Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews on Environmental Health

Editor-in-Chief: Carpenter, David O. / Sly, Peter

Editorial Board: Brugge, Doug / Edwards, John W. / Field, R.William / Garbisu, Carlos / Hales, Simon / Horowitz, Michal / Lawrence, Roderick / Maibach, H.I. / Shaw, Susan / Tao, Shu / Tchounwou, Paul B.


IMPACT FACTOR 2018: 1.616

CiteScore 2018: 1.69

SCImago Journal Rank (SJR) 2018: 0.508
Source Normalized Impact per Paper (SNIP) 2018: 0.664

Online
ISSN
2191-0308
See all formats and pricing
More options …
Volume 29, Issue 4

Issues

Beneficial effects of natural products on cells during ionizing radiation

Seyed Jalal Hosseinimehr
  • Corresponding author
  • Department of Radiopharmacy, Faculty of Pharmacy, Traditional and Complementary Medicine Research Center, Mazandaran University of Medical Sciences, Sari 48175-861, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-04-02 | DOI: https://doi.org/10.1515/reveh-2014-0037

Abstract

Natural products like vegetables, fruits, and herbs are widely consumed by humans on a daily basis. These natural products have many biologic and pharmacologic properties. Ionizing radiation (IR) can interact with macromolecules like DNA, which induces serious side effects on cells and tissues. Natural products can directly scavenge free radicals produced by IR, and they can also activate or inhibit enzymes or proteins involved in the oxidative stress. Several natural products have dual biologic effects on normal and cancer cells during radiation and might be of interest for use in patients during radiotherapy. In this review, the effects of natural products on genotoxicity and cell death induced by IR were reviewed and some potentiated compounds were discussed.

Keywords: ionizing radiation; natural product; radioprotective; radiosensitive

References

  • 1.

    Ghazali N, Shaw RJ, Rogers SN, Risk JM. Genomic determinants of normal tissue toxicity after radiotherapy for head and neck malignancy: a systematic review. Oral Oncol 2012;48:1090–100.CrossrefGoogle Scholar

  • 2.

    Groselj B, Sharma NL, Hamdy FC, Kerr M, Kiltie AE. Histone deacetylase inhibitors as radiosensitisers: effects on DNA damage signalling and repair. Br J Cancer 2013;108:748–54.CrossrefGoogle Scholar

  • 3.

    Hosseinimehr SJ. Trends in the development of radioprotective agents. Drug Discov Today 2007;12:794–805.CrossrefGoogle Scholar

  • 4.

    Noaparast Z, Hosseinimehr SJ. Radioprotective agents for the prevention of side effects induced by radioiodine-131 therapy. Future Oncol 2013;9:1145–59.CrossrefGoogle Scholar

  • 5.

    Jeggo P, Lavin MF. Cellular radiosensitivity: how much better do we understand it? Int J Radiat Biol 2009;85:1061–81.CrossrefGoogle Scholar

  • 6.

    Maynard S, Schurman SH, Harboe C, De Souza-Pinto NC, Bohr VA. Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 2009;30:2–10.Google Scholar

  • 7.

    Park EC, Yoon JB, Seong JS, Choi KS, Kong ES, et al. Effect of ionizing radiation on rat tissue: proteomic and biochemical analysis. Prep Biochem Biotechnol 2006;36:19–35.CrossrefGoogle Scholar

  • 8.

    Sun J, Chen Y, Li M, Ge Z. Role of antioxidant enzymes on ionizing radiation resistance. Free Radic Biol Med 1998;24:586–93.Google Scholar

  • 9.

    Morgan WF, Sowa MB. Non-targeted effects of ionizing radiation: implications for risk assessment and the radiation dose response profile. Health Phys 2009;97:426–32.CrossrefGoogle Scholar

  • 10.

    Rzeszowska-Wolny J, Przybyszewski WM, Widel M. Ionizing radiation-induced bystander effects, potential targets for modulation of radiotherapy. Eur J Pharmacol 2009;625:156–64.Google Scholar

  • 11.

    Hei TK, Zhou H, Ivanov VN, Hong M, Lieberman HB, et al. Mechanism of radiation-induced bystander effects: a unifying model. J Pharm Pharmacol 2008;60:943–50.CrossrefGoogle Scholar

  • 12.

    Donnelly EH, Nemhauser JB, Smith JM, Kazzi ZN, Farfan EB, et al. Acute radiation syndrome: assessment and management. South Med J 2010;103:541–6.CrossrefGoogle Scholar

  • 13.

    Mettler FA. Medical effects and risks of exposure to ionising radiation. J Radiol Prot 2012;32: N9–13.CrossrefGoogle Scholar

  • 14.

    Kobayashi J, Iwabuchi K, Miyagawa K, Sonoda E, Suzuki K, et al. Current topics in DNA double-strand break repair. J Radiat Res (Tokyo) 2008;49:93–103.CrossrefGoogle Scholar

  • 15.

    Willers H, Dahm-Daphi J, Powell SN. Repair of radiation damage to DNA. Br J Cancer 2004;90:1297–301.CrossrefGoogle Scholar

  • 16.

    Pfeiffer P, Goedecke W, Obe G. Mechanisms of DNA double-strand break repair and their potential to induce chromosomal aberrations. Mutagenesis 2000;15:289–302.CrossrefGoogle Scholar

  • 17.

    Labhart P. Nonhomologous DNA end joining in cell-free systems. Eur J Biochem 1999;265:849–61.Google Scholar

  • 18.

    Ringborg U, Bergqvist D, Brorsson B, Cavallin-Stahl E, Ceberg J, et al. The Swedish Council on Technology Assessment in Health Care (SBU) systematic overview of radiotherapy for cancer including a prospective survey of radiotherapy practice in Sweden 2001 – summary and conclusions. Acta Oncol 2003;42:357–65.CrossrefGoogle Scholar

  • 19.

    Wang Y, Probin V, Zhou D. Cancer therapy-induced residual bone marrow injury-Mechanisms of induction and implication for therapy. Curr Cancer Ther Rev 2006;2:271–79.CrossrefGoogle Scholar

  • 20.

    Henson C. Chronic radiation proctitis: issues surrounding delayed bowel dysfunction post-pelvic radiotherapy and an update on medical treatment. Ther Adv Gastroenterol 2010;3:359–65.CrossrefGoogle Scholar

  • 21.

    Andreyev J. Gastrointestinal symptoms after pelvic radiotherapy: a new understanding to improve management of symptomatic patients. Lancet Oncol 2007;8:1007–17.CrossrefGoogle Scholar

  • 22.

    Greenberger JS. Radioprotection. In Vivo 2009;23:323–36.Google Scholar

  • 23.

    O’connell AC. Natural history and prevention of radiation injury. Adv Dent Res 2000;14:57–61.CrossrefGoogle Scholar

  • 24.

    Travis LB. The epidemiology of second primary cancers. Cancer Epidemiol Biomarkers Prev 2006;15:2020–6.CrossrefGoogle Scholar

  • 25.

    Wright JD, St Clair CM, Deutsch I, Burke WM, Gorrochurn P, et al. Pelvic radiotherapy and the risk of secondary leukemia and multiple myeloma. Cancer 2010;116:2486–92.Google Scholar

  • 26.

    Sountoulides P, Koletsas N, Kikidakis D, Paschalidis K, Sofikitis N. Secondary malignancies following radiotherapy for prostate cancer. Ther Adv Urol 2010;2:119–25.CrossrefGoogle Scholar

  • 27.

    Amin AR, Kucuk O, Khuri FR, Shin DM. Perspectives for cancer prevention with natural compounds. J Clin Oncol 2009;27:2712–25.CrossrefPubMedGoogle Scholar

  • 28.

    Saleem M, Nazir M, Ali MS, Hussain H, Lee YS, et al. Antimicrobial natural products: an update on future antibiotic drug candidates. Nat Prod Rep 2010;27:238–54.CrossrefGoogle Scholar

  • 29.

    Butler MS. The role of natural product chemistry in drug discovery. J Nat Prod 2004;67:2141–53.CrossrefGoogle Scholar

  • 30.

    Reddy L, Odhav B, Bhoola KD. Natural products for cancer prevention: a global perspective. Pharmacol Ther 2003; 99:1–13.CrossrefGoogle Scholar

  • 31.

    Holt PR. Dairy foods and prevention of colon cancer: human studies. J Am Coll Nutr 1999;18:379S–91S.CrossrefGoogle Scholar

  • 32.

    Kuo P, Hsu Y, Lin C. The chemopreventive effects of natural products against human cancer cells. Int J Appl Sci Eng 2005;3:203–14.Google Scholar

  • 33.

    Tsuda H, Ohshima Y, Nomoto H, Fujita K, Matsuda E, et al. Cancer prevention by natural compounds. Drug Metab Pharmacokinet 2004;19:245–63.CrossrefGoogle Scholar

  • 34.

    Hsu A, Bray TM, Ho E. Anti-inflammatory activity of soy and tea in prostate cancer prevention. Exp Biol Med (Maywood) 2010;235:659–67.CrossrefGoogle Scholar

  • 35.

    Arora R, Gupta D, Chawla R, Sagar R, Sharma A, et al. Radioprotection by plant products: present status and future prospects. Phytother Res 2005;19:1–22.CrossrefGoogle Scholar

  • 36.

    Gault N, Lefaix JL. Infrared microspectroscopic characteristics of radiation-induced apoptosis in human lymphocytes. Radiat Res 2003;160:238–50.CrossrefGoogle Scholar

  • 37.

    Natarajan M, Gibbons CF, Mohan S, Moore S, Kadhim MA. Oxidative stress signalling: a potential mediator of tumour necrosis factor alpha-induced genomic instability in primary vascular endothelial cells. Br J Radiol 2007;80:S13–22.CrossrefGoogle Scholar

  • 38.

    Kruk I, Michalska T, Lichszteld K, Kladna A, Aboul-Enein HY. The effect of thymol and its derivatives on reactions generating reactive oxygen species. Chemosphere 2000;41:1059–64.CrossrefGoogle Scholar

  • 39.

    Lotito SB, Frei B. The increase in human plasma antioxidant capacity after apple consumption is due to the metabolic effect of fructose on urate, not apple-derived antioxidant flavonoids. Free Radic Biol Med 2004;37:251–8.Google Scholar

  • 40.

    Plochmann K, Korte G, Koutsilieri E, Richling E, Riederer P, et al. Structure-activity relationships of flavonoid-induced cytotoxicity on human leukemia cells. Arch Biochem Biophys 2007;460:1–9.CrossrefGoogle Scholar

  • 41.

    Ahmadi A, Hosseinimehr SJ, Naghshvar F, Hajir E, Ghahremani M. Chemoprotective effects of hesperidin against genotoxicity induced by cyclophosphamide in mice bone marrow cells. Arch Pharm Res 2008;31:794–7.CrossrefGoogle Scholar

  • 42.

    Jeong KW, Lee JY, Kang DI, Lee JU, Shin SY, et al. Screening of flavonoids as candidate antibiotics against Enterococcus faecalis. J Nat Prod 2009;72:719–24.CrossrefGoogle Scholar

  • 43.

    Guardia T, Rotelli AE, Juarez AO, Pelzer LE. Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Farmaco 2001;56:683–7.CrossrefGoogle Scholar

  • 44.

    Pietta PG. Flavonoids as antioxidants. J Nat Prod 2000;63: 1035–42.CrossrefGoogle Scholar

  • 45.

    Hosseinimehr SJ, Mahmoudzadeh A, Ahmadi A, Mohamadifar S, Akhlaghpoor S. Radioprotective effects of hesperidin against genotoxicity induced by gamma-irradiation in human lymphocytes. Mutagenesis 2009;24:233–5.CrossrefGoogle Scholar

  • 46.

    Hosseinimehr SJ, Ahmadi A, Beiki D, Habibi E, Mahmoudzadeh A. Protective effects of hesperidin against genotoxicity induced by (99m)Tc-MIBI in human cultured lymphocyte cells. Nucl Med Biol 2009;36:863–7.CrossrefGoogle Scholar

  • 47.

    Hosseinimehr SJ, Mahmoudzadeh A, Azadbakht M, Akhlaghpoor S. Radioprotective effects of Hawthorn against genotoxicity induced by gamma irradiation in human blood lymphocytes. Radiat Environ Biophys 2009;48:95–8.CrossrefGoogle Scholar

  • 48.

    Mishra K, Srivastava PS, Chaudhury NK. Sesamol as a potential radioprotective agent: in vitro studies. Radiat Res 2011;176:613–23.CrossrefGoogle Scholar

  • 49.

    Jagetia GC, Shetty PC, Vidyasagar MS. Inhibition of radiation-induced DNA damage by jamun, Syzygium cumini, in the cultured splenocytes of mice exposed to different doses of {gamma}-radiation. Integr Cancer Ther 2011;11:141–53.Google Scholar

  • 50.

    Alcaraz M, Armero D, Martinez-Beneyto Y, Castillo J, Benavente-Garcia O, et al. Chemical genoprotection: reducing biological damage to as low as reasonably achievable levels. Dentomaxillofac Radiol 2011;40:310–4.CrossrefGoogle Scholar

  • 51.

    Hosseinimehr SJ, Mahmoudzadeh A, Ahmadi A, Ashrafi SA, Shafaghati N, et al. The radioprotective effect of Zataria multiflora against genotoxicity induced by gamma irradiation in human blood lymphocytes. Cancer Biother Radiopharm 2011;26:325–9.CrossrefGoogle Scholar

  • 52.

    Archana PR, Nageshwar Rao B, Satish Rao BS. Modulation of gamma ray-induced genotoxic effect by thymol, a monoterpene phenol derivative of cymene. Integr Cancer Ther 2011;10:374–83.CrossrefGoogle Scholar

  • 53.

    Pratheeshkumar P, Kuttan G. Protective role of Vernonia cinerea L. against gamma radiation-induced immunosupression and oxidative stress in mice. Hum Exp Toxicol 1022;30:1022–38.Google Scholar

  • 54.

    Li CR, Zhou Z, Lin RX, Zhu D, Sun YN, et al. beta-Sitosterol decreases irradiation-induced thymocyte early damage by regulation of the intracellular redox balance and maintenance of mitochondrial membrane stability. J Cell Biochem 2007;102:748–58.CrossrefGoogle Scholar

  • 55.

    Rizvi MD, Biswas D, Arif JM, Zeeshan M. In-vitro antibacterial and antioxidant potential of leaf and flower extracts of vernonia cinerea and their phytochemical constituents. Int J Pharm Sci Rev Res 2011;9:164–69.Google Scholar

  • 56.

    Singh PK, Kumar R, Sharma A, Arora R, Chawla R, et al. Podophyllum hexandrum fraction (REC-2006) shows higher radioprotective efficacy in the p53-carrying hepatoma cell line: a role of cell cycle regulatory proteins. Integr Cancer Ther 2009;8:261–72.Google Scholar

  • 57.

    Benkovic V, Knezevic AH, Dikic D, Lisicic D, Orsolic N, et al. Radioprotective effects of quercetin and ethanolic extract of propolis in gamma-irradiated mice. Arh Hig Rada Toksikol 2009;60:129–38.Google Scholar

  • 58.

    Benkovic V, Kopjar N, Horvat Knezevic A, Dikic D, Basic I, et al. Evaluation of radioprotective effects of propolis and quercetin on human white blood cells in vitro. Biol Pharm Bull 2008;31:1778–85.CrossrefGoogle Scholar

  • 59.

    Devipriya N, Sudheer AR, Srinivasan M, Menon VP. Quercetin ameliorates gamma radiation-induced DNA damage and biochemical changes in human peripheral blood lymphocytes. Mutat Res 2008;654:1–7.Google Scholar

  • 60.

    Toklu HZ, Sehirli O, Ozyurt H, Mayadagli AA, Eksioglu-Demiralp E, et al. Punica granatum peel extract protects against ionizing radiation-induced enteritis and leukocyte apoptosis in rats. J Radiat Res (Tokyo) 2009;50:345–53.CrossrefGoogle Scholar

  • 61.

    Londhe JS, Devasagayam TP, Foo LY, Ghaskadbi SS. Radioprotective properties of polyphenols from Phyllanthus amarus Linn. J Radiat Res (Tokyo) 2009;50:303–9.CrossrefGoogle Scholar

  • 62.

    Srinivasan M, Devipriya N, Kalpana KB, Menon VP. Lycopene: an antioxidant and radioprotector against gamma-radiation-induced cellular damages in cultured human lymphocytes. Toxicology 2009;262:43–9.CrossrefGoogle Scholar

  • 63.

    Srinivasan M, Sudheer AR, Pillai KR, Kumar PR, Sudhakaran PR, et al. Lycopene as a natural protector against gamma-radiation induced DNA damage, lipid peroxidation and antioxidant status in primary culture of isolated rat hepatocytes in vitro. Biochim Biophys Acta 2007;1770:659–65.Google Scholar

  • 64.

    Benkovic V, Knezevic AH, Orsolic N, Basic I, Ramic S, et al. Evaluation of radioprotective effects of propolis and its flavonoid constituents: in vitro study on human white blood cells. Phytother Res 2009;23:1159–68.CrossrefGoogle Scholar

  • 65.

    Kang KA, Zhang R, Chae S, Lee SJ, Kim J, et al. Phloroglucinol (1,3,5-trihydroxybenzene) protects against ionizing radiation-induced cell damage through inhibition of oxidative stress in vitro and in vivo. Chem Biol Interact 2010;185:215–26.Google Scholar

  • 66.

    Zhang R, Kang KA, Piao MJ, Ko DO, Wang ZH, et al. Eckol protects V79-4 lung fibroblast cells against gamma-ray radiation-induced apoptosis via the scavenging of reactive oxygen species and inhibiting of the c-Jun NH(2)-terminal kinase pathway. Eur J Pharmacol 2008;591:114–23.Google Scholar

  • 67.

    Srinivasan M, Sudheer AR, Pillai KR, Kumar PR, Sudhakaran PR, et al. Modulatory effects of curcumin on gamma-radiation-induced cellular damage in primary culture of isolated rat hepatocytes. Environ Toxicol Pharmacol 2007;24:98–105.CrossrefGoogle Scholar

  • 68.

    Srinivasan M, Rajendra Prasad N, Menon VP. Protective effect of curcumin on gamma-radiation induced DNA damage and lipid peroxidation in cultured human lymphocytes. Mutat Res 2006;611:96–103.Google Scholar

  • 69.

    Srinivasan M, Sudheer AR, Pillai KR, Kumar PR, Sudhakaran PR, et al. Influence of ferulic acid on gamma-radiation induced DNA damage, lipid peroxidation and antioxidant status in primary culture of isolated rat hepatocytes. Toxicology 2006;228: 249–58.Google Scholar

  • 70.

    Carsten RE, Bachand AM, Bailey SM, Ullrich RL. Resveratrol reduces radiation-induced chromosome aberration frequencies in mouse bone marrow cells. Radiat Res 2008;169:633–8.CrossrefGoogle Scholar

  • 71.

    Hedayati M, Shafaghati N, Hosseinimehr SJ. Resveratrol mitigates genotoxicity induced by iodine-131 in primary human lymphocytes. Radiat Environ Biophys 2013;52:287–91.CrossrefGoogle Scholar

  • 72.

    Sebastia N, Almonacid M, Villaescusa JI, Cervera J, Such E, et al. Radioprotective activity and cytogenetic effect of resveratrol in human lymphocytes: an in vitro evaluation. Food Chem Toxicol 2013;51:391–5.CrossrefGoogle Scholar

  • 73.

    Calveley VL, Jelveh S, Langan A, Mahmood J, Yeung IW, et al. Genistein can mitigate the effect of radiation on rat lung tissue. Radiat Res 2010;173:602–11.CrossrefGoogle Scholar

  • 74.

    Benkovic V, Knezevic AH, Dikic D, Lisicic D, Orsolic N, et al. Radioprotective effects of propolis and quercetin in gamma-irradiated mice evaluated by the alkaline comet assay. Phytomedicine 2008;15:851–8.CrossrefGoogle Scholar

  • 75.

    Pal S, Saha C, Dey SK. Studies on black tea (Camellia sinensis) extract as a potential antioxidant and a probable radioprotector. Radiat Environ Biophys 2013;52:269–78.CrossrefGoogle Scholar

  • 76.

    Patel A, Bigoniya P, Singh CS, Patel NS. Radioprotective and cytoprotective activity of Tinospora cordifolia stem enriched extract containing cordifolioside-A. Indian J Pharmacol 2013;45:237–43.Google Scholar

  • 77.

    Georgieva S, Popov B, Bonev G. Radioprotective effect of Haberlea rhodopensis (Friv.) leaf extract on gamma-radiation-induced DNA damage, lipid peroxidation and antioxidant levels in rabbit blood. Indian J Exp Biol 2013;51:29–36.Google Scholar

  • 78.

    Aqil F, Gupta A, Munagala R, Jeyabalan J, Kausar H, et al. Antioxidant and antiproliferative activities of anthocyanin/ellagitannin-enriched extracts from Syzygium cumini L. (jamun, the Indian blackberry). Nutr Cancer 2012;64:428–38.CrossrefGoogle Scholar

  • 79.

    Joksic G, Petrovic S, Joksic I, Leskovac A. Biological effects of Echinacea purpurea on human blood cells. Arh Hig Rada Toksikol 2009;60:165–72.Google Scholar

  • 80.

    Jahan S, Goyal PK. Protective effect of Alstonia scholaris against radiation-induced clastogenic and biochemical alterations in mice. J Environ Pathol Toxicol Oncol 2010;29:101–11.CrossrefGoogle Scholar

  • 81.

    Hosseinimehr SJ. Flavonoids and genomic instability induced by ionizing radiation. Drug Discov Today 2010;15:907–18.CrossrefGoogle Scholar

  • 82.

    Katiyar SK. Green tea prevents non-melanoma skin cancer by enhancing DNA repair. Arch Biochem Biophys 2011;508: 152–8.Google Scholar

  • 83.

    Liu B, Jian Z, Li Q, Li K, Wang Z, et al. Baicalein protects human melanocytes from H(2)O(2)-induced apoptosis via inhibiting mitochondria-dependent caspase activation and the p38 MAPK pathway. Free Radic Biol Med 2012;53:183–93.Google Scholar

  • 84.

    Nambiar D, Rajamani P, Singh RP. Effects of phytochemicals on ionization radiation-mediated carcinogenesis and cancer therapy. Mutat Res 2011;728:139–57.Google Scholar

  • 85.

    Oyetakinwhite P, Tribout H, Baron E. Protective mechanisms of green tea polyphenols in skin. Oxid Med Cell Longev 2012;2012:560682.Google Scholar

  • 86.

    Citrin D, Cotrim AP, Hyodo F, Baum BJ, Krishna MC, et al. Radioprotectors and mitigators of radiation-induced normal tissue injury. Oncologist 2010;15:360–71.CrossrefGoogle Scholar

  • 87.

    Block K, Koch A, Mead M, Newman RA, Gyllenhaal C. Should supplemental antioxidant administration be avoided during chemotherapy and radiation therapy? J Natl Cancer Inst 2009;101:124–5; author reply 25–6.CrossrefGoogle Scholar

  • 88.

    Simone CB, Simone CB II. Should supplemental antioxidant administration be avoided during chemotherapy and radiation therapy? J Natl Cancer Inst 2008;100:1558–9; author reply 59–60.CrossrefGoogle Scholar

  • 89.

    Moss RW. Do antioxidants interfere with radiation therapy for cancer? Integr Cancer Ther 2007;6:281–92.CrossrefGoogle Scholar

  • 90.

    Lawenda BD, Kelly KM, Ladas EJ, Sagar SM, Vickers A, et al. Should supplemental antioxidant administration be avoided during chemotherapy and radiation therapy? J Natl Cancer Inst 2008;100:773–83.CrossrefGoogle Scholar

  • 91.

    Fabricant DS, Farnsworth NR. The value of plants used in traditional medicine for drug discovery. Environ Health Perspect 2001;109 Suppl 1:69–75.Google Scholar

  • 92.

    Donehower RC. The clinical development of paclitaxel: a successful collaboration of academia, industry and the National Cancer Institute. Stem Cells 1996;14:25–8.CrossrefGoogle Scholar

  • 93.

    Shao RG, Cao CX, Zhang H, Kohn KW, Wold MS, et al. Replication-mediated DNA damage by camptothecin induces phosphorylation of RPA by DNA-dependent protein kinase and dissociates RPA:DNA-PK complexes. EMBO J 1999;18: 1397–406.CrossrefGoogle Scholar

  • 94.

    Chen Y, Pandya KJ, Feins R, Johnstone DW, Watson T, et al. Toxicity profile and pharmacokinetic study of a phase I low-dose schedule-dependent radiosensitizing paclitaxel chemoradiation regimen for inoperable non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2008;71:407–13.CrossrefGoogle Scholar

  • 95.

    Kurdoglu B, Cheong N, Guan J, Corn BW, Curran WJ Jr., et al. Apoptosis as a predictor of paclitaxel-induced radiosensitization in human tumor cell lines. Clin Cancer Res 1999;5:2580–7.Google Scholar

  • 96.

    Girdhani S, Bhosle SM, Thulsidas SA, Kumar A, Mishra KP. Potential of radiosensitizing agents in cancer chemo-radiotherapy. J Cancer Res Ther 2005;1:129–31.Google Scholar

  • 97.

    Hermann RM, Wolff HA, Jarry H, Thelen P, Gruendker C, et al. In vitro studies on the modification of low-dose hyper-radiosensitivity in prostate cancer cells by incubation with genistein and estradiol. Radiat Oncol 2008;3:19.CrossrefGoogle Scholar

  • 98.

    Yashar CM, Spanos WJ, Taylor DD, Gercel-Taylor C. Potentiation of the radiation effect with genistein in cervical cancer cells. Gynecol Oncol 2005;99:199–205.CrossrefGoogle Scholar

  • 99.

    Liao HF, Kuo CD, Yang YC, Lin CP, Tai HC, et al. Resveratrol enhances radiosensitivity of human non-small cell lung cancer NCI-H838 cells accompanied by inhibition of nuclear factor-kappa B activation. J Radiat Res (Tokyo) 2005;46: 387–93.CrossrefGoogle Scholar

  • 100.

    Scarlatti F, Sala G, Ricci C, Maioli C, Milani F, et al. Resveratrol sensitization of DU145 prostate cancer cells to ionizing radiation is associated to ceramide increase. Cancer Lett 2007;253:124–30.CrossrefGoogle Scholar

  • 101.

    Rafiee P, Binion DG, Wellner M, Behmaram B, Floer M, et al. Modulatory effect of curcumin on survival of irradiated human intestinal microvascular endothelial cells: role of Akt/mTOR and NF-{kappa}B. Am J Physiol Gastrointest Liver Physiol 2010;298:G865–77.Google Scholar

  • 102.

    Sandur SK, Deorukhkar A, Pandey MK, Pabon AM, Shentu S, et al. Curcumin modulates the radiosensitivity of colorectal cancer cells by suppressing constitutive and inducible NF-kappaB activity. Int J Radiat Oncol Biol Phys 2009;75:534–42.CrossrefGoogle Scholar

  • 103.

    Kunnumakkara AB, Diagaradjane P, Guha S, Deorukhkar A, Shentu S, et al. Curcumin sensitizes human colorectal cancer xenografts in nude mice to gamma-radiation by targeting nuclear factor-kappaB-regulated gene products. Clin Cancer Res 2008;14:2128–36.CrossrefGoogle Scholar

  • 104.

    Rao SK, Rao PS, Rao BN. Preliminary investigation of the radiosensitizing activity of guduchi (Tinospora cordifolia) in tumor-bearing mice. Phytother Res 2008;22:1482–9.CrossrefGoogle Scholar

  • 105.

    Kalthur G, Pathirissery UD. Enhancement of the response of B16F1 melanoma to fractionated radiotherapy and prolongation of survival by withaferin A and/or hyperthermia. Integr Cancer Ther 2010;9:370–7.CrossrefGoogle Scholar

  • 106.

    Yang ES, Choi MJ, Kim JH, Choi KS, Kwon TK. Withaferin A enhances radiation-induced apoptosis in Caki cells through induction of reactive oxygen species, Bcl-2 downregulation and Akt inhibition. Chem Biol Interact 2011;190:9–15.CrossrefGoogle Scholar

  • 107.

    Uma Devi P, Kamath R. Radiosensitizing effect of withaferin A combined with hyperthermia on mouse fibrosarcoma and melanoma. J Radiat Res (Tokyo) 2003;44:1–6.CrossrefGoogle Scholar

  • 108.

    Devi PU, Akagi K, Ostapenko V, Tanaka Y, Sugahara T. Withaferin A: a new radiosensitizer from the Indian medicinal plant Withania somnifera. Int J Radiat Biol 1996;69: 193–7.CrossrefGoogle Scholar

  • 109.

    Hehlgans S, Lange I, Eke I, Kammerer B, Cordes N. Human head and neck squamous cell carcinoma cell lines are differentially radiosensitised by the honeybee product Propolis. Int J Radiat Biol 2011;87:243–53.CrossrefGoogle Scholar

  • 110.

    Ganapathy S, Chen Q, Singh KP, Shankar S, Srivastava RK. Resveratrol enhances antitumor activity of TRAIL in prostate cancer xenografts through activation of FOXO transcription factor. PLoS One 2010;5:e15627.CrossrefGoogle Scholar

  • 111.

    Lu R, Serrero G. Resveratrol, a natural product derived from grape, exhibits antiestrogenic activity and inhibits the growth of human breast cancer cells. J Cell Physiol 1999;179: 297–304.CrossrefGoogle Scholar

  • 112.

    Tyagi A, Gu M, Takahata T, Frederick B, Agarwal C, et al. Resveratrol selectively induces DNA Damage, independent of Smad4 expression, in its efficacy against human head and neck squamous cell carcinoma. Clin Cancer Res 2011;17:5402–11.Google Scholar

  • 113.

    Zhou JH, Cheng HY, Yu ZQ, He DW, Pan Z, et al. Resveratrol induces apoptosis in pancreatic cancer cells. Chin Med J (Engl) 2011;124:1695–9.Google Scholar

  • 114.

    Farkas R, Selmeci L, Tulassay Z, Pronai L. Superoxide-dismutase activity of the gastric mucosa in patients with Helicobacter pylori infection. Anticancer Res 2003;23:4309–12.Google Scholar

  • 115.

    Gupta SC, Kannappan R, Reuter S, Kim JH, Aggarwal BB. Chemosensitization of tumors by resveratrol. Ann NY Acad Sci 2011;1215:150–60.Google Scholar

  • 116.

    Baatout S, Derradji H, Jacquet P, Ooms D, Michaux A, et al. Enhanced radiation-induced apoptosis of cancer cell lines after treatment with resveratrol. Int J Mol Med 2004;13: 895–902.Google Scholar

  • 117.

    Kao CL, Huang PI, Tsai PH, Tsai ML, Lo JF, et al. Resveratrol-induced apoptosis and increased radiosensitivity in CD133-positive cells derived from atypical teratoid/rhabdoid tumor. Int J Radiat Oncol Biol Phys 2009;74:219–28.Google Scholar

  • 118.

    Garg AK, Buchholz TA, Aggarwal BB. Chemosensitization and radiosensitization of tumors by plant polyphenols. Antioxid Redox Signal 2005;7:1630–47.CrossrefGoogle Scholar

  • 119.

    Lin C, Lin J. Curcumin: a potential cancer chemopreventive agent through suppressing NF-kB signaling. J Cancer Mol 2008;4:11–16.Google Scholar

  • 120.

    Shi M, Cai Q, Yao L, Mao Y, Ming Y, et al. Antiproliferation and apoptosis induced by curcumin in human ovarian cancer cells. Cell Biol Int 2006;30:221–6.CrossrefGoogle Scholar

  • 121.

    Radhakrishna Pillai G, Srivastava AS, Hassanein TI, Chauhan DP, Carrier E. Induction of apoptosis in human lung cancer cells by curcumin. Cancer Lett 2004;208:163–70.CrossrefGoogle Scholar

  • 122.

    Deeb D, Jiang H, Gao X, Hafner MS, Wong H, et al. Curcumin sensitizes prostate cancer cells to tumor necrosis factor-related apoptosis-inducing ligand/Apo2L by inhibiting nuclear factor-kappaB through suppression of IkappaBalpha phosphorylation. Mol Cancer Ther 2004;3:803–12.Google Scholar

  • 123.

    Banerjee S, Li Y, Wang Z, Sarkar FH. Multi-targeted therapy of cancer by genistein. Cancer Lett 2008;269:226–42.CrossrefGoogle Scholar

  • 124.

    Han H, Zhong C, Zhang X, Liu R, Pan M, et al. Genistein induces growth inhibition and G2/M arrest in nasopharyngeal carcinoma cells. Nutr Cancer 2010;62:641–7.CrossrefGoogle Scholar

  • 125.

    Pietras RJ, Weinberg OK. Antiangiogenic steroids in human cancer therapy. Evid Based Complement Alternat Med 2005;2:49–57.Google Scholar

  • 126.

    Zhang B, Shi ZL, Liu B, Yan XB, Feng J, et al. Enhanced anticancer effect of gemcitabine by genistein in osteosarcoma: the role of Akt and nuclear factor-kappaB. Anticancer Drugs 2010;21:288–96.CrossrefGoogle Scholar

  • 127.

    Bhatia Lal Arvind BL, Ajay G, Avadhesh S. Radiation protection by an isoflavone, genistein: a study on the survivability of mice. Nucl Technol Radiat Prot 2007;22:34–39.CrossrefGoogle Scholar

  • 128.

    Landauer MR, Srinivasan V, Seed TM. Genistein treatment protects mice from ionizing radiation injury. J Appl Toxicol 2003;23:379–85.CrossrefGoogle Scholar

  • 129.

    Kuropatnicki AK, Szliszka E, Klosek M, Krol W. The beginnings of modern research on propolis in poland. Evid Based Complement Alternat Med 2013;2013:983974.Google Scholar

  • 130.

    Orsolic N, Benkovic V, Horvat-Knezevic A, Kopjar N, Kosalec I, et al. Assessment by survival analysis of the radioprotective properties of propolis and its polyphenolic compounds. Biol Pharm Bull 2007;30:946–51.Google Scholar

  • 131.

    Benkovic V, Orsolic N, Knezevic AH, Ramic S, Dikic D, et al. Evaluation of the radioprotective effects of propolis and flavonoids in gamma-irradiated mice: the alkaline comet assay study. Biol Pharm Bull 2008;31:167–72.CrossrefGoogle Scholar

About the article

Corresponding author: Seyed Jalal Hosseinimehr, Department of Radiopharmacy, Faculty of Pharmacy, Traditional and Complementary Medicine Research Center, Mazandaran University of Medical Sciences, Sari 48175-861, Iran, Phone/Fax: +98-151-3543084, E-mail: ;


Received: 2014-02-03

Accepted: 2014-02-27

Published Online: 2014-04-02

Published in Print: 2014-12-06


Citation Information: Reviews on Environmental Health, Volume 29, Issue 4, Pages 341–353, ISSN (Online) 2191-0308, ISSN (Print) 0048-7554, DOI: https://doi.org/10.1515/reveh-2014-0037.

Export Citation

©2014 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Hamid Abdollahi, Mohammadreza Atashzar, and Maryam Amini
Journal of Medical Hypotheses and Ideas, 2015, Volume 9, Number 2, Page 67
[2]
S.A. Sakr, M.F. Bayomy, and A.M. El-Morsy
The Journal of Basic & Applied Zoology, 2015, Volume 71, Page 1

Comments (0)

Please log in or register to comment.
Log in