Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews on Environmental Health

Editor-in-Chief: Carpenter, David O. / Sly, Peter

Editorial Board: Brugge, Doug / Edwards, John W. / Field, R.William / Garbisu, Carlos / Hales, Simon / Horowitz, Michal / Lawrence, Roderick / Maibach, H.I. / Shaw, Susan / Tao, Shu / Tchounwou, Paul B.

4 Issues per year


IMPACT FACTOR 2017: 1.284

CiteScore 2017: 1.29

SCImago Journal Rank (SJR) 2017: 0.438
Source Normalized Impact per Paper (SNIP) 2017: 0.603

Online
ISSN
2191-0308
See all formats and pricing
More options …
Volume 29, Issue 3

Issues

Non-melanoma skin cancer: occupational risk from UV light and arsenic exposure

Simona Surdu
  • Corresponding author
  • School of Public Health, University at Albany, State University of New York, 5 University Place, Rensselaer, NY 12144, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-09-12 | DOI: https://doi.org/10.1515/reveh-2014-0040

Abstract

Non-melanoma skin cancer (NMSC) has a significant impact on public health and health care costs as a result of high morbidity and disfigurement due to the destruction of surrounding tissues. Although the mortality rates of these tumors are low, the high incidence rates determine a considerable number of deaths. NMSC is the most common type of skin cancer, representing about 1/3 of all malignancies diagnosed worldwide each year. The most common NMSC are basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). Studies on humans and experimental animals indicate that ultraviolet (UV) light and arsenic play important roles in the development of these skin malignancies. Several epidemiological studies have investigated the risk of developing NMSC and the potential link between exposure to sunlight and arsenic in the agricultural and industrial occupational settings. To date, the published literature suggests that there is no apparent skin cancer risk as regards workplace exposure to artificial UV light or arsenic. Concerning UV light from sun exposure at the workplace, most published studies indicated an elevated risk for SCC, but are less conclusive for BCC. Many of these studies are limited by the methodology used in the evaluation of occupational exposure and the lack of adjustment for major confounders. Therefore, further epidemiological studies are required to focus on exposure assessment at the individual level as well as potential interactions with other occupational and non-occupational exposures and individual susceptibility. In doing so, we can better quantify the true risk of skin cancer in exposed workers and inform effective public health prevention programs.

Keywords: arsenic; non-melanoma skin cancer; occupational exposure; sunlight; ultraviolet light

References

  • 1.

    IARC. Overall evaluations of carcinogenicity: an updating of IARC Monographs Volumes 1 to 42, Supplement 7. Lyon, France: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, International Agency for Research on Cancer, World Health Organization, 1987.Google Scholar

  • 2.

    Siemiatycki J, Richardson L, Straif K, Latreille B, Lakhani R, et al. Listing occupational carcinogens. Environ Health Perspect 2004;112:1447–59.PubMedCrossrefGoogle Scholar

  • 3.

    Boukamp P. Non-melanoma skin cancer: what drives tumor development and progression? Carcinogenesis 2005;26:1657–67.CrossrefPubMedGoogle Scholar

  • 4.

    Franceschi S, Levi F, Randimbison L, La Vecchia C. Site distribution of different types of skin cancer: New aetiological clues. Int J Cancer 1996;67:24–8.CrossrefPubMedGoogle Scholar

  • 5.

    Epstein JH. Nonmelanoma skin cancer. Compr Ther 1996;22:179–82.PubMedGoogle Scholar

  • 6.

    Gallagher RP, Bajdik CD, Fincham S, Hill GB, Keefe AR, et al. Chemical exposures, medical history, and risk of squamous and basal cell carcinoma of the skin. Cancer Epidemiol Biomarkers Prev 1996;5:419–24.PubMedGoogle Scholar

  • 7.

    Scrivener Y, Grosshans E, Cribier B. Variations of basal cell carcinomas according to gender, age, location and histopathological subtype. Br J Dermatol 2002;147:41–7.Google Scholar

  • 8.

    EPA. Special report on ingested inorganic arsenic: skin cancer; nutritional essentiality. Washington, DC: US Environmental Protection Agency, 1988.Google Scholar

  • 9.

    Gallagher RP, Hill GB, Bajdik CD, Coldman AJ, Fincham S, et al. Sunlight exposure, pigmentation factors, and risk of nonmelanocytic skin cancer. II. Squamous cell carcinoma. Arch Dermatol 1995a;131:164–9.Google Scholar

  • 10.

    Gallagher RP, Hill GB, Bajdik CD, Fincham S, Coldman AJ, et al. Sunlight exposure, pigmentary factors, and risk of nonmelanocytic skin cancer. I. Basal cell carcinoma. Arch Dermatol 1995b;131:157–63.Google Scholar

  • 11.

    Couve-Privat S, Bouadjar B, Avril MF, Sarasin A, Daya-Grosjean L. Significantly high levels of ultraviolet-specific mutations in the smoothened gene in basal cell carcinomas from DNA repair-deficient xeroderma pigmentosum patients. Cancer Res 2002;62:7186–9.Google Scholar

  • 12.

    Karagas MR, Cushing GL, Jr., Greenberg ER, Mott LA, Spencer SK, et al. Non-melanoma skin cancers and glucocorticoid therapy. Br J Cancer 2001;85:683–6.CrossrefGoogle Scholar

  • 13.

    Gasparro FP. The role of PUVA in the treatment of psoriasis. Photobiology issues related to skin cancer incidence. Am J Clin Dermatol 2000;1:337–48.CrossrefGoogle Scholar

  • 14.

    Almahroos M, Kurban AK. Ultraviolet carcinogenesis in nonmelanoma skin cancer part II: Review and update on epidemiologic correlations. Skinmed 2004;3:132–9.Google Scholar

  • 15.

    Armstrong BK, Kricker A. The epidemiology of UV induced skin cancer. J Photochem Photobiol B. 2001;63:8–18.CrossrefGoogle Scholar

  • 16.

    Saraiya M, Glanz K, Briss PA, Nichols P, White C, et al. Interventions to prevent skin cancer by reducing exposure to ultraviolet radiation: a systematic review. Am J Prev Med 2004;27:422–66.Google Scholar

  • 17.

    Young AR. Tanning devices-fast track to skin cancer? Pigment Cell Res 2004;17:2–9.PubMedGoogle Scholar

  • 18.

    IARC. Solar and ultraviolet radiation. Lyon, France: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, International Agency for Research on Cancer, World Health Organization, 1992.Google Scholar

  • 19.

    IARC. Exposure to artificial UV radiation and skin cancer. Lyon, France: International Agency for Research on Cancer, World Health Organization, 2006.Google Scholar

  • 20.

    IARC. A review of human carcinogens: Radiation. Lyon, France: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, International Agency for Research on Cancer, World Health Organization, 2012.Google Scholar

  • 21.

    ATSDR. Toxicological profile for arsenic. Atlanta, GA: Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services, Public Health Service, 2007.Google Scholar

  • 22.

    Mitropoulos P, Norman R. Occupational nonsolar risk factors of squamous cell carcinoma of the skin: a population-based case-controlled study. Dermatol Online J 2005;11:5.Google Scholar

  • 23.

    Peate W. Occupational skin disease. Am Fam Physician 2002;66:1025–32.Google Scholar

  • 24.

    Yoshinaga S, Mabuchi K, Sigurdson AJ, Doody MM, Ron E. Cancer risks among radiologists and radiologic technologists: review of epidemiologic studies. Radiology 2004;233:313–21.Google Scholar

  • 25.

    WHO. INTERSUN, the global UV project: a guide and compendium. Geneva, Switzerland: World Health Organization, 2003a.Google Scholar

  • 26.

    Lucas R, McMichael T, Smith W, Armstrong B. Solar ultraviolet radiation: global burden of disease from solar ultraviolet radiation. Geneva, Switzerland: World Health Organization, 2006.Google Scholar

  • 27.

    WHO. Ultraviolet radiation as a hazard in the workplace. Geneva, Switzerland: World Health Organization, 2003b.Google Scholar

  • 28.

    Glanz K, Buller DB, Saraiya M. Reducing ultraviolet radiation exposure among outdoor workers: State of the evidence and recommendations. Environ Health [serial on the Internet]. 2007;6. Available from: http://www.ehjournal.net/content/6/1/22.Crossref

  • 29.

    NIOSH. Criteria for a recommended standard: occupational exposure to ultraviolet radiation. Cincinnati, Ohio: National Institute for Occupational Safety and Health, 1972.Google Scholar

  • 30.

    Suárez B, López-Abente G, Martínez C, Navarro C, Tormo M, et al. Occupation and skin cancer: the results of the HELIOS-I multicenter case-control study. BMC Public Health 2007;7:180.CrossrefGoogle Scholar

  • 31.

    WHO. Arsenic in drinking-water. Background document for development of WHO guidelines for drinking-water quality. Geneva, Switzerland: World Health Organization, 2011.Google Scholar

  • 32.

    EPA. Arsenic, inorganic (CASRN 7440-38-2): carcinogenicity assessment for lifetime exposure. Washington, DC: Integrated Risk Information System (IRIS), U.S. Environmental Protection Agency, 1998a.Google Scholar

  • 33.

    Nordstrom DK. Worldwide occurrences of arsenic in ground water. Science 2002;296:2143–5.Google Scholar

  • 34.

    NRC. Arsenic in drinking water. 2001 Update. Washington, DC: U.S. National Research Council, National Academy Press, 2001.Google Scholar

  • 35.

    WHO. Air quality guidelines, 2nd ed. Arsenic. Copenhagen, Denmark: World Health Organization Regional Office for Europe, 2000.Google Scholar

  • 36.

    WHO. Arsenic and arsenic compounds, 2nd ed. Geneva, Switzerland: Environmental Health Criteria 224, International Programme on Chemical Safety, World Health Organization, 2001.Google Scholar

  • 37.

    Hughes MF. Arsenic toxicity and potential mechanisms of action. Toxicology Lett 2002;133:1–16.CrossrefGoogle Scholar

  • 38.

    Hughes MF. Biomarkers of exposure: a case study with inorganic arsenic. Environ Health Perspect 2006;114:1790–6.Google Scholar

  • 39.

    Pellizzari ED, Clayton CA. Assessing the measurement precision of various arsenic forms and arsenic exposure in the National Human Exposure Assessment Survey (NHEXAS). Environ Health Perspect 2006;114:220–7.CrossrefGoogle Scholar

  • 40.

    Tchounwou PB, Patlolla AK, Centeno JA. Invited reviews: carcinogenic and systemic health effects associated with arsenic exposure – a critical review. Toxicol Pathol 2003;31:575–88.Google Scholar

  • 41.

    Andrew AS, Burgess JL, Meza MM, Demidenko E, Waugh MG, Hamilton JW, et al. Arsenic exposure is associated with decreased DNA repair in vitro and in individuals exposed to drinking water arsenic. Environ Health Perspect 2006;114: 1193–8.CrossrefGoogle Scholar

  • 42.

    Chan CP, Huff J. Arsenic carcinogenesis in animals and in humans: mechanistic, experimental, and epidemiological evidence. Environ Carcino & Ecotox Revs 1997;C15:83–122.CrossrefGoogle Scholar

  • 43.

    EPA. Health assessment document for inorganic arsenic. Research Triangle Park, NC: U.S. Environmental Protection Agency, 1984.Google Scholar

  • 44.

    Salnikow K, Zhitkovich A. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol 2008;21:28–44.CrossrefGoogle Scholar

  • 45.

    EPA. Locating and estimating air emissions from sources of arsenic and arsenic compounds. Research Triangle Park, NC: U.S. Environmental Protection Agency, 1998b.Google Scholar

  • 46.

    EPA. Carcinogenicity assessment for lifetime exposure to arsenic. Cincinnati, OH: U.S. Environmental Protection Agency, 1994.Google Scholar

  • 47.

    WHO. Guidelines for drinking water quality. Recommendations, 3rd ed. Geneva, Switzerland: World Health Organization, 2006.Google Scholar

  • 48.

    WHO. Guidelines for drinking water quality. Recommendations, 2nd ed. Geneva, Switzerland: World Health Organization, 1998.Google Scholar

  • 49.

    Bauer A, Diepgen TL, Schmitt J. Is occupational solar ultraviolet irradiation a relevant risk factor for basal cell carcinoma? A systematic review and meta-analysis of the epidemiological literature. Br J Dermatol 2011;165:612–25.Google Scholar

  • 50.

    Green A, Battistutta D, Hart V, Leslie D, Weedon D. Skin cancer in a subtropical Australian population: incidence and lack of association with occupation. The Nambour study group. Am J Epidemiol 1996;144:1034–40.Google Scholar

  • 51.

    Green A, Battistutta D. Incidence and determinants of skin cancer in a high-risk Australian population. Int J Cancer 1990;46:356–61.CrossrefGoogle Scholar

  • 52.

    Kricker A, Armstrong BK, English DR, Heenan PJ. A dose-response curve for sun exposure and basal cell carcinoma. Int J Cancer 1995;60:482–8.CrossrefGoogle Scholar

  • 53.

    Lichte V, Dennenmoser B, Dietz K, Hafner HM, Schlagenhauff B, et al. Professional risk for skin cancer development in male mountain guides – a cross-sectional study. J Eur Acad Dermatol Venereol 2010;24:797–804.Google Scholar

  • 54.

    Kenborg L, Jorgensen AD, Budtz-Jorgensen E, Knudsen LE, Hansen J. Occupational exposure to the sun and risk of skin and lip cancer among male wage earners in Denmark: a population-based case-control study. Cancer Causes Control 2010;21:1347–55.CrossrefGoogle Scholar

  • 55.

    Lock-Andersen J, Drzewiecki KT, Wulf HC. The measurement of constitutive and facultative skin pigmentation and estimation of sun exposure in Caucasians with basal cell carcinoma and cutaneous malignant melanoma. Br J Dermatol 1998;139:610–7.Google Scholar

  • 56.

    Milan T, Verkasalo PK, Kaprio J, Koskenvuo M. Lifestyle differences in twin pairs discordant for basal cell carcinoma of the skin. Br J Dermatol 2003;149:115–23.CrossrefGoogle Scholar

  • 57.

    Hannuksela-Svahn A, Pukkala E, Karvonen J. Basal cell skin carcinoma and other nonmelanoma skin cancers in Finland from 1956 through 1995. Arch Dermatol 1999;135:781–6.Google Scholar

  • 58.

    Rosso S, Zanetti R, Martinez C, Tormo MJ, Schraub S, Sancho-Garnier H, et al. The multicentre south European study ’Helios’. II: different sun exposure patterns in the aetiology of basal cell and squamous cell carcinomas of the skin. Br J Cancer 1996;73:1447–54.CrossrefGoogle Scholar

  • 59.

    Seidler A, Husmann G, Nubling M, Hammer GP, Schmidtmann I, Blettner M, et al. UV-exponierte berufe und hauttumoren: berufsbezogene auswertung von daten des krebsregisters Rheinland-Pfalz. Zbl Arbeitsmed 2006;56:78–90.Google Scholar

  • 60.

    Radespiel-Troger M, Meyer M, Pfahlberg A, Lausen B, Uter W, et al. Outdoor work and skin cancer incidence: a registry-based study in Bavaria. Int Arch Occup Environ Health 2009;82:357–63.CrossrefGoogle Scholar

  • 61.

    Walther U, Kron M, Sander S, Sebastian G, Sander R, et al. Risk and protective factors for sporadic basal cell carcinoma: results of a two-centre case-control study in southern Germany. Clinical actinic elastosis may be a protective factor. Br J Dermatol 2004;151:170–8.Google Scholar

  • 62.

    Surdu S, Fitzgerald EF, Bloom MS, Boscoe FP, Carpenter DO, et al. Occupational exposure to ultraviolet radiation and risk of non-melanoma skin cancer in a multinational European study. PLoS ONE 2013a;8:e62359.Google Scholar

  • 63.

    Tobia L, Fanelli C, Bianchi S, Paglione M, Diana S, et al. [Professional exposure to natural ultraviolet radiation: risk assessment and management and preventing strategies]. G Ital Med Lav Ergon 2007;29:422–4.Google Scholar

  • 64.

    Pelucchi C, Di Landro A, Naldi L, La Vecchia C. Risk factors for histological types and anatomic sites of cutaneous basal-cell carcinoma: an italian case-control study. J Invest Dermatol 2007;127:935–44.CrossrefGoogle Scholar

  • 65.

    Gafa L, Filippazzo MG, Tumino R, Dardanoni G, Lanzarone F, et al. Risk factors of nonmelanoma skin cancer in Ragusa, Sicily: a case-control study. Cancer Causes Control 1991;2:395–9.CrossrefGoogle Scholar

  • 66.

    Corona R, Dogliotti E, D’Errico M, Sera F, Iavarone I, Baliva G, et al. Risk factors for basal cell carcinoma in a Mediterranean population: role of recreational sun exposure early in life. Arch Dermatol 2001;137:1162–8.Google Scholar

  • 67.

    Rosso S, Joris F, Zanetti R. Risk of basal and squamous cell carcinomas of the skin in Sion, Switzerland: a case-control study. Tumori 1999;85:435–42.Google Scholar

  • 68.

    Lear JT, Tan BB, Smith AG, Bowers W, Jones PW, et al. Risk factors for basal cell carcinoma in the UK: case-control study in 806 patients. J R Soc Med 1997;90:371–4.Google Scholar

  • 69.

    Vlajinac HD, Adanja BJ, Lazar ZF, Bogavac AN, Bjekic MD, et al. Risk factors for basal cell carcinoma. Acta Oncol 2000;39:611–6.Google Scholar

  • 70.

    Zanetti R, Rosso S, Martinez C, Nieto A, Miranda A, et al. Comparison of risk patterns in carcinoma and melanoma of the skin in men: a multi-centre case-control study. Br J Cancer 2006;94:743–51.Google Scholar

  • 71.

    Maia M, Proenca NG, de Moraes JC. Risk factors for basal cell carcinoma: a case–control study. Rev Saude Publica 1995;29:27–37.CrossrefGoogle Scholar

  • 72.

    Marehbian J, Colt JS, Baris D, Stewart P, Stukel TA, et al. Occupation and keratinocyte cancer risk: a population- based case-control study. Cancer Causes Control 2007;18: 895–908.CrossrefGoogle Scholar

  • 73.

    Hogan DJ, To T, Gran L, Wong D, Lane PR. Risk factors for basal cell carcinoma. Int J Dermatol 1989;28:591–4.CrossrefGoogle Scholar

  • 74.

    Marks R, Jolley D, Dorevitch AP, Selwood TS. The incidence of non-melanocytic skin cancers in an Australian population: results of a five-year prospective study. Med J Aust 1989;150:475–8.Google Scholar

  • 75.

    Adami J, Gridley G, Nyren O, Dosemeci M, Linet M, et al. Sunlight and non-Hodgkin’s lymphoma: a population-based cohort study in Sweden. Int J Cancer 1999;80:641–5.CrossrefGoogle Scholar

  • 76.

    Schmitt J, Seidler A, Diepgen TL, Bauer A. Occupational ultraviolet light exposure increases the risk for the development of cutaneous squamous cell carcinoma: a systematic review and meta-analysis. Br J Dermatol 2011;164:291–307.Google Scholar

  • 77.

    Pukkala E, Saarni H. Cancer incidence among Finnish seafarers, 1967–92. Cancer Causes Control 1996;7:231–9.Google Scholar

  • 78.

    Masini C, Fuchs PG, Gabrielli F, Stark S, Sera F, et al. Evidence for the association of human papillomavirus infection and cutaneous squamous cell carcinoma in immunocompetent individuals. Arch Dermatol 2003;139:890–4.Google Scholar

  • 79.

    Perea-Milla Lopez E, Minarro-Del Moral RM, Martinez-Garcia C, Zanetti R, Rosso S, et al. Lifestyles, environmental and phenotypic factors associated with lip cancer: a case-control study in southern Spain. Br J Cancer 2003;88:1702–7.CrossrefGoogle Scholar

  • 80.

    Hakansson N, Floderus B, Gustavsson P, Feychting M, Hallin N. Occupational sunlight exposure and cancer incidence among Swedish construction workers. Epidemiology 2001;12:552–7.CrossrefGoogle Scholar

  • 81.

    Aubry F, MacGibbon B. Risk factors of squamous cell carcinoma of the skin. a case-control study in the Montreal region. Cancer 1985;55:907–11.CrossrefGoogle Scholar

  • 82.

    Hogan DJ, Lane PR, Gran L, Wong D. Risk factors for squamous cell carcinoma of the skin in Saskatchewan, Canada. J Dermatol Sci 1990;1:97–101.CrossrefGoogle Scholar

  • 83.

    Surdu S, Fitzgerald EF, Bloom MS, Boscoe FP, Carpenter DO, et al. Occupational exposure to arsenic and risk of non-melanoma skin cancer in a multinational European study. Int J Cancer 2013b;133:2182–91.Google Scholar

  • 84.

    Gallagher RP, Lee TK. Adverse effects of ultraviolet radiation: a brief review. Prog Biophys Mol Biol 2006;92:119–31.CrossrefGoogle Scholar

  • 85.

    Kütting B, Drexler H. UV-induced skin cancer at workplace and evidence-based prevention. Int Arch Occup Environ Health 2010;83:843–54.CrossrefGoogle Scholar

  • 86.

    Smedley PL, Kinniburgh DG. A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry 2002;17:517–68.CrossrefGoogle Scholar

  • 87.

    Gawkrodger DJ. Occupational skin cancers. Occup Med (Lond) 2004;54:458–63.CrossrefGoogle Scholar

About the article

Corresponding author: Dr. Simona Surdu, School of Public Health, University at Albany, State University of New York, 5 University Place, Rensselaer, NY 12144, USA, Phone: +1 518 5252660, Fax: +1 518 5252665, E-mail:


Received: 2014-05-13

Accepted: 2014-08-21

Published Online: 2014-09-12

Published in Print: 2014-08-01


Citation Information: Reviews on Environmental Health, Volume 29, Issue 3, Pages 255–265, ISSN (Online) 2191-0308, ISSN (Print) 0048-7554, DOI: https://doi.org/10.1515/reveh-2014-0040.

Export Citation

©2014 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Francesca Larese Filon, Masa Buric, and Catharina Fluehler
Photodermatology, Photoimmunology & Photomedicine, 2018
[2]
J. Schmitt, E. Haufe, F. Trautmann, H.-J. Schulze, P. Elsner, H. Drexler, A. Bauer, S. Letzel, S.M. John, M. Fartasch, T. Brüning, A. Seidler, S. Dugas-Breit, M. Gina, W. Weistenhöfer, K. Bachmann, I. Bruhn, B.M. Lang, S. Bonness, J.P. Allam, W. Grobe, T. Stange, S. Westerhausen, P. Knuschke, M. Wittlich, and T.L. Diepgen
British Journal of Dermatology, 2018
[3]
Jochen Schmitt, Eva Haufe, Freya Trautmann, Hans-Joachim Schulze, Peter Elsner, Hans Drexler, Andrea Bauer, Stephan Letzel, Swen Malte John, Manigé Fartasch, Thomas Brüning, Andreas Seidler, Susanne Dugas-Breit, Michal Gina, Wobbeke Weistenhöfer, Klaus Bachmann, Ilka Bruhn, Berenice Mareen Lang, Sonja Bonness, Jean Pierre Allam, William Grobe, Thoralf Stange, Stephan Westerhausen, Peter Knuschke, Marc Wittlich, and Thomas Ludwig Diepgen
Journal of Occupational and Environmental Medicine, 2018, Volume 60, Number 1, Page 36
[4]
Harry Pratt, Kareem Hassanin, Lee D. Troughton, Gabriela Czanner, Yalin Zheng, Austin G. McCormick, Kevin J. Hamill, and Andrzej T. Slominski
PLOS ONE, 2017, Volume 12, Number 10, Page e0185297
[6]
Siliang Wang, Peiliang Shen, Jinrong Zhou, and Yin Lu
Pharmacological Research, 2017, Volume 119, Page 327
[7]
Tiffany Y. Loh, Ashley G. Rubin, and Shang I Brian Jiang
Dermatologic Surgery, 2017, Volume 43, Number 1, Page 32
[8]
Hui-Wen Tseng, Yow-Ling Shiue, Kuo-Wang Tsai, Wei-Chun Huang, Pei-Ling Tang, and Hing-Chung Lam
Medicine, 2016, Volume 95, Number 26, Page e4070
[9]
Kyle A. Burton, Kurt A. Ashack, and Amor Khachemoune
American Journal of Clinical Dermatology, 2016, Volume 17, Number 5, Page 491
[10]
Jose Hernán Alfonso, Jan Ivar Martinsen, Eero Pukkala, Elisabete Weiderpass, Laufey Tryggvadottir, Karl-Christian Nordby, and Kristina Kjærheim
Journal of the American Academy of Dermatology, 2016, Volume 75, Number 3, Page 548
[11]
Khaja Shameem Mohammed Abdul, Sudheera Sammanthi Jayasinghe, Ediriweera P.S. Chandana, Channa Jayasumana, and P. Mangala C.S. De Silva
Environmental Toxicology and Pharmacology, 2015, Volume 40, Number 3, Page 828
[12]
Zhiguo Li, Ying Lu, Nihal Ahmad, Klaus Strebhardt, and Xiaoqi Liu
Cell Cycle, 2015, Volume 14, Number 19, Page 3030
[13]
Shaowei Wu, Eunyoung Cho, Diane Feskanich, Wen-Qing Li, Qi Sun, Jiali Han, and Abrar A. Qureshi
Carcinogenesis, 2015, Volume 36, Number 10, Page 1162
[14]
Marimer Santiago-Rivas, Chang Wang, and Lina Jandorf
Journal of Skin Cancer, 2014, Volume 2014, Page 1

Comments (0)

Please log in or register to comment.
Log in