kleihues P. Population-based studies on incidence, survival rates, and genetic alterations in astocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 2005;64:479–89.Google Scholar

  • 26.

    Sutherland GR, Florell R, Louw D, Choi NW, Sima AA. Epidemiology of primary intracranial neoplasms in Manitoba, Canada. Can J Neurol Sci 1987;14:586–92.PubMedGoogle Scholar

  • 27.

    Cardis E, Armstrong BK, Bowman JD, Giles GG, Hours M, et al. Risk of brain tumours in relation to estimated RF dose for mobile phones: results from five Interphone countries. Occup Environ Med 2011;68:631–40.PubMedCrossrefGoogle Scholar

  • 28.

    Yadav AS, Sharma MK. Increased frequency of micronucleated exfoliated cells among humans exposed in vivo to mobile telephone radiations. Mutat Res 2008;650:175–80.Google Scholar

  • 29.

    Lai H, Singh NP. Acute low-intensity microwave exposure increases DNA single-strand breaks in rat brain cells. Bioelectromagnetics 1995;16:207–10.PubMedCrossrefGoogle Scholar

  • 30.

    Lai H, Singh NP. Single- and double-strand DNA breaks in rat brain cells after acute exposure to radiofrequency electromagnetic radiation. Int J Radiat Biol 1996;69:513–21.PubMedCrossrefGoogle Scholar

  • 31.

    Kesari KK, Behari J, Kumar S. Mutagenic response of 2.45 GHz radiation exposure on rat brain. Int J Radiat Biol 2010;86:334–43.Google Scholar

  • 32.

    Diem E, Schwarz C, Adlkofer F, Jahn O, Rüdiger H. Non-thermal DNA breakage by mobile-phone radiation (1800 MHz) in human fibroblasts and in transformed GFSH-R17 rat granulosa cells in vitro. Mutat Res 2005;583:178–83.Google Scholar

  • 33.

    Paulraj R, Behari J. Single strand DNA breaks in rat brain cells exposed to microwave radiation. Mutat Res 2006;596:76–80.Google Scholar

  • 34.

    Avci B, Akar A, Bilgici B, Tunçel ÖK. Oxidative stress induced by 1.8 GHz radio frequency electromagnetic radiation and effects of garlic extract in rats. Int J Radiat Biol 2012;88:799–805.Google Scholar

  • 35.

    Lu YS, Huang BT, Huang YX. Reactive oxygen species formation and apoptosis in human peripheral blood mononuclear cell induced by 900 MHz mobile phone radiation. Oxid Med Cell Longev 2012;2012:740280.PubMedGoogle Scholar

  • 36.

    Friedman J, Kraus S, Hauptman Y, Schiff Y, Seger R. Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies. Biochem J 2007;405:559–68.Google Scholar

  • 37.

    Liu C, Duan W, Xu S, Chen C, He M, et al. Exposure to 1800 MHz radiofrequency electromagnetic radiation induces oxidative DNA base damage in a mouse spermatocyte-derived cell line. Toxicol Lett 2013;218:2–9.Google Scholar

  • 38.

    de Vocht F, Hannam K, Buchan I. Environmental risk factors for cancers of the brain and nervous system: the use of ecological data to generate hypotheses. Occup Environ Med 2013;70:349–56.PubMedGoogle Scholar

  • 39.

    Little MP, Rajaraman P, Curtis RE, Devesa SS, Inskip PD, et al. Mobile phone use and glioma risk: comparison of epidemiological study results with incidence trends in the United States. BMJ 2012;344:e1147.Google Scholar

  • 40.

    Zada G, Bond AE, Wang YP, Giannotta SL, Deapen D. Incidence trends in the anatomic location of primary malignant brain tumors in the United States: 1992–2006. World Neurosurg 2012;77:518–24.Google Scholar

  • 41.

    de Vocht F, Burstyn I, Cherrie JW. Time trends (1998–2007) in brain cancer incidence rates in relation to mobile phone use in England. Bioelectromagnetics 2011;32:334–9.Google Scholar

  • 42.

    Dobes M, Shadbolt B, Khurana VG, Jain S, Smith SF, et al. A multicenter study of primary brain tumor incidence in Australia (2000–2008). Neuro Oncol 2011;13:783–90.Google Scholar

  • 43.

    Oral B, Guney M, Ozguner F, Karahan N, Mungan T, et al. Endometrial apoptosis induced by a 900-MHz mobile phone: preventive effects of vitamins E and C. Adv Ther 2006;23:957–73.Google Scholar

  • 44.

    Ozguner F, Bardak Y, Comlekci S. Protective effects of melatonin and caffeic acid phenethyl ester against retinal oxidative stress in long-term use of mobile phone: a comparative study. Mol Cell Biochem 2006;282:83–8.Google Scholar

  • 45.

    Hardell L, Hallquist A, Hansson Mild K, Carlberg M, Påhlson A, et al. Cellular and cordless telephones and the risk for brain tumours. Eur J Cancer Prev 2002;11:377–86.CrossrefPubMedGoogle Scholar

  • 46.

    Chou CK, Guy AW, Kunz LL, Johnson RB, Crowley JJ, et al. Long-term, low-level microwave irradiation of rats. Bioelectromagnetics 1992;13:469–96.CrossrefPubMedGoogle Scholar

  • 47.

    Frei MR, Jauchem JR, Dusch SJ, Merritt JH, Berger RE, et al. Chronic, low-level (1.0 W/kg) exposure of mice prone to mammary cancer to 2450 MHz microwaves. Radiat Res 1998;150:568–76.Google Scholar

  • 48.

    Szmigielski S, Szudzinski A, Pietraszek A, Bielec M, Janiak M, et al. Accelerated development of spontaneous and benzopyrene-induced skin cancer in mice exposed to 2450-MHz microwave radiation. Bioelectromagnetics 1982;3:179–91.CrossrefPubMedGoogle Scholar

  • 49.

    Repacholi MH, Basten A, Gebski V, Noonan D, Finnie J, et al. Lymphomas in E mu-Pim1 transgenic mice exposed to pulsed 900 MHZ electromagnetic fields. Radiat Res 1997;147:631–40.Google Scholar

  • 50.

    Kundi M. Causality and the interpretation of epidemiologic evidence. Environ Health Perspect 2006;114:969–74.CrossrefPubMedGoogle Scholar

  • 51.

    Repacholi MH, Lerchl A, Röösli M, Sienkiewicz Z, Auvinen A, et al. Systematic review of wireless phone use and brain cancer and other head tumors. Bioelectromagnetics 2012;33:187–206.PubMedCrossrefGoogle Scholar

  • 52.

    Hardell L, Carlberg M, Hansson Mild K. Methodological aspects of epidemiological studies on the use of mobile phones and their association with brain tumors. Open Environ Sci 2008;2:54–61.CrossrefGoogle Scholar

  • 53.

    Holmberg B. The toxicology of monomers of the polyvinyl plastic series. Prog Clin Biol Res 1984;141:99–112.PubMedGoogle Scholar

  • 54.

    IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Preamble. Lyon, France: WHO, IARC, 2006.Google Scholar

About the article

Corresponding author: Lennart Hardell, MD, PhD, Department of Oncology, University Hospital, SE-701 85 Örebro, Sweden, Phone: +46-19-6021000, Fax: +46-19-101768, E-mail:

Received: 2013-05-31

Accepted: 2013-09-13

Published Online: 2013-11-06

Published in Print: 2013-11-01

Based on a presentation at the Corporate Interference with Science and Health: Fracking, Food and Wireless, Scandinavia House, New York City, March 13 and 14, 2013.

Citation Information: Reviews on Environmental Health, Volume 28, Issue 2-3, Pages 97–106, ISSN (Online) 2191-0308, ISSN (Print) 0048-7554, DOI: https://doi.org/10.1515/reveh-2013-0006.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

A. Vienne-Jumeau, C. Tafani, and D. Ricard
Revue Neurologique, 2019
Anthony B. Miller, L. Lloyd Morgan, Iris Udasin, and Devra Lee Davis
Environmental Research, 2018
Yaman M. Alahmad, Mohammed Aljaber, Alaaeldin I. Saleh, Huseyin C. Yalcin, Tahar Aboulkassim, Amber Yasmeen, Gerald Batist, and Ala-Eddin Al Moustafa
Head & Neck, 2018
Lennart Hardell, Tarmo Koppel, Michael Carlberg, Mikko Ahonen, and Lena Hedendahl
International Journal of Oncology, 2016, Volume 49, Number 4, Page 1315
Lennart Hardell, Michael Carlberg, Tarmo Koppel, and Lena Hedendahl
Molecular and Clinical Oncology, 2017, Volume 6, Number 4, Page 462
Lena K. Hedendahl, Michael Carlberg, Tarmo Koppel, and Lennart Hardell
Frontiers in Public Health, 2017, Volume 5
Areti K. Manta, Deppie Papadopoulou, Alexander P. Polyzos, Adamantia F. Fragopoulou, Aikaterini S. Skouroliakou, Dimitris Thanos, Dimitrios J. Stravopodis, and Lukas H. Margaritis
Fly, 2017, Volume 11, Number 2, Page 75
Damian P. Wojcik
Cancer Epidemiology, 2016, Volume 44, Page 123
Jong-Sun Lee, Jeong-Yub Kim, Hee-Jin Kim, Jeong Cheol Kim, Jae-Seon Lee, Nam Kim, and Myung-Jin Park
Journal of Radiation Research, 2016, Volume 57, Number 6, Page 620
Michael Carlberg and Lennart Hardell
International Journal of Environmental Research and Public Health, 2014, Volume 11, Number 10, Page 10790
International Journal of Oncology, 2015, Volume 46, Number 5, Page 1865
Norbert Leitgeb
Journal of Electromagnetic Analysis and Applications, 2015, Volume 07, Number 09, Page 233
Guangying Qi, Xiaoxu Zuo, Lihua Zhou, Eriko Aoki, Aya Okamula, Mika Watanebe, Haipeng Wang, Qiuhui Wu, Huiling Lu, Handan Tuncel, Hiromitsu Watanabe, Sien Zeng, and Fumio Shimamoto
Environmental Health and Preventive Medicine, 2015, Volume 20, Number 4, Page 287
Norbert Leitgeb
Journal of Electromagnetic Analysis and Applications, 2014, Volume 06, Number 14, Page 413
Lisa Gherardini, Gastone Ciuti, Selene Tognarelli, and Caterina Cinti
International Journal of Molecular Sciences, 2014, Volume 15, Number 4, Page 5366

Comments (0)

Please log in or register to comment.
Log in