Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews on Environmental Health

Editor-in-Chief: Carpenter, David O. / Sly, Peter

Editorial Board: Brugge, Doug / Edwards, John W. / Field, R.William / Garbisu, Carlos / Hales, Simon / Horowitz, Michal / Lawrence, Roderick / Maibach, H.I. / Shaw, Susan / Tao, Shu / Tchounwou, Paul B.

IMPACT FACTOR 2018: 1.616

CiteScore 2018: 1.69

SCImago Journal Rank (SJR) 2018: 0.508
Source Normalized Impact per Paper (SNIP) 2018: 0.664

See all formats and pricing
More options …
Volume 30, Issue 4


The implications of non-linear biological oscillations on human electrophysiology for electrohypersensitivity (EHS) and multiple chemical sensitivity (MCS)

Cindy Sage
Published Online: 2015-09-12 | DOI: https://doi.org/10.1515/reveh-2015-0007


The ‘informational content’ of Earth's electromagnetic signaling is like a set of operating instructions for human life. These environmental cues are dynamic and involve exquisitely low inputs (intensities) of critical frequencies with which all life on Earth evolved. Circadian and other temporal biological rhythms depend on these fluctuating electromagnetic inputs to direct gene expression, cell communication and metabolism, neural development, brainwave activity, neural synchrony, a diversity of immune functions, sleep and wake cycles, behavior and cognition. Oscillation is also a universal phenomenon, and biological systems of the heart, brain and gut are dependent on the cooperative actions of cells that function according to principles of non-linear, coupled biological oscillations for their synchrony. They are dependent on exquisitely timed cues from the environment at vanishingly small levels. Altered ‘informational content’ of environmental cues can swamp natural electromagnetic cues and result in dysregulation of normal biological rhythms that direct growth, development, metabolism and repair mechanisms. Pulsed electromagnetic fields (PEMF) and radiofrequency radiation (RFR) can have the devastating biological effects of disrupting homeostasis and desynchronizing normal biological rhythms that maintain health. Non-linear, weak field biological oscillations govern body electrophysiology, organize cell and tissue functions and maintain organ systems. Artificial bioelectrical interference can give false information (disruptive signaling) sufficient to affect critical pacemaker cells (of the heart, gut and brain) and desynchronize functions of these important cells that orchestrate function and maintain health. Chronic physiological stress undermines homeostasis whether it is chemically induced or electromagnetically induced (or both exposures are simultaneous contributors). This can eventually break down adaptive biological responses critical to health maintenance; and resilience can be compromised. Electrohypersensitivity can be caused by successive assaults on human bioelectrochemical dynamics from exogenous electromagnetic fields (EMF) and RFR or a single acute exposure. Once sensitized, further exposures are widely reported to cause reactivity to lower and lower intensities of EMF/RFR, at which point thousand-fold lower levels can cause adverse health impacts to the electrosensitive person. Electrohypersensitivity (EHS) can be a precursor to, or linked with, multiple chemical sensitivity (MCS) based on reports of individuals who first develop one condition, then rapidly develop the other. Similarity of chemical biomarkers is seen in both conditions [histamines, markers of oxidative stress, auto-antibodies, heat shock protein (HSP), melatonin markers and leakage of the blood-brain barrier]. Low intensity pulsed microwave activation of voltage-gated calcium channels (VGCCs) is postulated as a mechanism of action for non-thermal health effects.

Keywords: electrobiological rhythms; electrohypersensitivity; homeostasis; multiple chemical sensitivity; neuronal synchrony; voltage-gated calcium ion channel


  • 1.

    Buzsaki G. Rhythms of the Brain. New York: Oxford University Press, 2006.Google Scholar

  • 2.

    Strogatz SH. Sync: the emerging science of spontaneous order. New York: Hyperion, 2003.Google Scholar

  • 3.

    Herbert MR, Sage C. Autism and EMF? Plausibility of a pathophysiological link- part II. Pathophysiology 2013;20: 211–34.CrossrefGoogle Scholar

  • 4.

    Berridge MJ, Galione A. Cytosolic calcium oscillators. FASEB J 1988;2:3074–82.Google Scholar

  • 5.

    Pilla AA. Nonthermal electromagnetic fields: from first messenger to therapeutic applications. Electromagn Biol Med 2013;32:123–36.CrossrefGoogle Scholar

  • 6.

    Pilla AA. Pulsed electromagnetic fields: from signaling to healing. In: Markov MS, editor. Electromagnetic fields in biology and medicine. Boca Raton: CPC Press, 2015:29–48.Google Scholar

  • 7.

    Pall ML. Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects. J Cell Mol Med 2013;17:958–65.CrossrefGoogle Scholar

  • 8.

    Pall ML. Electromagnetic field activation of voltage-gated calcium channels: role in therapeutic effects. Electromag Biol Med 2014;33:251.CrossrefGoogle Scholar

  • 9.

    Pall ML. Scientific evidence contradicts findings and assumptions of Canadian Safety Panel 6: microwaves act through voltage-gated calcium channel activation to induce biological impacts at non-thermal levels, supporting a paradigm shift for microwave/lower frequency electromagnetic field action. Rev Environ Health 2015;30:99–116.Google Scholar

  • 10.

    Sage C, Johansson O, Sage SA. Personal digital assistant (PDA) cell phone units produce elevated extremely-low frequency electromagnetic field emissions. Bioelectromagnetics 2007;28:386–92.CrossrefGoogle Scholar

  • 11.

    Belpomme D, Irigaray P. Electrohypersensitivity and multiple chemical sensitivity: two clinic-biological entities of the same disorder? Conference presentation, Paris Appeal Congress May 18, 2015 at the Royal Academy of Medicine, Brussels, Belgium.Google Scholar

  • 12.

    Adey WR. A growing scientific consensus on the cell and molecular biology mediating interactions with EM fields, Symposium Electromagnetic Transmissions, Health Hazards, Scientific Evidence and Recent Steps in Mitigation, 1994.Google Scholar

  • 13.

    Strogatz SH. Exploring complex networks. Nature 2001;410:266–76.Google Scholar

  • 14.

    Strogatz SH, Kronauer RE, Czeisler CA. Circadian pacemaker interferes with sleep onset at specific times each day: role in insomnia. Am J Physiol 1987;253:R172–8.Google Scholar

  • 15.

    Iotti S, Borsari M, Bendahan D. Oscillations in energy metabolism. Biochim Biophys Acta 2010;1797:1353–61.Google Scholar

  • 16.

    Hinrikus H, Bachmann M, Lass J, Tomson R, Tuulik V. Effect of 7, 14 and 21 Hz modulated 450 MHz microwave radiation on human electroencephalographic rhythms. Int J Radiat Biol 2008:84:69–79.Google Scholar

  • 17.

    Marino AA, Nilsen E, Frilot C. Nonlinear changes in brain electrical activity due to cell phone radiation. Bioelectromagnetics 2003;24:339–46.CrossrefGoogle Scholar

  • 18.

    Marino AA, Carrubba S. The effects of mobile-phone electromagnetic fields on brain electrical activity: a critical analysis of the literature. Electromagn Biol Med 2009;28:250–74.CrossrefGoogle Scholar

  • 19.

    Vecchio F, Babiloni C, Ferreri F, Curcio G, Fini R, et al. Mobile phone emission modulates interhemispheric functional coupling of EEG alpha rhythms. Eur J Neurosci 2007;25:1908–13.CrossrefGoogle Scholar

  • 20.

    Vecchio F, Tombini M, Buffo P, Assenza G, Pellegrino G, et al. Mobile phone emission increases inter-hemispheric functional coupling of electroencephalographic alpha rhythms in epileptic patients. Int J Psychophysiol 2012;84:164–71.CrossrefGoogle Scholar

  • 21.

    Tattersall JE, Scott IR, Wood SJ, Nettell JJ, Bevir MK, et al. Effects of low intensity radiofrequency electromagnetic fields on electrical activity in rat hippocampal slices. Brain Res 2001;904:43–53.Google Scholar

  • 22.

    Hountala CD, Maganioti AE, Papageorgiou CC, Nanou ED, Kyprianou MA, et al. The spectral power coherence of the EEG under different EMF conditions. Neurosci Lett 2008;441:188–92.Google Scholar

  • 23.

    Bachmann M, Lass J, Kalda J, Sakki M, Tomson R, et al. Integration of differences in EEG analysis reveals changes in human EEG caused by microwave. Conf Proc IEEE Eng Med Biol Soc 2006;1:1597–600.Google Scholar

  • 24.

    Johansson O. Disturbance of the immune system by electromagnetic fields – a potentially underlying cause for cellular damage and tissue repair reduction which could lead to disease and impairment. Pathophysiology 2009;16:157–77.CrossrefGoogle Scholar

  • 25.

    Johannson O. Evidence for effects on immune function. In: Sage C, Carpenter DO, editors. BioInitiative report: a rationale for a biologically-based public exposure standard for electromagnetic fields (ELF and RF). Available at: http://bioinitiative.org/freeaccess/report/index.htm.

  • 26.

    Seitz H, Stinner D, Eikmann T, Herr C, Roosli M. Electromagnetic hypersensitivity (EHS) and subjective health complaints associated with electromagnetic fields of mobile phone communication – a literature review published between 2000 and 2004. Sci Total Environ 2005;349:45–55.Google Scholar

  • 27.

    Johansson O, Gangi S, Liang Y, Yoshimura K, Jing C, et al. Cutaneous mast cells are altered in normal healthy volunteers sitting in front of ordinary TVs/PCs – results from open-field provocation experiments. J Cutan Pathol 2001;28:513–9.CrossrefGoogle Scholar

  • 28.

    Buchner K, Eger H. Changes of clinically important neurotransmitters under the Influence of modulated RF fields – a long-term study under real-life conditions (translated; original study in German). Umwelt-Medizin-Gesellschaft 2011;24:44–57.Google Scholar

  • 29.

    Theoharides TC, Angelidou A, Alysandratos KD, Zhang B, Asadi S, et al. Mast cell activation and autism. Biochim Biophys Acta 2012;1822(1):34–41.Google Scholar

  • 30.

    Zhang B, Asadi S, Weng Z, Sismanopoulos N, Theoharides TC. Stimulated human mast cells secrete mitochondrial components that have autocrine and paracrine inflammatory actions. PLoS One 2012;7:e49767.CrossrefGoogle Scholar

  • 31.

    Salford LG, Nittby H, Persson BR. Effects of EMF from wireless communication upon the blood–brain barrier. In: Sage C, Carpenter DO, editors. The BioInitiative report 2012: a rationale for a biologically-based public exposure standard for electromagnetic fields (ELF and RF). Available at: http://www.bioinitiative.org.

  • 32.

    Aldad TS, Gan G, Gao XB, Taylor HS. Fetal radiofrequency radiation exposure from 800–1900 MHz-rated cellular telephones affects neurodevelopment and behavior in mice. Sci Rep 2012;2:312.Google Scholar

  • 33.

    Divan HA, Kheifets L, Obel C, Olsen J. Prenatal and postnatal exposure to cell phone use and behavioral problems in children. Epidemiology 2008;19:523–9.CrossrefGoogle Scholar

  • 34.

    Kenet T. Sensory functions in ASD. In: Fein D, editor. The neuropsychology of autism. New York: Oxford University Press, 2011:215–24.Google Scholar

  • 35.

    Kenet G, Froemke RC, Schreiner CE, Pessah IN, Merzenich MM. Perinatal exposure to a noncoplanar polychlorinated biphenyl alters tonotopy, receptive fields, and plasticity in rat primary auditory cortex. Proc Natl Acad Sci USA 2007;104:7646–51.CrossrefGoogle Scholar

  • 36.

    Pessah IN, Lein PJ. Evidence for environmental susceptibility in autism. What we need to know about gene x environment interactions. In: Zimmerman AW, ed. Austim: Current Theories and Evidence. Totowa, NJ: Humana Press, 2008, Chapter 19, pp. 409–428.Google Scholar

  • 37.

    Stamou M, Streifel KM, Goines PE, Lein PJ. Neuronal connectivity as a convergent target of gene-environment interactions that confer risk for autism spectrum disorders. Neurotoxicol Teratol 2013;36:3–16.CrossrefGoogle Scholar

  • 38.

    Zhang LI, Bao, S Merzenich M. Disruption of primary auditory cortex by synchronous auditory inputs during a critical period. Proc Natl Acad Sci USA2002;99:2309–14.CrossrefGoogle Scholar

  • 39.

    Narayanan SN, Kumar RS, Kedage V, Nalini K, Nayak S, et al. Evaluation of oxidant stress and antioxidant defense in discrete brain regions of rats exposed to 900 MHz radiation. Bratisl Lek Listy 2014;115:260–6.Google Scholar

  • 40.

    Maskey D, Kim MJ. Immunohistochemical localization of brain-derived neutrophic factor and glial cell line-derived neurotrophic factor in the superior olivary complex of mice after radiofrequency exposure. Neurosci Lett 2014;564:1–18.Google Scholar

  • 41.

    Mann K, Roschke J. Effects of pulsed high-frequency electromagnetic fields on human sleep. Neuropsychobiology 1996;33:41–7.CrossrefGoogle Scholar

  • 42.

    Borbely AA, Huber R, Graf T, Fuchs B, Gallmann E, et al. Pulsed high-frequency electromagnetic field affects human sleep and sleep electroencephalogram. Neurosci Lett 1999;275:207–10.Google Scholar

  • 43.

    Huber R, Schuderer J, Graf T, Jutz K, Borbely AA, et al. Radio frequency electromagnetic field exposure in humans: estimation of SAR distribution in the brain, effects on sleep and heart rate. Bioelectromagnetics 2003;24:262–76.CrossrefGoogle Scholar

  • 44.

    Yu X, Ye Z, Houston CM, Zecharia AY, Ma Y, et al. Wakefulness Is governed by GABA and histamine cotransmission. Neuron 2015;87:164–78.CrossrefGoogle Scholar

  • 45.

    Leon J, Acuna-Castroviejo D, Escames G, Tan DX, Reiter RF. Melatonin mitigates mitochondrial malfunction. J Pineal Res 2005;38:1–9.CrossrefGoogle Scholar

  • 46.

    Luchetti F, Canonico B, Betti M, Arcangeletti M, Pilolli F, et al. Melatonin signaling and cell protection function. FASEB J 2010;24:3603–24.CrossrefGoogle Scholar

  • 47.

    Limon-Pacheco JH, Gonsebatt ME. The glutathione system and its regulation by neurohormone melatonin in the central nervous system. Cent Nerv Syst Agents Med Chem 2010;10:287–97.Google Scholar

  • 48.

    Hardeland R. Antioxidative protection by melatonin: multiplicity of mechanisms from radical detoxification to radical avoidance. Endocrine 2005;27:119–30.CrossrefGoogle Scholar

  • 49.

    Gupta YK, Gupta M, Kohli K. Neuroprotective role of melatonin in oxidative stress vulnerable brain. Indian J Physiol Pharmacol 2003;47:373–86.Google Scholar

  • 50.

    Rose S, Melnyk S, Pavliv O, Bai S, Nick TG, et al. Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain. Transl Psychiatry 2012;2:e134.CrossrefGoogle Scholar

  • 51.

    Juutilainen J, Kumlin T. Occupational magnetic field exposure and melatonin: interaction with light-at-night. Bioelectromagnetics 2006;27:423–6.CrossrefGoogle Scholar

  • 52.

    Juutilainen J, Kumlin T, Naarala J. Do extremely low frequency magnetic fields enhance the effects of environmental carcinogens? A meta-analysis of experimental studies. Int J Radiat Biol 2006;82:1–12.CrossrefGoogle Scholar

  • 53.

    Verschaeve L, Heikkinen P, Verheyen G, Van Gorp U, Boonen F, et al. Investigation of co-genotoxic effects of radiofrequency electromagnetic fields in vivo. Radiat Res 2006;165:598–607.Google Scholar

  • 54.

    Ahlbom A, Bridges J, de Seze R, Hillert L, Juutilainen J, et al. Possible effects of electromagnetic fields (EMF) on human health – opinion of the scientific committee on emerging and newly identified health risks (SCENIHR). Toxicology 2008;246:248–50.Google Scholar

  • 55.

    Hoyto A, Luukkonen J, Juutilainen J, Naarala J. Proliferation, oxidative stress and cell death in cells exposed to 872 MHz radiofrequency radiation and oxidants. Radiat Res 2008;170:235–43.Google Scholar

  • 56.

    Juutilainen J. Do electromagnetic fields enhance the effects of environmental carcinogens? Radiat Prot Dosimetry 2008;132:228–31.Google Scholar

  • 57.

    Luukkonen J, Hakulinen P, Maki-Paakkanen J, Juutilainen J, Naarala H. Enhancement of chemically induced reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells by 872 MHz radiofrequency radiation. Mutat Res 2009;662:54–8.Google Scholar

  • 58.

    Markkanen A, Juutilainen J, Naarala J. Pre-exposure to 50 Hz magnetic fields modifies menadione-induced DNA damage response in murine L929 cells. Int J Radiat Biol 2008;84:742–51.Google Scholar

About the article

Corresponding author: Cindy Sage, MA, Sage Associates, 1396 Danielson Road, Santa Barbara, CA, 93108 USA, Phone: +805 969-0557, E-mail:

Received: 2015-05-06

Accepted: 2015-07-30

Published Online: 2015-09-12

Published in Print: 2015-12-01

Citation Information: Reviews on Environmental Health, Volume 30, Issue 4, Pages 293–303, ISSN (Online) 2191-0308, ISSN (Print) 0048-7554, DOI: https://doi.org/10.1515/reveh-2015-0007.

Export Citation

©2015 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in