Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews on Environmental Health

Editor-in-Chief: Carpenter, David O. / Sly, Peter

Editorial Board: Brugge, Doug / Edwards, John W. / Field, R.William / Garbisu, Carlos / Hales, Simon / Horowitz, Michal / Lawrence, Roderick / Maibach, H.I. / Shaw, Susan / Tao, Shu / Tchounwou, Paul B.

4 Issues per year

CiteScore 2016: 1.95

SCImago Journal Rank (SJR) 2016: 0.543
Source Normalized Impact per Paper (SNIP) 2016: 0.885

See all formats and pricing
More options …
Volume 30, Issue 4


Synergistic health effects between chemical pollutants and electromagnetic fields

Gérard Ledoigt
  • Corresponding author
  • Clermont Université, Université Blaise Pascal, Campus Universitaire des Cézeaux, UMR 547 PIAF, B.P. 10448, F-63000 Clermont-Ferrand, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Chaima Sta
  • Clermont Université, Université Blaise Pascal, Campus Universitaire des Cézeaux, UMR 547 PIAF, B.P. 10448, F-63000 Clermont-Ferrand, France
  • Laboratoire de Physiologie et Génétique des Plantes á Intérét Agronomique, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Jarzouna, Tunisie
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eric Goujon
  • Clermont Université, Université Blaise Pascal, Campus Universitaire des Cézeaux, UMR 547 PIAF, B.P. 10448, F-63000 Clermont-Ferrand, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dalila Souguir
  • Institut National de Recherches en Génie Rural, Eaux et Forêts, Rue Hédi Karray El Manzah IV, BP-10-Ariana 2080- Tunisie
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ezzeddine El Ferjani
  • Laboratoire de Physiologie et Génétique des Plantes á Intérét Agronomique, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Jarzouna, Tunisie
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-11-24 | DOI: https://doi.org/10.1515/reveh-2015-0028


Humans and ecosystems are exposed to highly variable and unknown cocktail of chemicals and radiations. Although individual chemicals are typically present at low concentrations, they can interact with each other resulting in additive or potentially synergistic mixture effects. This was also observed with products obtained by radiation actions such as sunlight or electromagnetic fields that can change the effects of chemicals, such as pesticides, and metal trace elements on health. Concomitant presence of various pesticides and their transformation products adds further complexity to chemical risk assessment since chronic inflammation is a key step for cancer promotion. Degradation of a parent molecule can produce several by-products which can trigger various toxic effects with different impacts on health and environment. For instance, the cocktail of sunlight irradiated sulcotrione pesticide has a greater cytotoxicity and genotoxicity than parent molecule, sulcotrione, and questions about the impact of photochemical process on environment. Adjuvants were shown to modify the biological features of pesticides. Addition of other elements, metals or biological products, can differently enhance cell toxicity of pesticides or electromagnetic radiations suggesting a synergy in living organisms. Electromagnetic fields spreading, pesticide by-products and mixtures monitoring become greater for environmental contamination evaluations.

Keywords: chemicals; electromagnetic fields; heavy metals; hypersensitivity; pesticides


  • 1.

    Escher BI, Fenner K. Recent advances in environmental risk assessment of transformation products. Environ Sci Technol 2011;45:3835–47.CrossrefWeb of ScienceGoogle Scholar

  • 2.

    Katagi T. Photodegradation of pesticides on plant and soil surfaces. Rev Environ Contam Toxicol 2004;182:1–189.Google Scholar

  • 3.

    Mangels G. Behavior of the imidazolinone herbicides in the aquatic environment. In: Shanner DL, O’Conner SL, editors. Imidazolinone Herbicides. CRC Press, 1991:183–90.Google Scholar

  • 4.

    Ter Halle A, Drncova D, Richard C. Phototransformation of the herbicide sulcotrione on maize cuticular wax. Environ Sci Technol 2006;40:2989–95.CrossrefGoogle Scholar

  • 5.

    Mitsou K, Koulianou A, Lambropoulou D, Pappas P, Albanis T, et al. Growth rate effects, responses of antioxidant enzymes and metabolic fate of the herbicide Propanil in the aquatic plant Lemna minor. Chemosphere 2006;62:275–84.CrossrefGoogle Scholar

  • 6.

    Vulliet E, Emmelin C, Chovelon JM, Chouteau C, Clement B. Assessment of the toxicity of triasulfuron and its photoproducts using aquatic organisms. Environ Toxicol Chem 2004;23: 2837–43.CrossrefGoogle Scholar

  • 7.

    Bjorklund E, Anskjaer GG, Hansen M, Styrishave B, Halling-Sorensen B. Analysis and environmental concentrations of the herbicide dichlobenil and its main metabolite 2,6-dichlorobenzamide (BAM): A review. Sci Total Environ 2011;409:2343–56.Web of ScienceGoogle Scholar

  • 8.

    Carpenter DO. Human disease resulting from exposure to electromagnetic fields. Rev Environ Health 2013;28(4):159–72.PubMedGoogle Scholar

  • 9.

    Havas M. Radiation from wireless technology affects the blood, the heart, and the autonomic nervous system. Rev Environ Health 2013;28(2–3):75–84.CrossrefGoogle Scholar

  • 10.

    Ferguson LR. Chronic inflammation and mutagenesis. Mutat Res 2010;690:3–11.Google Scholar

  • 11.

    Filipic M. Mechanisms of cadmium induced genomic instability. Mutat Res 2012;733:69– 77.Google Scholar

  • 12.

    Fragopoulou AF, Samara A, Antonelou MH, Xanthopoulou A, Papadopoulou A, et al. Brain proteome response following whole body exposure of mice to mobile phone or wireless DECT base radiation. Electromagn Biol Med 2012;31(4):250–74.CrossrefWeb of ScienceGoogle Scholar

  • 13.

    Wang WX, Vinocur B, Shoseyoy O, Altman A. Biotechnology of plant osmotic stress tolerance: Physiological and molecular considerations. Acta Hortic 2001;560:285–92.Google Scholar

  • 14.

    Wang WX, Vinocur B, Altman A. Plant response to drought, salinity and extreme temperature: towards genetic engineering for stress tolerance. Planta 2003;218:1–14.Google Scholar

  • 15.

    Genuis SJ. Sensitivity-related illness: The escalating pandemic of allergy, food intolerance and chemical sensitivity. Sci Total Environ 2010;408:6047–61.Web of ScienceGoogle Scholar

  • 16.

    Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature 2008;454:436–44.Web of ScienceGoogle Scholar

  • 17.

    Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006;160:1–40.Google Scholar

  • 18.

    Hardell L, Sage C. Biological effects from electromagnetic field exposure and public exposure standards. Biomed Pharmacother 2008;62:104–9.CrossrefWeb of ScienceGoogle Scholar

  • 19.

    Ledoigt G, Belpomme D. Cancer induction molecular pathways and HF-EMF irradiation. Adv Biol Chem 2013;3:177–86.CrossrefGoogle Scholar

  • 20.

    Friedman J, Kraus S, Hauptman Y, Schiff Y, Seger R. Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies. Biochem J 2007;405:559–68.Web of ScienceGoogle Scholar

  • 21.

    Weisbrot D, Lin H, Ye L, Blank M, Goodman R. Effects of mobile phone radiation on reproduction and development in Drosophila melanogaster. J Cell Biochem 2003;89:48–55.CrossrefGoogle Scholar

  • 22.

    Ghezel-Ahmadi D, Engel A, Weidemann J, Budnik LT, Baur X, et al. Heavy metal exposure in patients suffering from electromagnetic hypersensitivity. Sci Total Environ 2010;408:774–8.Web of ScienceGoogle Scholar

  • 23.

    Ghezel-Ahmadi D. Response to Costa et al. Sci Total Environ 2010;408:4921.Google Scholar

  • 24.

    Costa A, Branca V, Minoia C. Heavy metals exposure and electromagnetic hypersensitivity. To the Editor. Sci Total Environ 2010;408:4919–20.Google Scholar

  • 25.

    Amara S, Abdelmelek H, Garrel C, Guiraud P, Douki T, et al. Influence of static magnetic field on cadmium toxicity: Study of oxidative stress and DNA damage in rat tissues. J Trace Elem Med Biol 2006;20:263–9.CrossrefGoogle Scholar

  • 26.

    Amara S, Douki T, Garrel C, Favier A, Ben Rhouma K, et al. Effects of static magnetic field and cadmium on oxidative stress and DNA damage in rat cortex brain and hippocampus. Toxicol Ind Health 2011;2:99–106.CrossrefWeb of ScienceGoogle Scholar

  • 27.

    Hassan NS, Abdelkawi SA. Assessing of plasma protein denaturation induced by exposure to cadmium, electromagnetic fields and their combined actions on rat. Electromagn Biol Med 2014;33(2):147–53.CrossrefWeb of ScienceGoogle Scholar

  • 28.

    Ulku R, Akdag MZ, Erdogan S, Akkus Z, Dasdag S. Extremely low-frequency magnetic field decreased calcium, zinc and magnesium levels in costa of rat. Biol Trace Elem Res 2011;143(1):359–67.Web of ScienceGoogle Scholar

  • 29.

    Foletti A, Ledda M, De Carlo F, Grimaldi S, Lisi A. Calcium ion cyclotron resonance (ICR), 7.0 Hz, 9.2 microT magnetic field exposure initiates differentiation of pituitary corticotrope-derived AtT20 D16V cells. Electromagn Biol Med 2010;29(3):63–71.CrossrefGoogle Scholar

  • 30.

    Baltaci AK, Mogulkoc R, Salbacak A, Celik I, Sivrikaya A. The role of zinc supplementation in the inhibition of tissue damage caused by exposure to electromagnetic field in rat lung and liver tissues. Bratisl Lek Listy 2012;113(7):400–3.Web of ScienceGoogle Scholar

  • 31.

    Amara S, Abdelmelek H, Abidi R, Sakly M, Ben Rhouma K. Zinc prevents hematological and biochemical alterations induced by static magnetic field in rats. Pharmacol Rep 2005;57:616–22.Google Scholar

  • 32.

    Amara S, Abdelmelek H, Garrel C, Guiraud P, Douki T, et al. Zinc supplementation ameliorates static magnetic field-induced oxidative stress in rat tissues. Environ Toxicol Pharmacol 2007;23:193–7.Web of ScienceCrossrefGoogle Scholar

  • 33.

    Ghodbane S, Amara S, Garrel C, Arnaud J, Ducros V, et al. Selenium supplementation ameliorates static magnetic field-induced disorders in antioxidant status in rat tissues. Environ Toxicol Pharmacol 2011;31:100–6.Web of ScienceCrossrefGoogle Scholar

  • 34.

    Mortazavi SM, Daiee E, Yazdi A, Khiabani K, Kavousi A, et al. Mercury release from dental amalgam restorations after magnetic resonance imaging and following mobile phone use. Pak J Biol Sci 2008;11(8):1142–46.Google Scholar

  • 35.

    Mortazavi SM, Neghab M, Anoosheh SM, Bahaeddini N, Mortazavi G, et al. High-field MRI and mercury release from dental amalgam fillings. Int J Occup Environ Med 2014;5:101–5.Google Scholar

  • 36.

    Mortazavi S, Mortazavi G. Amalgam contact hypersensitivity lesion: an unusual presentation-report of a rare case. Ann Med Health Sci Res 2015;5(2):152.CrossrefWeb of ScienceGoogle Scholar

  • 37.

    Goujon E, Sta C, Trivella A, Goupil P, Richard C, et al. Genotoxicity of sulcotrione pesticide and photoproducts on Allium cepa root meristem. Pestic Biochem Physiol 2014;113:47–54.Google Scholar

  • 38.

    Mesnage R, Defarge N, Spiroux de Vendômois J, Séralini G-E. Major pesticides are more toxic to human cells than their declared active principles. BioMed Res Inter 2014;1–8.CrossrefGoogle Scholar

  • 39.

    Mesnage R, Bernay B, Séralini G-E. Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity. Toxicology 2013;313:122–8.Web of ScienceGoogle Scholar

  • 40.

    Sta C, Goujon E, Ferjani E, Ledoigt G. Toxicity of Sulcotrione and Grape Marc on Vicia faba Cells. J Agric Food Chem 2014;62:11777–85.CrossrefWeb of ScienceGoogle Scholar

  • 41.

    Clair E, Linn L, Travert C, Amiel C, Seralini G-E, et al. Effects of Roundup and glyphosate on three food microorganisms: Geotrichum candidum, Lactococcus lactis subsp. cremoris and Lactobacillus delbrueckii subsp. bulgaricus. Curr Microbiol 2012;64:486–91.CrossrefGoogle Scholar

  • 42.

    Mesnage R, Defarge N, Spiroux de Vendômois J, Séralini G-E. Potential toxic effects of glyphosate and its commercial formulations below regulatory limits. Food Chem Toxicol 2015;84:133–53.Web of ScienceGoogle Scholar

  • 43.

    Dupas D, Dagorne M-A. Syndrome d’intolérance aux odeurs chimiques (SIOC): un diagnostic à ne pas manquer. Épidémiologie, diagnostic, traitement. Multiple chemical sensitivity: A diagnosis not to be missed. Revue des Maladies Respiratoires 2013;30(2):99–104.CrossrefGoogle Scholar

  • 44.

    Pigatto PD, Minoia C, Ronchi A, Brambilla L, Ferrucci SM, et al. Allergological and toxicological aspects in a multiple chemical sensitivity cohort. Oxid Med Cell Longev 2013;2013: Article ID 356235, 12 pages. http://dx.doi.org/10.1155/2013/356235.Crossref

  • 45.

    De Luca C, Raskovic D, Pacifico V, Thai JC, Korkina L. The search for reliable biomarkers of disease in multiple chemical sensitivity and other environmental intolerances. Int J Environ Res Public Health 2011;8:2770–97.CrossrefWeb of ScienceGoogle Scholar

About the article

Corresponding author: Pr. Gérard Ledoigt, Clermont Université, Université Blaise Pascal, Campus Universitaire des Cézeaux, UMR 547 PIAF, B.P. 10448, F-63000 Clermont-Ferrand, France, Phone: +33 473407908, Fax: +33 473407951, E-mail:

Received: 2015-09-11

Accepted: 2015-11-02

Published Online: 2015-11-24

Published in Print: 2015-12-01

Citation Information: Reviews on Environmental Health, Volume 30, Issue 4, Pages 305–309, ISSN (Online) 2191-0308, ISSN (Print) 0048-7554, DOI: https://doi.org/10.1515/reveh-2015-0028.

Export Citation

©2015 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in