Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews on Environmental Health

Editor-in-Chief: Carpenter, David O. / Sly, Peter

Editorial Board: Brugge, Doug / Edwards, John W. / Field, R.William / Garbisu, Carlos / Hales, Simon / Horowitz, Michal / Lawrence, Roderick / Maibach, H.I. / Shaw, Susan / Tao, Shu / Tchounwou, Paul B.

4 Issues per year


CiteScore 2016: 1.95

SCImago Journal Rank (SJR) 2016: 0.543
Source Normalized Impact per Paper (SNIP) 2016: 0.885

Online
ISSN
2191-0308
See all formats and pricing
More options …
Volume 29, Issue 3

Issues

Sampling the stratum corneum for toxic chemicals

Garrett Coman
  • Corresponding author
  • University of Utah School of Medicine, Salt Lake City, UT, USA
  • Department of Dermatology, University of California, San Francisco, CA, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nicholas R. Blickenstaff
  • University of Utah School of Medicine, Salt Lake City, UT, USA
  • Department of Dermatology, University of California, San Francisco, CA, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Collin M. Blattner / Rosa Andersen / Howard I. Maibach
Published Online: 2014-09-16 | DOI: https://doi.org/10.1515/reveh-2014-0051

Abstract

Dermal exposure is an important pathway in environmental health. Exposure comes from contaminated water, soil, treated surfaces, textiles, aerosolized chemicals, and agricultural products. It can occur in homes, schools, play areas, and work settings in the form of industrial sources, consumer products, or hazardous wastes. Dermal exposure is most likely to occur through contact with liquids, water, soil, sediment, and contaminated surfaces. The ability to detect and measure exposure to toxic materials on the skin is an important environmental health issue. The stratum corneum is the skin’s first and principal barrier layer of protection from the outside world. It has a complex structure that can effectively protect against a wide variety of physical, chemical, and biological contaminants. However, there are a variety of chemical agents that can damage the stratum corneum and the underlying epidermis, dermis and subcutis, and/or enter systemic circulation through the skin. There are numerous ways of sampling the stratum corneum for these toxic materials like abrasion techniques, biopsy, suction blistering, imaging, washing, wipe sampling, tape stripping, and spot testing. Selecting a method likely depends on the particular needs of the situation. Hence, there is a need to review practical considerations for their use in sampling the stratum corneum for toxins.

Keywords: chemicals; sampling; skin; stratum corneum; tape stripping; toxins; washing

References

  • 1.

    Ngo MA, Maibach HI. 15 factors of percutaneous penetration of pesticides. In: Parameters for pesticide qsar and pbpk/pd models for human risk assessment. ACS Symposium Series. Am Chem Soc 2012;1099:67–86.Google Scholar

  • 2.

    Wester RC, Maibach HI. Cutaneous pharmacokinetics: 10 steps to percutaneous absorption. Drug Metab Rev 1983;14:169–205.CrossrefGoogle Scholar

  • 3.

    Bronaugh RL, Maibach HI. Percutaneous absorption: drugs, cosmetics, mechanisms, methods, 4th edition. Boca Raton, FL: CRC Press, 2005.Google Scholar

  • 4.

    Tanojo H, Wester RC, Shainhouse JZ, Maibach HI. Diclofenac metabolic profile following in vitro percutaneous absorption through viable human skin. Eur J Drug Metab Pharmacokinet 1999;24:345–51.CrossrefGoogle Scholar

  • 5.

    Dupuis D, Rougier A, Roguet R, Lotte C. The measurement of the stratum corneum reservoir: a simple method to predict the influence of vehicles on in vivo percutaneous absorption. Br J Dermatol 1986;115:233–38.PubMedCrossrefGoogle Scholar

  • 6.

    Pachtman EA, Vicher EE, Brunner MJ. The bacteriologic flora in seborrheic dermatitis. J Invest Dermatol 1954;22:389–96.CrossrefPubMedGoogle Scholar

  • 7.

    Aly R, Maibach HI, Shinefield HR, Strauss WG. Survival of pathogenic microorganisms on human skin. J Invest Dermatol 1972;58:205–10.CrossrefPubMedGoogle Scholar

  • 8.

    Lo JS, Oriba HA, Maibach HI, Bailin PL. Transepidermal potassium ion, chloride ion, and water flux across delipidized and cellophane tape-stripped skin. Dermatologica 1990;180:66–8.CrossrefPubMedGoogle Scholar

  • 9.

    Shaw CM, Smith JA, McBride ME, Duncan WC. An evaluation of techniques for sampling skin flora. J Invest Dermatol 1970;54:160–63.CrossrefPubMedGoogle Scholar

  • 10.

    Keswick BH, Frank D. Modified scrub technique for sampling infant skin microflora. J Clin Microbiol 1987;25:2400–401.PubMedGoogle Scholar

  • 11.

    McBride ME, Duncan WC, Knox JM. Correlations between epithelial cells and bacterial populations in bacteriological skin samples. Br J Dermatol 1978;99:537–43.PubMedCrossrefGoogle Scholar

  • 12.

    Holt RJ. Pad culture studies on skin surfaces. J Appl Bacteriol 1966;29:625–30.PubMedCrossrefGoogle Scholar

  • 13.

    Holt RJ. Aerobic bacterial counts on human skin after bathing. J Med Microbiol 1971;4:319–27.CrossrefPubMedGoogle Scholar

  • 14.

    Harper JI, Godwin H, Green A, Wilkes LE, Holden NJ, et al. A study of matrix metalloproteinase expression and activity in atopic dermatitis using a novel skin wash sampling assay for functional biomarker analysis. Br J Dermatol 2010;162:397–403.CrossrefPubMedGoogle Scholar

  • 15.

    Lee J-M, Carson R, Arce C, Mahajan M, Lobst S. Development of a minimally invasive epidermal abrasion device for clinical skin sampling and its applications in molecular biology. Int J Cosmet Sci 2009;31:27–39.PubMedGoogle Scholar

  • 16.

    Tran KT, Wright NA, Cockerell CJ. Biopsy of the pigmented lesion-when and how. J Am Acad Dermatol 2008;59:852–71.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 17.

    Rawlings AV, Matts PJ, Anderson CD, Roberts MS. Skin biology, xerosis, barrier repair and measurement. Drug Discov Today Dis Mech 2008;5:e127–36.CrossrefGoogle Scholar

  • 18.

    Nickoloff BJ, Naidu Y. Perturbation of epidermal barrier function correlates with initiation of cytokine cascade in human skin. J Am Acad Dermatol 1994;30:535–46.PubMedCrossrefGoogle Scholar

  • 19.

    Kiistala U, Mustakallio KK. In-vivo separation of epidermis by production of suction blisters. Lancet 1964;1:1444–45.PubMedCrossrefGoogle Scholar

  • 20.

    Benfeldt E, Serup J, Menné T. Microdialysis vs. suction blister technique for in vivo sampling of pharmacokinetics in the human dermis. Acta Derm Venereol 1999;79:338–42.PubMedCrossrefGoogle Scholar

  • 21.

    Rossing N, Worm AM. Interstitial fluid: exchange of macromolecules between plasma and skin interstitium. Clin Physiol Oxf Engl 1981;1:275–84.CrossrefGoogle Scholar

  • 22.

    Makki S, Treffel P, Humbert P, Agache P. High-performance liquid chromatographic determination of citropten and bergapten in suction blister fluid after solar product application in humans. J Chromatogr 1991;563:407–13.PubMedCrossrefGoogle Scholar

  • 23.

    Treffel P, Makki S, Faivre B, Humbert P, Blanc D, et al. Citropten and bergapten suction blister fluid concentrations after solar product application in man. Skin Pharmacol Off J Skin Pharmacol Soc 1991;4:100–8.CrossrefGoogle Scholar

  • 24.

    Surber C, Wilhelm KP, Bermann D, Maibach HI. In vivo skin penetration of acitretin in volunteers using three sampling techniques. Pharm Res 1993;10:1291–4.CrossrefPubMedGoogle Scholar

  • 25.

    Ness SA. Surface and dermal monitoring for toxic exposures. Hoboken, New Jersey: John Wiley & Sons, 1994.Google Scholar

  • 26.

    Schuresko DD. Portable fluorometric monitor for detection of surface contamination by polynuclear aromatic compounds. Anal Chem 1980;52:371–3.CrossrefGoogle Scholar

  • 27.

    Vo-Dinh T, Gammage RB. The lightpipe luminoscope for monitoring occupational skin contamination. Am Ind Hyg Assoc J 1981;42:112–20.Google Scholar

  • 28.

    Fenske RA, Birnbaum SG. Second generation video imaging technique for assessing dermal exposure (VITAE System). Am Ind Hyg Assoc J 1997;58:636–45.CrossrefPubMedGoogle Scholar

  • 29.

    Cherrie JW, Robertson A. Biologically relevant assessment of dermal exposure. Ann Occup Hyg 1995;39:387–92.CrossrefPubMedGoogle Scholar

  • 30.

    Cherrie JW, Brouwer DH, Roff M, Vermeulen R, Kromhout H. Use of qualitative and quantitative fluorescence techniques to assess dermal exposure. Ann Occup Hyg 2000;44:519–22.PubMedCrossrefGoogle Scholar

  • 31.

    Fenske RA, Lu C. Determination of handwash removal efficiency: incomplete removal of the pesticide chlorpyrifos from skin by standard handwash techniques. Am Ind Hyg Assoc J 1994;55:425–32.PubMedCrossrefGoogle Scholar

  • 32.

    Fenske RA, Schulter C, Lu C, Allen EH. Incomplete removal of the pesticide captan from skin by standard handwash exposure assessment procedures. Bull Environ Contam Toxicol 1998;61:194–201.CrossrefPubMedGoogle Scholar

  • 33.

    Brouwer DH, Boeniger MF, van Hemmen J. Hand wash and manual skin wipes. Ann Occup Hyg 2000;44:501–10.PubMedCrossrefGoogle Scholar

  • 34.

    Roed J, Andersson J, Bell K, Byrne MA, Fogh CL. Quantitative measurement of aerosol deposition on skin, hair and clothing for dosimetric assessment. Risoe National Lab., Roskilde (Denmark). Nuclear Safety Research and Facilities Department, 1998.Google Scholar

  • 35.

    Geno PW, Camann DE, Harding HJ, Villalobos K, Lewis RG. Handwipe sampling and analysis procedure for the measurement of dermal contact with pesticides. Arch Environ Contam Toxicol 1996;30:132–38.CrossrefPubMedGoogle Scholar

  • 36.

    Fenske RA, Simcox NJ, Camp JE, Hines CJ. Comparison of three methods for assessment of hand exposure to azinphos-methyl (Guthion) during apple thinning. Appl Occup Environ Hyg 1999;14:618–23.CrossrefPubMedGoogle Scholar

  • 37.

    McCurdy SA, Hansen ME, Weisskopf CP, Lopez RL, Schneider F, et al. Assessment of azinphosmethyl exposure in California peach harvest workers. Arch Environ Health 1994;49:289–96.CrossrefPubMedGoogle Scholar

  • 38.

    Fogh C, Byrne M, Andersson KG, Bell KF, Roed J, et al. Quantitative measurement of aerosol deposition on skin, hair and clothing for dosimetric assessment. Final Report, 1999.Google Scholar

  • 39.

    Surface contaminants, skin exposure, biological monitoring and other analyses. 2014. Available at: https://www.osha.gov/dts/osta/otm/otm_ii/otm_ii_2.html. Accessed on June 28, 2014.

  • 40.

    McArthur B. Dermal measurement and wipe sampling methods: a review. Appl Occup Environ Hyg 1992;7:599–606.CrossrefGoogle Scholar

  • 41.

    Lademann J, Jacobi U, Surber C, Weigmann H-J, Fluhr JW. The tape stripping procedure-evaluation of some critical parameters. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft Für Pharm Verfahrenstechnik EV 2009;72:317–23.CrossrefGoogle Scholar

  • 42.

    Schwarz JC, Klang V, Hoppel M, Wolzt M, Valenta C. Corneocyte quantification by NIR densitometry and UV/Vis spectroscopy for human and porcine skin and the role of skin cleaning procedures. Skin Pharmacol Physiol 2012;25:142–49.Web of SciencePubMedCrossrefGoogle Scholar

  • 43.

    Russell LM, Guy RH. Novel imaging method to quantify stratum corneum in dermatopharmacokinetic studies. Pharm Res 2012;29:2389–97.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 44.

    Sgorbini B, Ruosi MR, Cordero C, Liberto E, Rubiolo P, et al. Quantitative determination of some volatile suspected allergens in cosmetic creams spread on skin by direct contact sorptive tape extraction-gas chromatography-mass spectrometry. J Chromatogr A 2010;1217:2599–605.Google Scholar

  • 45.

    Midander K, Julander A, Skare L, Thyssen JP, Lidén C. The cobalt spot test-further insights into its performance and use. Contact Dermatitis 2013;69:280–87.Web of SciencePubMedGoogle Scholar

About the article

Corresponding author: Garrett Coman, University of Utah School of Medicine, Salt Lake City, UT, USA, E-mail: ; and Department of Dermatology, University of California, San Francisco, CA, USA


Received: 2014-07-19

Accepted: 2014-08-05

Published Online: 2014-09-16

Published in Print: 2014-08-01


Citation Information: Reviews on Environmental Health, Volume 29, Issue 3, Pages 157–162, ISSN (Online) 2191-0308, ISSN (Print) 0048-7554, DOI: https://doi.org/10.1515/reveh-2014-0051.

Export Citation

©2014 by De Gruyter. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in