Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews on Environmental Health

Editor-in-Chief: Carpenter, David O. / Sly, Peter

Editorial Board Member: Brugge, Doug / Edwards, John W. / Field, R.William / Garbisu, Carlos / Hales, Simon / Horowitz, Michal / Lawrence, Roderick / Maibach, H.I. / Shaw, Susan / Tao, Shu / Tchounwou, Paul B.

4 Issues per year


CiteScore 2016: 1.95

SCImago Journal Rank (SJR) 2016: 0.543
Source Normalized Impact per Paper (SNIP) 2016: 0.885

Online
ISSN
2191-0308
See all formats and pricing
More options …
Volume 28, Issue 4 (Dec 2013)

Issues

Human disease resulting from exposure to electromagnetic fields1)

David O. Carpenter
Published Online: 2013-11-27 | DOI: https://doi.org/10.1515/reveh-2013-0016

Abstract

Electromagnetic fields (EMFs) include everything from cosmic rays through visible light to the electric and magnetic fields associated with electricity. While the high frequency fields have sufficient energy to cause cancer, the question of whether there are human health hazards associated with communication radiofrequency (RF) EMFs and those associated with use of electricity remains controversial. The issue is more important than ever given the rapid increase in the use of cell phones and other wireless devices. This review summarizes the evidence stating that excessive exposure to magnetic fields from power lines and other sources of electric current increases the risk of development of some cancers and neurodegenerative diseases, and that excessive exposure to RF radiation increases risk of cancer, male infertility, and neurobehavioral abnormalities. The relative impact of various sources of exposure, the great range of standards for EMF exposure, and the costs of doing nothing are also discussed.

Keywords: cancer; cell phones; male fertility; power lines

References

  • 1.

    Ramsey JJ, Harper ME, Weindruch R. Restriction of energy intake, energy expenditure, and aging. Free Rad Biol Med 2000;10:946–86.Google Scholar

  • 2.

    Carpenter DO. Human health effects of nonionizing electromagnetic fields. In: Bingham E, Cohressen B, editors. Patty’s Toxicology, 6th ed. Hoboken, NJ: John Wiley & Sons, Inc., 2012;6:109–32. Chapter 100.Google Scholar

  • 3.

    Wertheimer N, Leeper E. Electrical wiring configurations and childhood cancer. Am J Epidemiol 1979;109:273–84.Google Scholar

  • 4.

    Wartenberg D. Residential magnetic fields and childhood leukemia: a meta-analysis. Am J Public Health 1998;88:1787–94.CrossrefGoogle Scholar

  • 5.

    Ahlbom A, Day N, Feychting M, Roman E, Skinner J, et al. A pooled analysis of magnetic fields and childhood leukaemia. Brit J Cancer 2000;83:692–98.CrossrefGoogle Scholar

  • 6.

    Greenland S, Sheppard AR, Kaune WT, Poole C, Kelsh MA. The Childhood Leukemia-EMF Study Group. A pooled analysis of magnetic fields, wire codes, and childhood leukemia. Epidemiology 2000;11:624–34.CrossrefGoogle Scholar

  • 7.

    Hatch EE, Linet MS, Kleinerman RA, Tarone RE, Severson RK, et al. Association between childhood acute lymphoblastic leukemia and use of electrical appliances during pregnancy and childhood. Epidemiology 1998;9:234–45.CrossrefGoogle Scholar

  • 8.

    US National Academy of Sciences, National Research Council. Possible health effects of exposure to residential electric and magnetic fields. Washington, DC: National Academy Press, 1997.Google Scholar

  • 9.

    IARC (International Agency for Research on Cancer). IARC monographs on the evaluation of carcinogenic risks to humans, Vol. 80. Non-ionizing radiation. Part 1: static and extremely low-frequency (ELF) electric and magnetic fields. Lyon: IARC Press, 2002.Google Scholar

  • 10.

    World Health Organization (WHO). Extremely low frequency fields. Environmental health criteria, Vol. 238. Geneva: WHO, 2007.Google Scholar

  • 11.

    Draper G, Vincent T, Kroll ME, Swanson J. Childhood cancer in relation to distance from high voltage power lines in England and Wales: a case-control study. Br Med J 2005;330:1290–4.CrossrefGoogle Scholar

  • 12.

    Kabuto M, Nitta H, Yamamoto S, Yamaguch N, Akiba S, et al. Childhood leukemia and magnetic fields in Japan: a case-control study of childhood leukemia and residential power-frequency magnetic fields in Japan. Int J Cancer 2006;119:643–50.CrossrefGoogle Scholar

  • 13.

    Mejia-Arangure JM, Fajardo-Gutierrez A, Perez-Saldivar ML, Govodezky C, Martinez-Avalos A, et al. Magnetic fields and acute leukemia in children with Down Syndrome. Epidemiology 2007;18:158–61.CrossrefGoogle Scholar

  • 14.

    Foliart DE, Pollock BH, Mezei G, Iriye R, Silva JM, et al. Magnetic field exposure and long-term survival among children with leukaemia. Br J Cancer 2006;94:161–4.CrossrefGoogle Scholar

  • 15.

    Svendsen AL, Weihkoph T, Kaatsch P, Schuz J. Exposure to magnetic fields and survival after diagnosis of childhood leukemia: a German cohort study. Cancer Epidemiol Biomarkers Prev 2007;16:1167–71.CrossrefGoogle Scholar

  • 16.

    Kheifets L, Ahlbom A, Crespi CM, Graper G, Hagihara J, et al. Pooled analysis of recent studies on magnetic fields and childhood leukaemia. Br J Cancer 2010;103:1128–35.CrossrefGoogle Scholar

  • 17.

    Infante-Rivard C, Deadman JE. Maternal occupational exposure to extremely low frequency magnetic fields during pregnancy and childhood leukemia. Epidemiology 2003;14:437–41.CrossrefGoogle Scholar

  • 18.

    Feychting M, Forssen U, Floderus B. Occupational and residential magnetic field exposure and leukemia and central nervous system tumors. Epidemiology 1997;8:184–9.Google Scholar

  • 19.

    Kheifets LI, Afifi AA, Buffler PA, Zhang ZW, Matkin CC. Occupational electric and magnetic field exposure and leukemia. J Occup Environ Med 1997;39:1074–91.CrossrefGoogle Scholar

  • 20.

    Lowenthat RM, Tuck DM, Bray IC. Residential exposure to electric power transmission lines and risk of lymphoproliferative and myeloproliferative disorders: a case-control study. Intern Med J 2007;37:614–9.CrossrefGoogle Scholar

  • 21.

    Garcia AM, Sisternas A, Hoyos SP. Occupational exposure to extremely low frequency electric and magnetic fields and Alzheimer disease: a meta-analysis. Int J Epidemiol 2008;37:329–40.CrossrefGoogle Scholar

  • 22.

    Feychting M, Jonsson F, Pedersen NL, Ahlbom A. Occupational magnetic field exposure and neurodegenerative disease. Epidemiology 2003;14:413–9.CrossrefGoogle Scholar

  • 23.

    Huss A, Spoerri A, Egger M, Roosli M, for the Swiss National Cohort Study. Residence near power lines and mortality from neurodegenerative diseases: longitudinal study of the Swiss population. Am J Epidemiol 2006;169:167–75.Google Scholar

  • 24.

    Li DK, Chen H, Odouli R. Maternal exposure to magnetic fields during pregnancy in relation to the risk of asthma in offspring. Arch Pediatr Adolesc Med 2011;165:945–50.CrossrefGoogle Scholar

  • 25.

    Lai H, Singh NP. Magnetic-field-induced DNA strand breaks in brain cells of the rat. Environ Health Perspect 2004;112:687–94.CrossrefGoogle Scholar

  • 26.

    Burdak-Rothkamm S, Rothkamm K, Folkard M, Patel G, Hone P, et al. DNA and chromosomal damage in response to intermittent extremely low-frequency magnetic fields. Mut Res 2009;672:82–9.Google Scholar

  • 27.

    Lin H, Blank M, Rossol-Haseroth K, Goodman R. Regulating genes with electromagnetic response elements. J Cell Biochem 2001;81:143–8.CrossrefGoogle Scholar

  • 28.

    Salehi I, Sani KG, Zamani A. Exposure of rats to extremely low-frequency electromagnetic fields (ELF-EMF) alters cytokines production. Electromag Biol Med 2012;32:1–8.Google Scholar

  • 29.

    Yang Y, Jin X, Yan C, Tian Y, Tang J, et al. Case-only study of interactions between DNA repair genes (hMLH1, APEX1, MGMT, XRCC1 and XPD) and low-frequency electromagnetic fields in childhood acute leukemia. Leuk Lymph 2008;49:2344–50.Google Scholar

  • 30.

    Sommer AM, Lerchl A. The risk of lymphoma in AKR/J mice does not rise with chronic exposure to 50 Hz magnetic fields (1 μT and 100 μT). Rad Res 2004;162:194–200.CrossrefGoogle Scholar

  • 31.

    Glaser ZR. Bibliography of reported biological phenomena (‘effects’) and clinical manifestations attributed to microwave and radiofrequency radiation. Naval Medical Research Institute Research Report Project MF12.524.015-0004B, Report No. 2 4 October 1971.Google Scholar

  • 32.

    McLees BD, Finch ED. Analysis of reported physiologic effects of microwave radiation. Adv Biol Med Physics 1973;14:163–223.CrossrefGoogle Scholar

  • 33.

    Pollack H. Epidemiologic data on American personnel in the Moscow Embassy. Bull N.Y. Acad Med 1979;55:1182–6.Google Scholar

  • 34.

    Williams RA, Webb TS. Exposure to radio-frequency radiation from an aircraft radar unit. Aviat Space Environ Med 1980;51:1243–4.Google Scholar

  • 35.

    Forman SA, Holmes CK, McManamon TV, Wedding WR. Psychological symptoms and intermittent hypertension following acute microwave exposure. J Occup Med 1982;24:932–4.Google Scholar

  • 36.

    Schilling CJ. Effects of acute exposure to ultrahigh radiofrequency radiation on three antenna engineers. Occup Environ Med 1997;54:281–4.CrossrefGoogle Scholar

  • 37.

    Schilling CJ. Effects of exposure to very high frequency radiofrequency radiation on six antenna engineers in two separate incidents. Occup Med 2000;50:49–56.CrossrefGoogle Scholar

  • 38.

    Gultekin DH, Moeller L. NMR imaging of cell phone radiation absorption in brain tissue. PNAS www.pnas.org/cgi/doi/10.1073/pnas.1205598109.Crossref

  • 39.

    Balcer-Kubiczek EK, Harrison GH. Evidence for microwave carcinogenesis in vitro. Carcinogenesis 1985;6:859–64.Google Scholar

  • 40.

    Repacholi MH, Basten A, Gebski V, Noonan D, Finnie J, et al. Lymphomas in Eu-Pim1 transgenic mice exposed to pulsed 900 MHz electromagnetic fields. Rad Res 1997;147:631–40.CrossrefGoogle Scholar

  • 41.

    Goldsmith JR. Epidemiological evidence relevant to radar (microwave) effects. Environ Health Perspect 1997;105: 1579–87.Google Scholar

  • 42.

    Hardell L, Carlberg M. Using the Hill criteria from 1965 for strengths of evidence of the risk for brain tumors associated with use of mobile and cordless phones. Rev Environ Health 2013;28:97–106.Google Scholar

  • 43.

    Hardell L, Carlberg M, Söderqvist F, Hansson Mild K. Meta-analysis of long-term mobile phone use and the association with brain tumours. Int J Oncol 2008;32:1097–103.Google Scholar

  • 44.

    Kundi M. The controversy about a possible relationship between mobile phone use and cancer. Environ Health Perspect 2009;117:316–24.Google Scholar

  • 45.

    INTERPHONE Study Group. Brain tumour risk in relation to mobile telephone use: results of the INTERPHONE international case-control study. Int J Epidemiol 2010;39:675–94.Google Scholar

  • 46.

    Sadetzki S, Chetrit A, Jarus-Hakak A, Cardis E, Deutch Y, et al. Cellular phone use and risk of benign and malignant parotid gland tumors-a nationwide case-control study. Am J Epidemiol 2008;167:457–67.CrossrefGoogle Scholar

  • 47.

    Hardell L, Mild KH, Carlberg M, Hallquist A. Cellular and cordless telephone use and the association with brain tumors in different age groups. Arch Environ Health 2004;59:132–7.CrossrefGoogle Scholar

  • 48.

    Hardell L, Carlberg M, Hansson Mild K. Use of mobile phones and cordless phones is associated with increased risk for glioma and acoustic neuroma. Pathohysiology 2013;20:85–110.CrossrefGoogle Scholar

  • 49.

    Michelozzi P, Capon A, Kirchmayer U, Forastiere F, Biggeri A, et al. Adult and childhood leukemia near a high-power radio station in Rome, Italy. Am J Epidemiol 2002;155:1096–103.CrossrefGoogle Scholar

  • 50.

    Park SK, Ha M, Im HJ. Ecological study on residences in the vicinity of AM radio broadcasting towers and cancer death: preliminary observations in Korea. Int Arch Occup Environ Health 2004;77:387–94.Google Scholar

  • 51.

    Ha M, Im H, Lee M, Kim HJ, Kim BC, et al. Radio-frequency radiation exposure from AM radio transmitters and childhood leukemia and brain cancer. Am J Epidemiol 2007;166:270–9.CrossrefGoogle Scholar

  • 52.

    IARC (International Agency for Research on Cancer). Non-ionizing radiation, Part 2: radiofrequency electromagnetic fields 2013. IARC monographs on the evaluation of carcinogenic risks to humans. World Health Organization, 461 pp.Google Scholar

  • 53.

    Agarwal A, Desai NR, Makker K, Varghese A, Mouradi R, et al. Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: an in vitro pilot study. Fert Steril 2008;92:1318–25.Google Scholar

  • 54.

    Agarwal A, Deepinder F, Sharma RK, Ranga G, Li J. Effect of cell phone usage on semen analysis in men attending infertility clinic: an observational study. Fert Steril 2008;89:124–8.CrossrefGoogle Scholar

  • 55.

    Wdowiak A, Wdowiak L, Wiktor H. Evaluation of the effect of using mobile phones on male fertility. Ann Agric Environ Med 2007;14:169–72.Google Scholar

  • 56.

    Liu X, Duan W, Zu SC, Chen C, He M, et al. Exposure to 1800 MHz radiofrequency electromagnetic radiation induces oxidative DNA base damage in a mouse spermatocyte-derived cell line. Toxicol Letts 2013;218:2–10.CrossrefGoogle Scholar

  • 57.

    DeIlullis GN, Newey RJ, Kiing BV, Aitken RJ. Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PLoS One 2009;4:ee6446.Google Scholar

  • 58.

    Rolland M, Le Moal J, Wagner V, Royere D, DeMouzon J. Decline in semen concentration and morphology in a sample of 26,609 men close to general population between 1989 and 2005 in France. Human Reprod 2013;28:462–70.Google Scholar

  • 59.

    Havas M. Radiation from wireless technology affects the blood, the heart, and the autonomic nervous system. Rev Environ Health 2013;28:75–84.Google Scholar

  • 60.

    Hallberg O, Oberfeld G. Letter to the editor: will we all become electrosensitive? Electromag Biol Med 2006;35:189–91.CrossrefGoogle Scholar

  • 61.

    World Health Organization. Electromagnetic fields and public health: electromagnetic hypersensitivity. Fact sheet N 296, December 2005. http://www.who.int/mediacentr/facsheets/fs296/en/index.html.

  • 62.

    Genius SJ, Lipp CT. Electromagnetic hypersensitivity: fact or fiction? Sci Total Environ 2011;414:103–12.Google Scholar

  • 63.

    Rubin GJ, Hillert L, Nieto-Hernandez R, van Rongen E, Oftedal G. Do people with idiopathic environmental intolerance attributed to electromagnetic fields display physiological effects when exposed to electromagnetic fields? A systematic review of provocation studies. Bioelectromagnetics 2011;32:593–609.CrossrefGoogle Scholar

  • 64.

    McCarty DE, Carrubba S, Chesson AL, Frilot C, Gonzalez-Toledo E, et al. Electromagnetic hypersensitivity: evidence for a novel neurological syndrome. Int J Neurosci 2011;121:670–6.CrossrefGoogle Scholar

  • 65.

    Frey AH. Behavioral biophysics. Psdychol Bull 1965;65: 322–37.CrossrefGoogle Scholar

  • 66.

    Huber R, Graf T, Cote KA, Wittmann L, Gallmann E, et al. Exposure to pulsed high-frequency electromagnetic field during waking affects human sleep EEG. NeuroReport 2000;11:3321–5.CrossrefGoogle Scholar

  • 67.

    Wiholm C, Lowden A, Hillert L, Kuster N, Arnetz BB, et al. The effects of 884 MHz GSM wireless communication signals on spatial memory performance: an experimental provocation study. PIERS Proceedings, August 27–30, 2007 Prague, Czech Republic; 526–9.Google Scholar

  • 68.

    Ellyahu I, Luira R, Hareuveny R, Margallot M, Meiran N, et al. Effects of radiofrequency radiation emitted by cellular telephones on the cognitive functions of humans. Bioelectromagnetics 2006;27:110–19.Google Scholar

  • 69.

    Barth A, Winker R, Ponocny-Seliger E, Mayhofer W, Ponocny I, et al. A meta-analysis for neurobehaviorual effects due to electromagnetic field exposure emitted by GSM mobile phones. Occup Environ Med 2008;65:342–6.CrossrefGoogle Scholar

  • 70.

    Aalto S, Haarala C, Bruck A, Sipila H, Hamalainen H, et al. Mobile phone affects cerebral blood flow in humans. J Cereb Blood Flor Metabol 2006;26:885–90.CrossrefGoogle Scholar

  • 71.

    Volkow ND, Tomasi D, Wang GF, Vaska P, Fowler JS, et al. Effects of cell phone radiofrequency signal exposure on brain glucose metabolism. J Am Med Assoc 2011;305:808–14.Google Scholar

  • 72.

    Divan HA, Kheifets L, Obel C, Olsen J. Prenatal and postnatal exposure to cell phone use and behavioral problems in children. Epidemiology 2008;19:523–9.CrossrefGoogle Scholar

  • 73.

    Aldad TS, Gan G, Gao XB, Taylor HS. Fetal radiofrequency radiation exposure from 800–1900 MHz-rated cellular telephones affects neurodevelopment and behavior in mice. Sci Rep 2012;2:312.Google Scholar

  • 74.

    Carpenter DO, Sage C. Setting prudent public health policy for electromagnetic field exposures. Rev Environ Health 2008;23:91–117.CrossrefGoogle Scholar

  • 75.

    Garaj-Vrhovac V, Gajski G, Pazanin S, Sarolic A, Domijan AM, et al. Assessment of cytogenetic damage and oxidative stress in personnel occupationally exposed to the pulsed microwave radiation of marine radar equipment. Internat J Hyg Environ Health 2011;214:59–65.CrossrefGoogle Scholar

  • 76.

    Luukkonen J, Hakulinen P, Maki-Paakkanen J, Juutilainen J, Naarala J. Enhancement of chemically induced reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells by 872 MHz radiofrequency radiation. Mut Res 2009;662:54–8.Google Scholar

  • 77.

    Karaca E, Durmaz B, Altug H, Yildiz T, Guducu C, et al. The genotoxic effect of radiofrequency waves on mouse brain. J Neurooncol 2012;106:53–8.CrossrefGoogle Scholar

  • 78.

    Zhao TY, Zou SP, Knapp PE. Exposure to cell phone radiation up-regulates apoptosis genes in prmary cultures of neurons and astrocytes. Neurosci Lett 2007;41:34–8.CrossrefGoogle Scholar

  • 79.

    Sakurai T, Kiyokawa T, Narita E, Suzuki Y, Taki M, et al. Analysis of gene exptression in a human-derived glial cell line exposed to 2.45 GHz continuous radiofrequency electromagnetic fields. J Radiat Res 2011;52:185–92.CrossrefGoogle Scholar

  • 80.

    Yan JG, Agresti M, Zhang LL, Yan Y, Mathoub HS. Upregulation of specific mRNA levels in rat brain after cell phone exposure. Electromag Biol Med 2008;27:147–54.CrossrefGoogle Scholar

  • 81.

    Luo Q, Jiang Y, Jin M, Xu J, Huang HF. Proteomic analysis on the alteration of protein expression in the early-stage placental villous tissue of electromagnetic fields associated with cell phone exposure. Reprod Sci 2013;20:1055–61.CrossrefGoogle Scholar

  • 82.

    Gerner C, Haudek V, Schandl U, Bayer E, Gundacker N, et al. Increased protein synthesis by cells exposed to a 1,800-MHz radio-frequency mobile phone electromagnetic field, detected by proteome profiling. Int Arch Occup Environ Health 2010;83:691–702.Google Scholar

  • 83.

    Ruediger HW. Genotoxic effects of radiofrequency electromagnetic fields. Pathophysiology 2009;16:89–102.CrossrefGoogle Scholar

  • 84.

    Tice RR, Hook GG, Donner M, McRee DI, Guy AW. Genotoxicity of radiofrequency signals. I. Investigation of DNA damage and micronuclei induction in cultured human blood cells. Bioelectromagnetics 2002;23:113–26.CrossrefGoogle Scholar

  • 85.

    Diem E, Schwarz C, Adkofer F, Jahn O, Rudiger H. Non-thermal DNA breakage by mobile-phone radiation (1800 MHz) in human fibroblasts and in transformed GFSH-R17 rat granulosa cells in vitro. Nut Res 2005;583:178–81.Google Scholar

  • 86.

    Xu S, Chan G, Chen C, Sum C, Zhang D, et al. Cell type-dependent induction of DNA damage by 1800 MHz radiofrequency electromagnetic fields does not result in significant cellular dysfunctions. PLoS One 2013;8:e54906.CrossrefGoogle Scholar

  • 87.

    Markova E, Malmgren LOG, Belyaev IY. Microwave from mobile phones inhibit 53BP1 focus formation in human stem cells more strongly than in differentiated cells: possible mechanistic link to cancer risk. Environ Health Perspect 2010;118:394–9.Google Scholar

  • 88.

    Hoyto A, Juutilainen J, Naarala J. Ornithine decarboxylase activity is affected in primary astrocytes but not in secondary cell lines exposed to 872 MHz RF radiation. Int J Radiat Biol 2007;83:367–74.Google Scholar

  • 89.

    McNamee JP, Chauhan V. Radiofrequency radiation and gene/protein expression: a review. Rad Res 2009;172:265–87.CrossrefGoogle Scholar

  • 90.

    Brusick D, Albertini R, McRee D, Peterson D, Williams G, et al. Genotoxicity of radiofrequency radiation. Enviorn Mol Mut 1998;32:1–16.Google Scholar

  • 91.

    Vignati M, Giuliani L. Radiofrequency exposure near high-voltage lines. Environ Health Perspect 1997;105(Suppl 6): 1563–73.Google Scholar

  • 92.

    Milham S, Morgan LL. A new electromagnetic exposure metric: high frequency voltage transients associated with increased cancer incidence in teachers in a California school. Am J Ind Med 2008;51:579–86.CrossrefGoogle Scholar

  • 93.

    Markova E, Hillert L, Malmgren L, Persson BRR, Belyaev IY. Micowaves from GSM mobile telephones affect 53 BP1 and γ-HeAX foci in human lymphocytes from hypersensitive and healthy persons. Environ Health Perspect 2005;113:1172–7.Google Scholar

  • 94.

    Before the Public Utilities Commission of the State of California; Pacific Gas and Electric Company’s Response to Administrative Law Judge’s October 18, 2011 Ruling Directing it to File Clarifying Radio Frequency Information. November 1, 2011.Google Scholar

  • 95.

    Murrill BJ, Liu EC, Thompson RM II. Smart meter data: privacy and cybersecurity. Congressional Research Service: CRS Report for Congress. February 3, 2012.Google Scholar

  • 96.

    Khalid M, Mee T, Peyman A, Addison D, Caleron C, et al. Exposure to radio frequency electromagnetic fields from wireless computer networks: duty factor of Wi-Fi devices operating in schools. Prog Biophy Mol Biol 2011;107:412–20.CrossrefGoogle Scholar

  • 97.

    Findlay RP, Dimbylow PJ. SAR in a child voxel phantom from exposure to wireless computer networks (Wi-Fi). Phys Med Biol 2010;55:N405-N411.CrossrefGoogle Scholar

  • 98.

    Peyman A, Khalid M, Calderon C, Addison D, Mee T, et al. Assessment of exposure to electromagnetic fields from wireless computer networks (Wi-Fi) in schools: results of laboratory measurement. Health Phys 2011;100:594–612.CrossrefGoogle Scholar

  • 99.

    Haumann T, Sierck P, Munzenberg U. HF-radiation of GSM cellular phone towers in residential areas. Proceedings of “Biological Effects of Electromagnetic Fields – 2nd International Workshop”. Rhodes, Greece 2002;7:327–33.Google Scholar

  • 100.

    Frei P, Mohler E, Neubauer G, Theis G, Burgi A, et al. Temporal and spatial variability of personal exposure to radio frequency electromagnetic fields. Environ Res 2009;109:770–85.Google Scholar

  • 101.

    ICNIRP. Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phy 1998:74:494–522.Google Scholar

  • 102.

    Radiation Protection Standard. Maximum exposure levels to radiofrequency fields 3 kHz to 300 GHz. Australian Radiation Protection and Nuclear Safety Agency, Radiation Protection Series No. 3. 2008.Google Scholar

  • 103.

    Huss A, Egger M, Hug K, Huwiler-Munterner K, Roosli M. Source of funding and results of studies of health effects of mobile phone use: systematic review of experimental studies. Environ Health Perspec 2007;115:1–4.Google Scholar

  • 104.

    Ginsberg GL. Assessing cancer risks from short-term exposures in children. Risk Anal 2003;23:19–34.CrossrefGoogle Scholar

  • 105.

    Pritchard C, Mayers A, Baldwin D. Changing patterns of neurological mortality in the 10 major developed countries – 1979–2010. Public Health 2013;127:357–68.Google Scholar

  • 106.

    American Academy of Environmental Medicine. Letter Concerning Proposed Decision of Commissioner Peevey (Mailed 11/22/2011) Before the Public Utilities Commission of the State of California on the proposed decision 11/03/014. Mailed January 19; 2012.Google Scholar

  • 107.

    American Academy of Pediatrics. Letter to The Honorable Dennis Kucinich. Dated December 12, 2012.Google Scholar

About the article

Corresponding author: David O. Carpenter, MD, 5 University Place, Room A217, Rensselaer, NY 12144, USA, Phone: +518-525-2660, Fax: +518-525-2665, E-mail:


Received: 2013-10-23

Accepted: 2013-11-07

Published Online: 2013-11-27

Published in Print: 2013-12-01


From: Conference on Corporate Influences on Fracking, Food and Wireless.


Citation Information: Reviews on Environmental Health, ISSN (Online) 2191-0308, ISSN (Print) 0048-7554, DOI: https://doi.org/10.1515/reveh-2013-0016.

Export Citation

©2013 by Walter de Gruyter Berlin Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Lena K. Hedendahl, Michael Carlberg, Tarmo Koppel, and Lennart Hardell
Frontiers in Public Health, 2017, Volume 5
[2]
[3]
Zhi-Jun Zang, Su-Yun Ji, Shi-Zong Huang, Mei-Hua Jiang, and You-Qiang Fang
Occupational Diseases and Environmental Medicine, 2016, Volume 04, Number 03, Page 56
[4]
Pinar Demir and Feride Severcan
Applied Spectroscopy Reviews, 2016, Volume 51, Number 10, Page 839
[5]
[6]
Enis Hidisoglu, Deniz Kantar Gok, Hakan Er, Deniz Akpinar, Fatma Uysal, Gokhan Akkoyunlu, Sukru Ozen, Aysel Agar, and Piraye Yargicoglu
Brain Research, 2016, Volume 1635, Page 1
[7]
Zhaopin Wang, Ying Fei, Hui Liu, Shuangshuang Zheng, Zheyuan Ding, Wen Jin, Yifeng Pan, Zexin Chen, Lijuan Wang, Guangdi Chen, Zhengping Xu, Yongjian Zhu, and Yunxian Yu
International Archives of Occupational and Environmental Health, 2016, Volume 89, Number 1, Page 33
[8]
Lisa Gherardini, Gastone Ciuti, Selene Tognarelli, and Caterina Cinti
International Journal of Molecular Sciences, 2014, Volume 15, Number 4, Page 5366

Comments (0)

Please log in or register to comment.
Log in