Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews on Environmental Health

Editor-in-Chief: Carpenter, David O. / Sly, Peter

Editorial Board: Brugge, Doug / Edwards, John W. / Field, R.William / Garbisu, Carlos / Hales, Simon / Horowitz, Michal / Lawrence, Roderick / Maibach, H.I. / Shaw, Susan / Tao, Shu / Tchounwou, Paul B.


IMPACT FACTOR 2017: 1.284

CiteScore 2017: 1.29

SCImago Journal Rank (SJR) 2017: 0.438
Source Normalized Impact per Paper (SNIP) 2017: 0.603

Online
ISSN
2191-0308
See all formats and pricing
More options …
Volume 28, Issue 2-3

Issues

Selenium/mercury molar ratios in freshwater, marine, and commercial fish from the USA: variation, risk, and health management

Joanna Burger
  • Corresponding author
  • Division of Life Sciences, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
  • Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
  • Consortium for Risk Evaluation with Stakeholder Participation, Rutgers University, Piscataway, NJ, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michael Gochfeld
  • Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
  • Consortium for Risk Evaluation with Stakeholder Participation, Rutgers University, Piscataway, NJ, USA
  • Environmental and Occupational Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-11-06 | DOI: https://doi.org/10.1515/reveh-2013-0010

Abstract

Fish provide healthy protein as well as recreational and cultural benefits, but can also contain mercury (Hg), polychlorinated biphenyls (PCBs), and other contaminants that have adverse effects on humans and other organisms, particularly developing fetuses. Recently, some authors have suggested that a molar excess of selenium (Se) [e.g., selenium/mercury (Se/Hg) molar ratio >1] confers protection from Hg toxicity derived from fish consumption. Herein, we review our studies of Hg and Se in freshwater, marine, and commercial fish (mainly marine), examining the following: (1) whether and how Se/Hg molar ratios vary among species; (2) whether and how the molar ratios vary within species; (3) whether the molar ratios differ between freshwater and saltwater fish; (4) whether mean molar ratio values provide a reliable indication of potential risk to fish consumers; and (5) whether mean Se/Hg molar ratios are sufficiently constant (e.g., low variation) to allow for use in risk assessment, risk management, or risk communication. In saltwater fish, mean Se/Hg molar ratios varied from 0.3 in mako shark to 68.1 in whiting. For freshwater fish, the mean ratios varied from 0.68 in bowfin to 20.8 in black crappie. Commercial seafood (mainly saltwater) showed great variation in ratios; shrimp and scallops had very high ratios. There was somewhat less variability in the ratios for freshwater fish compared with the fish from saltwater, but there was no overall predictable difference in variation in Se/Hg molar ratios. For both saltwater and freshwater fish, some species with mean molar ratios above 1 had a significant proportion of individual fish with molar ratios below 1. Overall, this indicates great variation in measures of central tendencies and in measures of dispersion. We suggest that relying on the Se/Hg molar ratio as a method of predicting reduced risk from Hg toxicity is problematic because of the great variation among and within fish species, and the variation is not predictable because Hg varies by season, size of the fish, and location of the fish (which is not available for commercial fish). With the high variation in ratios, and low predictability, the ratios are currently not useful for risk assessment and risk management, and vulnerable individuals cannot rely on mean Se/Hg molar ratios for protection from Hg toxicity.

Keywords: fish; mercury; risk; risk assessment; risk management; selenium; selenium/mercury molar ratios; thresholds; variation

References

  • 1.

    Toth Jr JF, Brown RB. Racial and gender meanings of why people participate in recreational fishing. Leisure Sci 1997;19:129–46.CrossrefGoogle Scholar

  • 2.

    Burger J, Gaines KF, Gochfeld M. Ethnic differences in risk from mercury among Savannah River fishermen. Risk Anal 2001;21:533–44.CrossrefGoogle Scholar

  • 3.

    Burger J, Gaines KF, Boring CS, Stephens Jr WL, Snodgrass J, et al. Mercury and selenium in fish from the Savannah River: species, trophic level, and locational differences. Environ Res 2001;87:108–18.CrossrefGoogle Scholar

  • 4.

    Bienenfeld LS, Golden AL, Garland EJ. Consumption of fish from polluted waters by WIC participants in East Harlem. J Urban Health 2003;80:349–58.CrossrefGoogle Scholar

  • 5.

    Harris SG, Harper BL. Using eco-cultural dependency webs in risk assessment and characterization of risks to tribal health and cultures. Environ Sci Pollut Res 2000;2:91–100.Google Scholar

  • 6.

    Burger J, Gochfeld M. Risk to consumers from mercury in Pacific cod (Gadus macrocephalus) from the Aleutians: fish age and size effects. Environ Res 2007;105:276–84.CrossrefGoogle Scholar

  • 7.

    Burger J, Gochfeld M. Knowledge about fish consumption advisories: a risk communication failure within a university population. Sci Total Environ 2007;390:346–54.Google Scholar

  • 8.

    Burger J, Fleischer J, Gochfeld M. Fish, shellfish, and meat meals of the public in Singapore. Environ Res 2003;93:254–61.CrossrefGoogle Scholar

  • 9.

    Takezaki T, Inoue M, Kataoka H, Ikeda S, Yoshida M, et al. Diet and lung cancer risk from a 14-year population-based prospective study in Japan: with special reference to fish consumption. Nutrit Cancer 2003;45:160–7.Google Scholar

  • 10.

    Lu YZ, Yan BX, Wang MJ, Guo LY. The evolution rule and ecology risk assessment of mercury in fish of Songhua River. J Agro-Environ Sci 2008;27:2430–3.Google Scholar

  • 11.

    Hsiao H, Ullrich SM, Tanton TW. Burdens of mercury in residents of Temirtau, Kazakhstan. 1: hair mercury concentrations and factors of elevated hair mercury levels. Sci Total Environ 2011;409:2272–80.CrossrefGoogle Scholar

  • 12.

    Gochfeld M, Burger J. Disproportionate exposures in environmental justice and other populations: the importance of outliers. Am J Public Health 2011;101:S53–63.CrossrefGoogle Scholar

  • 13.

    Burger J, Gochfeld M. Conceptual environmental justice model for evaluating chemical pathways of exposure in low-income, minority, Native American, and other unique exposure populations. Am J Publ Health 2011;101:S64–73.CrossrefGoogle Scholar

  • 14.

    Dorea JG, Moreira MB, East G, Barbosa AC. Selenium and mercury concentrations in some fish species of the Madeira River, Amazon Basin, Brazil. Biol Trace Elem Res 1998;65:211–20.CrossrefGoogle Scholar

  • 15.

    Pinheiro MCN, de Nascimento JLM, Silveira LCL, daRocha JBT, Aschner M. Mercury and selenium – a review on aspects related to the health of human populations in the Amazon. Environ Bioindicators 2009;4:222–45.CrossrefGoogle Scholar

  • 16.

    Brunner EJ, Jones PJS, Friel S, Bartley M. Fish, human health and marine ecosystem health: policies in collision. Int J Epidemiol 2009;38:91–100.Google Scholar

  • 17.

    Harris SG, Harper BL. Native American exposure scenarios and a tribal risk model. Risk Anal 1998;17:789–95.Google Scholar

  • 18.

    Burger J. Consumption advisories and compliance: the fishing public and the deamplification of risk. J Environ Plan Manage 2000;43:471–88.CrossrefGoogle Scholar

  • 19.

    Burger J. Consumption patterns and why people fish. Environ Res 2002;90:125–35.CrossrefGoogle Scholar

  • 20.

    Schlung TM. Umnak: the people remembered. Walnut Creek, CA: Hardscratch Press, 2003.Google Scholar

  • 21.

    Kris-Etherton PM, Harris WS, Appel LJ. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 2002;106:2747–57.CrossrefGoogle Scholar

  • 22.

    Daviglus M, Sheeshka J, Murkin E. Health benefits from eating fish. Comments Toxicol 2002;8:345–74.CrossrefGoogle Scholar

  • 23.

    Patterson J. Introduction – comparative dietary risk: balance the risks and benefits of fish consumption. Comments Toxicol 2002;8:337–44.CrossrefGoogle Scholar

  • 24.

    Virtanen JK, Mozaffarian D, Chiuve SE, Rimm EB. Fish consumption and risk of major chronic disease in men. Am J Clin Nutr 2008;88:1618–25.CrossrefGoogle Scholar

  • 25.

    Ramel A, Martinez JA, Kiely M, Bandarra NM, Thorsdottir I. Moderate consumption of fatty fish reduces diastolic blood pressure in overweight and obese European young adults during energy restriction. Nutrition 2010;26:168–74.CrossrefGoogle Scholar

  • 26.

    Oken E, Radesky JS, Wright RO, Bellinger DC, Amarasiriwardena CJ, et al. Maternal fish intake during pregnancy, blood mercury levels, and child cognition at age 3 years in a US cohort. Am J Epidemiol 2008;167:1171–81.CrossrefGoogle Scholar

  • 27.

    Pauly D, Christensen V, Dalsgaard J, Froese R, Torres Jr F. Fishing down marine food webs. Sci 1998;279:860–3.CrossrefGoogle Scholar

  • 28.

    Safina C. Song for a blue ocean. New York: Henry Holt, 1998.Google Scholar

  • 29.

    Myers RA, Worm B. Rapid worldwide depletion of predatory fish communities. Nature 2003;423:280–3.CrossrefGoogle Scholar

  • 30.

    Eisler R. Mercury hazards to fish, wildlife, and invertebrates: a synoptic review. US Fish and Wildlife Service Research Report 85(1.10), Washington, DC, 1987:90pp.Google Scholar

  • 31.

    Eisler R. Mercury: hazards to living organisms. New York: Taylor & Francis, 2006.Google Scholar

  • 32.

    World Health Organization (WHO). Mercury-environmental aspects. Geneva, Switzerland: WHO, 1989.Google Scholar

  • 33.

    National Research Council (NRC). Toxicological effects of methylmercury. Washington, DC: National Academy Press, 2000.Google Scholar

  • 34.

    Hightower JM, Moore D. Mercury levels in high-end consumers of fish. Environ Health Perspect 2003;111:604–8.Google Scholar

  • 35.

    Institute of Medicine (IOM). Seafood choices: balancing benefits and risks. Washington, DC: National Academy Press, 2006.Google Scholar

  • 36.

    Carpenter DO. Polychlorinated biphenyls (PCBs): routes of exposure and effects on human health. Rev Environ Health 2006;21:1–23.Google Scholar

  • 37.

    Hardell S, Tilander H, Welfinger-Smith G, Burger J, Carpenter DO. Levels of polychlorinated biphenyls (PCBs) and three organochlorine pesticides in fish from the Aleutian Islands of Alaska. PLoS One 2010;5:e12396.CrossrefGoogle Scholar

  • 38.

    Grandjean P, Weihe P, White RF, Debes F, Araki S, et al. Cognitive deficits in 7-year old children with prenatal exposure to methylmercury. Neurotoxicol Teratol 1997;19:418–28.Google Scholar

  • 39.

    Rice DG, Swartout J, Mahaffey K, Schoeny R. Derivation of U.S. EPS’s oral reference dose (RfD) for methylmercury. Drug Chem Toxicol 2000;23:41–54.CrossrefGoogle Scholar

  • 40.

    Mahaffey KR, Clickner RP, Jeffries RA. Adult women’s blood mercury concentrations vary regionally in the United States: association with patterns of fish consumption (NHAMES 1999–2004). Environ Health Perspect 2009;117:47–53.Google Scholar

  • 41.

    Institute of Medicine (IOM). Seafood safety. Washington, DC: National Academy Press, 1991.Google Scholar

  • 42.

    Gochfeld M. Cases of mercury exposure, bioavailability, and absorption. Ecotoxicol Environ Saf 2003;56:174–9.CrossrefGoogle Scholar

  • 43.

    Hites RA, Foran JA, Carpenter DO, Hamilton MC, Knuth BA, et al. Global assessment of organic contaminants in farmed salmon. Sci 2004;303:226–9.CrossrefGoogle Scholar

  • 44.

    Gagne GP, Medrano RH, editors. Fish consumption and health. New York: Nova Science Publishers, 2009.Google Scholar

  • 45.

    Crump KS, Kjellstrom T, Shipp AM, Silvers A, Stewart A. Influence of prenatal mercury exposure upon scholastic and psychological test performance: benchmark analysis of a New Zealand cohort. Risk Anal 1998;18:701–13.CrossrefGoogle Scholar

  • 46.

    Steuerwald U, Weihe P, Jorgansen PJ, Bjerve K, Brock J, et al. Maternal seafood diet, methylmercury exposure, and neonatal neurological function. J Pediatr 2000;136:599–605.CrossrefGoogle Scholar

  • 47.

    Joint FAO/WHO Expert Committee on Food Additives (JECFA), 2003. Available at: http://www.who.int/pcs/jecfa/jecra-htm. Accessed March, 2005.

  • 48.

    Freire C, Ramos R, Lopez-Expinosa M, Diez S, Vioque J, et al. Hair mercury levels, fish consumption, and cognitive development in preschool children from Granada, Spain. Environ Res 2010;110:96–104.CrossrefGoogle Scholar

  • 49.

    Sagiv SK, Thurston SW, Bellinger DC, Amarasiriwardena C, Korrick SA. Prenatal exposure to mercury and fish consumption during pregnancy and attention-deficit/hyperactivity disorder-related behavior in children. Arch Pediatr Adolesc Med 2012;166:1123–31.CrossrefGoogle Scholar

  • 50.

    Rissanen T, Voutilainen S, Nyyssonen K, Lakka TA, Salonen JT. Fish oil-derived fatty acids, docosahexaenoic acid and docosaphentaenoic acid, and the risk of a coronary events: the Kuopio ischaemic heart disease risk factor study. Circulation 2000;102:2677–9.CrossrefGoogle Scholar

  • 51.

    Guallar E, Sanz-Gallardo MI, van’t Veer P, Bode P, Aro A, et al. Heavy metals and myocardial infarction study group: mercury, fish oils, and the risk of myocardial infarction. N Engl J Med 2002;347:1747–54.CrossrefGoogle Scholar

  • 52.

    Choi AL, Weihe P, Budtz-Jorgensen E, Jorgensen PJ, Salonen JT, et al. Methylmercury exposure and adverse cardiovascular effects in Faroese whaling men. Environ Health Perspect 2009;117:367–72.Google Scholar

  • 53.

    Hightower JM. Diagnosis: mercury. Washington, DC: Island Press, 2009.Google Scholar

  • 54.

    Trasande L, Landrigan PJ, Schechter C. Public health and economic consequences of methylmercury toxicity to the developing brain. Environ Health Perspect 2005;113:590–6.CrossrefGoogle Scholar

  • 55.

    Grandjean P, Satoh H, Murata K, Eto K. Adverse effects of methylmercury: environmental health research implications. Environ Health Perspect 2010;118:1137–45.CrossrefGoogle Scholar

  • 56.

    Burger J. Role of self-caught fish in total fish consumption rates for recreational fishermen: average consumption for some species exceeds allowable intake. J Risk Res 2013;16:1057–75.CrossrefGoogle Scholar

  • 57.

    Burger J, Gochfeld M. Selenium and mercury molar ratios in commercial fish from New Jersey and Illinois: variation within species and relevance to risk communication. Food Chem Toxicol 2013;57:235–45.PubMedCrossrefGoogle Scholar

  • 58.

    Gochfeld M, Burger J. Good fish/bad fish: a composite benefit-risk by dose curve. Neurotoxicology 2005;26:511–20.CrossrefGoogle Scholar

  • 59.

    Rheinberger CM, Hammitt JK. Risk trade-offs in fish consumption: a public health perspective. Environ Sci Technol 2012;46:12337–46.CrossrefGoogle Scholar

  • 60.

    Beyrouty P, Chan HM. Co-consumption of selenium and vitamin E altered the reproductive and developmental toxicity of methylmercury in rats. Neurotoxicol Teratol 2006;28:49–58.CrossrefGoogle Scholar

  • 61.

    Cheng J, Yang Y, Ma J, Wang W, Liu X, et al. Assessing noxious effects of dietary exposure to methylmercury, PCBs and Se coexisting in environmentally contaminated rice in male mice. Environ Int 2009;35:619–25.CrossrefGoogle Scholar

  • 62.

    Ralston NVC. Selenium health benefit values as seafood safety criteria. Eco-Health 2008;5:442–55.Google Scholar

  • 63.

    Peterson SA, Ralston NVC, Whanger PD, Oldfield JE, Mosher WD. Selenium and mercury interactions with emphasis on fish tissue. Environ Bioindicators 2009;4:318–34.CrossrefGoogle Scholar

  • 64.

    Peterson SA, Ralston NVC, Peck DV, Van Sickle J, Robertson JD, et al. How might selenium moderate the toxic effects of mercury in stream fish in western US? Environ Sci Technol 2009;43:3919–334.CrossrefGoogle Scholar

  • 65.

    Sormo EG, Ciesielski TM, Overjordet IB, Lierhagen S, Eggen GS, et al. Selenium moderates mercury toxicity in free-ranging freshwater fish. Environ Sci Technol 2011;45:6561–6.CrossrefGoogle Scholar

  • 66.

    ATSDR. Toxicological profile for selenium. Atlanta, GA: US Agency for Toxic Substances and Disease Registry, 1996.Google Scholar

  • 67.

    Vinceti M, Wei ET, Malagoli C, Bergomi M, Vivoli G. Adverse health effects of selenium in humans. Rev Environ Health 2001;16:233–51.Google Scholar

  • 68.

    Eisler R. Selenium. Handbook of chemical risk assessment: health hazards to humans, plants, and animals (vol. 3). Boca Raton, FL: CRC Press, 2000.Google Scholar

  • 69.

    Ralston NVC. Introduction to 2nd issue on special topic: selenium and mercury as interactive environmental indicators. Environ Bioindicators 2009;4:286–90.CrossrefGoogle Scholar

  • 70.

    Lima APS, Sarkis JES, Shihomatsu HM, Muller RCS. Mercury and selenium concentrations in fish samples from Cachoeira do Piria Municipality, Para State, Brazil. Environ Res 2005;97:236–44.CrossrefGoogle Scholar

  • 71.

    El-Bayoumy K. The protective role of selenium on genetic damage and on cancer. Mutat Res 2001;475:123–39.Google Scholar

  • 72.

    Engstrom KS, Stromberg U, Lundh T, Johansson I, Vessby B, et al. Genertic variation in glutathione-related genes and body burden of methylmercury. Environ Health Perspect 2008;116:734–9.CrossrefGoogle Scholar

  • 73.

    Goodrich JM, Wang Y, Gillespie B, Werner R, Franzblau A, et al. Glutathione enzyme and selenoprotein polymorphisms associated with mercury biomarker levels in Michigan dental professionals. Toxicol Appl Pharmacol 2011;257:301–8.Google Scholar

  • 74.

    Fairweather-Tait SJ, Bao Y, Broadley MR, Collings R, Ford D, et al. Selenium in human health and disease. Antioxid Redox Signal 2011;14:1337–83.Google Scholar

  • 75.

    Rayman M. Selenium and human health. Lancet 2012;379:1256–68.Google Scholar

  • 76.

    Satoh H, Yasuda N, Shimai S. Development of reflexes in neonatal mice prenatally exposed to methylmercury and selenite. Toxicol Lett 1985:25:199–203.Google Scholar

  • 77.

    Lindh U, Johansson E. Protective effects of selenium against mercury toxicity as studied in the rat liver and kidney by nuclear analytical techniques. Biol Trace Elem Res 1987;12:109–20.CrossrefGoogle Scholar

  • 78.

    Mulder PJ, Lie E, Eggen GS, Ciesielski TM, Berg T, et al. Mercury in molar excess of selenium interferes with thyroid hormone function in fee-ranging freshwater fish. Environ Sci Technol 2012;46:9027–37.CrossrefGoogle Scholar

  • 79.

    Bjerregaard P, Fjordside S, Hansen MG, Petrova MB. Dietary selenium reduces retention of methylmrcury in freshwater fish. Environ Sci Technol 2011;45:9793–8.CrossrefGoogle Scholar

  • 80.

    Ohlendorf HM. Selenium, salty water, and deformed birds. In: Elliot JE, Bishop CA, Morrissey CA, editors. Wildlife ecotoxicology: emerging topics in ecotoxicology. New York: Springer, 2011:325–57.Google Scholar

  • 81.

    Ohlendorf HM, Hothem RL. Agricultural drainwater effects on wildlife in Central California. In: Hoffman DJ, Rattner BA, Burton GA Jr, Cairns J Jr, editors. Handbook of ecotoxicology, Boca Raton, FL: Lewis Publishers, 1995:577–95.Google Scholar

  • 82.

    Koller LD, Exxon JH. The two faces of selenium-deficiency and toxicity – are similar in animals and man. Can J Vet Res 1986;50:297–306.Google Scholar

  • 83.

    Choi AL, Budtz-Jorgensen E, Jorgensen PJ, Steuerwald U, Debes F, et al. Selenium as a potential protective factor against mercury developmental toxicity. Environ Res 2008:107:45–52.CrossrefGoogle Scholar

  • 84.

    Mozaffarian D. Fish, mercury, selenium and cardiovascular risk: current evidence and unanswered questions. Int J Environ Res Public Health 2009;6:1894–916.CrossrefGoogle Scholar

  • 85.

    Bates CJ, Prentice A, Birch MC, Delves HT, Sinclair KA. Blood indices of selenium and mercury, and their correlations with fish intake, in young people living in Britain. Brit J Nutr 2006;96:523–31.Google Scholar

  • 86.

    Watanabe C, Yoshida K, Kasanuma Y, Satoh H. In utero methylmercury exposure differentially affects the activities of selenoenzymes in the fetal mouse brain. Environ Res 1999;80:208–14.CrossrefGoogle Scholar

  • 87.

    Ralston NVC, Ralston CR, Blackwell III JL, Raymond LJ. Dietary and tissue selenium in relation to methylmercury toxicity. Neurotoxicology 2008;29:802–11.CrossrefGoogle Scholar

  • 88.

    Carvalho CML, Chew EH, Hashemy LI, Lu J, Holmgren A. Inhibition of the human thiore-doxin system: a molecular mechanism of mercury toxicity. J Biol Chem 2008;283:11913–23.Google Scholar

  • 89.

    Falnoga I, Tusek-Znidaric M, Stegnar P. The influence of long-term mercury exposure on selenium availability in tissues: an evaluation of data. Biometric 2007;19:283–94.Google Scholar

  • 90.

    Berry MJ, Ralston NVC. Mercury toxicity and the mitigating role of selenium. Ecohealth 2008;5:456–9.CrossrefGoogle Scholar

  • 91.

    Cabanero AI, Madrid Y, Camara C. Mercury-selenium species ratio in representative fish samples and their bioaccessibility by an in vitro digestion method. Biol Trace Elem Res 2007;119:195–211.CrossrefGoogle Scholar

  • 92.

    Dang F, Wang W. Antagonistic interaction of mercury and selenium in a marine fish is dependent on their chemical species. Environ Sci Technol 2011;45:3116–22.CrossrefGoogle Scholar

  • 93.

    Sakamoto M, Yasutake A, Kakita A, Ryufuku M, Chan HM, et al. Selenomethionine protects against neuronal degeneration by merthylmercury in the developing rat cerebrum. Environ Sci Technol 2013;47:2862–8.CrossrefGoogle Scholar

  • 94.

    Falnoga I, Tusek-Znidaric M. Selenium-mercury interactions in man and animals. Biometal 2007;19:283–94.Google Scholar

  • 95.

    Belzile N, Chen Y-W, Yang D-Y, Truong H-YT, Zhao Q-X. Selenium bioaccumulation in freshwater organisms and antagonistic effect against mercury assimilation. Environ Bioindicators 2009;4:201–21.Google Scholar

  • 96.

    Kaneko JJ, Ralston NV. Selenium and mercury in pelagic fish in the central north Pacific near Hawaii. Biol Trace Elem Res 2007;119:242–54.CrossrefGoogle Scholar

  • 97.

    Raymond LJ, Ralston NVC. Mercury:selenium interactions and health implications. SMDJ Seychelles Med Dental J 2004;17:72–7.Google Scholar

  • 98.

    Raymond LJ, Ralston NVC. Selenium’s importance in regulatory issues regarding mercury. Fuel Proc Technol 2009;90:1333–9.CrossrefGoogle Scholar

  • 99.

    Burger J, Gochfeld M. Mercury and selenium levels in 19 species of saltwater fish from New Jersey as a function of species, size, and season. Sci Total Environ 2011;409:1418–29.Google Scholar

  • 100.

    Burger J, Gochfeld M, Jeitner C, Donio M, Pittfield T. Mercury and selenium levels, and selenium:mercury molar ratios of brain, muscle, and other tissues in bluefish (Pomatomus saltatrix) from New Jersey, USA. Sci Total Environ 2013;443:278–86.CrossrefGoogle Scholar

  • 101.

    Burger J, Gochfeld M, Jeitner C, Donio M, Pittfield T. Interspecific and intraspecific variation in selenium:mercury molar ratios in saltwater fish from the Aleutians: potential protection on mercury toxicity by selenium. Sci Total Environ 2012;41:46–56.CrossrefGoogle Scholar

  • 102.

    Burger J. Selenium:mercury molar ratios in fish from the Savannah River: implications for risk management. J Risk Res 2012;15:627–44.CrossrefGoogle Scholar

  • 103.

    Burger J, Gochfeld M, Jeitner C, Donio M, Pittfield T. Selenium:mercury molar ratios in freshwater fish from Tennessee: individual, species, and geographical variations have implications for management. Ecohealth 2012;9:171–82.CrossrefGoogle Scholar

  • 104.

    Burger J, Stern AH, Gochfeld M. Mercury in commercial fish: optimizing individual choices to reduce risk. Environ Health Perspect 2005;113:266–71.Google Scholar

  • 105.

    Burger J, Gochfeld M. Mercury in fish available in supermarkets in Illinois: are there regional differences. Sci Total Environ 2006;367:1010–6.CrossrefGoogle Scholar

  • 106.

    Burger J, Gochfeld M. Mercury in canned tuna: white versus light and temporal variation. Environ Res 2004;96:239–49.CrossrefGoogle Scholar

  • 107.

    Burger J, Gochfeld M, Jeitner C, Burke S, Stamm T, et al. Mercury levels and potential risk from subsistence foods from the Aleutians. Sci Total Environ 2007;384:93–105.CrossrefGoogle Scholar

  • 108.

    Lansens P, Leermakers M, Waeyens W. Determination of methylmercury in fish by headspace-gas chromatography with microwave-induced plasma detection. Water Air Soil Pollut 1991;56:103–15.Google Scholar

  • 109.

    Jewett SC, Zhang X, Naidu AS, Kelley JJ, Dasher D, et al. Comparison of mercury and methylmercury in northern pike and Arctic grayling from western Alaska rivers. Chemosphere 2003;50:383–92.CrossrefGoogle Scholar

  • 110.

    Harris HH, Pickering IJ, George GN. The chemical form of mercury in fish. Science 2003;301:1203.Google Scholar

  • 111.

    Scudder BC, Chaser LC, Wentz DA, Bauch NJ, Brigham ME, et al. Mercury in fish, bed sediments, and water from streams across the United States, 1998–2005. US Department of Interior Report 2009–5109, Reston, VA, 2009:74pp.Google Scholar

  • 112.

    Khan MAK, Wang F. Mercury-selenium compounds and their toxicological significance: toward a molecular understanding of the mercury-selenium antagonism. Environ Toxicol Chem 2009;28:1567–77.CrossrefGoogle Scholar

  • 113.

    Lemes M, Wang F. Methylmercury speciation in fish muscle by HPLC-ICP-MS following enzymatic hydrolysis. J Anal Atom Spectrom 2009;24:663–8.CrossrefGoogle Scholar

  • 114.

    Lemes M, Wang F, Stern GA, Ostertag SK, Chan HM. Methylmercury and selenium speciation in different tissues of Beluga Whales (Delphinapterus leucas) from the Western Canadian Arctic. Environ Toxicol Chem 2011;30:2732–8.CrossrefGoogle Scholar

  • 115.

    Cappon CJ, Smith JC. Mercury and selenium content and chemical form in fish muscle. Arch Environ Contam Toxicol 1981;10:305–19.CrossrefGoogle Scholar

  • 116.

    SAS. Statistical analysis. Cary, NC: SAS, 2005.Google Scholar

  • 117.

    ATSDR. Toxicological profile for mercury. Atlanta, GA: US Agency for Toxic Substances and Disease Registry, 1999.Google Scholar

  • 118.

    Power M, Klein GM, Guiguer RRA, Kwan MKH. Mercury accumulation in the fish community of a sub-Arctic lake in relation to trophic position and carbon sources. J Appl Ecol 2002;39:819–30.CrossrefGoogle Scholar

  • 119.

    Burger J. Risk to consumers from mercury in bluefish (Pomatomus saltatrix) from New Jersey: size, season, and geographical effects. Environ Res 2009;109:803–11.CrossrefGoogle Scholar

  • 120.

    Gewurtz SB, Bhavsar SP, Fletcher R. Influence of fish size and sex on mercury/PCB concentration: importance for fish consumption advisories. Environ Int 2011;37:425–34.CrossrefGoogle Scholar

  • 121.

    Storelli MM, Stuffler RG, Marcotrigiano GO. Total and methylmercury residues in tuna-fish from the Mediterranean Sea. Food Addit Contam 2002;19:715–20.CrossrefGoogle Scholar

  • 122.

    Pakkala IS, Gutenmann WH, Lisk DJ, Burdick GE, Harris EJ. A survey of selenium content of fish from 49 New York State waters. Pestic Monit J 1972;6:107–14.Google Scholar

  • 123.

    Burger J, Gochfeld M. Selenium and mercury ratios in saltwater fish from New Jersey: individual and species variations complicate possible use in human health consumption advisories. Environ Res 2012;114:12–23.CrossrefGoogle Scholar

  • 124.

    US Food and Drug Administration (US FDA). FDA consumer advisory. Washington, DC: US FDA, 2001. Available at: http://www.fda.gov/Food/default.htm. Accessed 26 September, 2013.

  • 125.

    US Food and Drug Administration (US FDA). Mercury levels in commercial fish and shellfish. Washington, DC: US FDA, 2005. Available at: http://www.fda.gov/Food/FoodborneIllnessContaminants/Metals/ucm115644.htm. Accessed 25 June, 2013.

  • 126.

    US Food and Drug Administration (USFDA). FDA and EPA announce the revised consumer advisory on methylmercury in fish. Washington, DC: US FDA, 2004. Available at: http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/2004/ucm108267.htm. Accessed 25 June, 2013.

  • 127.

    Sublette ME, Segal-Isaacson CJ, Cooper TB, Vanegas N, Galfalvy HC, et al. Validation of a food frequency questionnaire to assess intake of n-3 polyunsaturated fatty acids in subjects with and without major depressive disorder. J Am Diet Assoc 2011;111:117–23.CrossrefGoogle Scholar

  • 128.

    US Environmental Protection Agency (US EPA). Fish consumption in Connecticut, Florida, Minnesota, and North Dakota. Washington, DC: US EPA/600/R-13/098F. Available at: http://www.epa.gov/ncea. Accessed 25 June, 2013.

  • 129.

    Marien K. The importance of weight-normalized exposure data when issuing fish advisories for protection of public health. Environ Health Perspect 2002;110:671–8.CrossrefGoogle Scholar

  • 130.

    Schmidt CW. Beyond uncertainty factors: protecting the tails of the bell curve. Environ Health Perspect 2013;112:A27–9.CrossrefGoogle Scholar

  • 131.

    Groth III G. Ranking the contributions of commercial fish and shellfish varieties to mercury exposure in the United States: implications for risk communication. Environ Res 2010;110:226–36.CrossrefGoogle Scholar

  • 132.

    Shimshack JP, Ward MB, Beatty KM. Mercury advisories: information, education, and fish consumption. J Environ Econ Manage 2007;53:158–79.CrossrefGoogle Scholar

  • 133.

    Lowenstein JH, Burger J, Jeitner CW, Amato G, Kolokotronis SO, et al. DNA barcodes reveal species-specific mercury levels in tuna sushi that pose a health risk to consumers. Biol Lett 2010;6:692–5.CrossrefGoogle Scholar

  • 134.

    Battin EE, Zimmerman MT, Ramoutar RR, Wuarles CE, Brumaghim JL. Preventing metal-mediated oxidative DNA damage with selenium compounds. Metallomics 2011;3:503–12.CrossrefGoogle Scholar

  • 135.

    Dalton G, Bird P. Risk assessment for the consumption of fish with elevated selenium levels. NSW Publ Health Bull 2003;14:174–6.CrossrefGoogle Scholar

  • 136.

    Watanabe C. Modification of mercury toxicity by selenium: practical importance. Tohoku J Exp Med 2002;196:71–7.CrossrefGoogle Scholar

  • 137.

    Anderson PD, Wiener JB. Eating fish. In: Graham JD, Wiener JB, editors. Risk versus risk: tradeoffs in protecting health and the environment. Cambridge, MA: Harvard University Press, 1995:104–23.Google Scholar

  • 138.

    Budtz-Jorgensen E, Grandjean P, Weihe P. Separation of risks and benefits of seafood intake. Environ Health Perspect 2007;115:323–7.Google Scholar

  • 139.

    Burger J, Gochfeld M, Fote T. Stakeholder participation in research design and decisions: scientists, fishers, and mercury in saltwater fish. Ecohealth 2013;10:21–30.CrossrefGoogle Scholar

About the article

Corresponding author: Joanna Burger, Division of Life Sciences, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA, Phone: +1-732-445-3497, Fax: +1-732-445-5870, E-mail:


Received: 2013-08-12

Accepted: 2013-09-04

Published Online: 2013-11-06

Published in Print: 2013-11-01


Citation Information: Reviews on Environmental Health, Volume 28, Issue 2-3, Pages 129–143, ISSN (Online) 2191-0308, ISSN (Print) 0048-7554, DOI: https://doi.org/10.1515/reveh-2013-0010.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Robert B. Suami, Periyasamy Sivalingam, César D. Kabala, J.-P. Otamonga, Crispin K. Mulaji, Pius T. Mpiana, and John Poté
Journal of Food Composition and Analysis, 2018
[3]
Scott J. Herrmann, Del Wayne R. Nimmo, Brian D. Vanden Heuvel, James S. Carsella, Christopher M. Kennedy, Kevin B. Rogers, John S. Wood, and Lynn M. Herrmann-Hoesing
Transactions of the American Fisheries Society, 2018
[4]
Danuta Kosik-Bogacka, Natalia Łanocha-Arendarczyk, Karolina Kot, Witold Malinowski, Sławomir Szymański, Olimpia Sipak-Szmigiel, Bogumiła Pilarczyk, Agnieszka Tomza-Marciniak, Joanna Podlasińska, Natalia Tomska, and Żaneta Ciosek
Environmental Geochemistry and Health, 2018
[5]
Van Anh Thi Hoang, Hien Thu Thi Do, Tetsuro Agusa, Chihaya Koriyama, Suminori Akiba, Yasuhiro Ishibashi, Mineshi Sakamoto, and Megumi Yamamoto
The Journal of Toxicological Sciences, 2017, Volume 42, Number 5, Page 651
[6]
Ellen S. Reyes, Juan J. Aristizabal Henao, Katherine M. Kornobis, Rhona M. Hanning, Shannon E. Majowicz, Karsten Liber, Ken D. Stark, George Low, Heidi K. Swanson, and Brian D. Laird
Journal of Toxicology and Environmental Health, Part A, 2017, Volume 80, Number 1, Page 18
[7]
Elzbieta Kalisinska, Natalia Lanocha-Arendarczyk, Danuta Kosik-Bogacka, Halina Budis, Bogumila Pilarczyk, Agnieszka Tomza-Marciniak, Joanna Podlasinska, Lukasz Cieslik, Marcin Popiolek, Agnieszka Pirog, and Ewa Jedrzejewska
Ecotoxicology and Environmental Safety, 2017, Volume 136, Page 24
[8]
E. Emily V. Chapman, Julianne Robinson, Jody Berry, and Linda M. Campbell
Water, Air, & Soil Pollution, 2016, Volume 227, Number 6

Comments (0)

Please log in or register to comment.
Log in