Jump to ContentJump to Main Navigation
Show Summary Details

Reviews on Environmental Health

Editor-in-Chief: Carpenter, David O. / Sly, Peter

Editorial Board Member: Brugge, Doug / Diaz-Barriga, Fernando / Edwards, John W. / Field, R.William / Hales, Simon / Horowitz, Michal / Maibach, H.I. / Shaw, Susan / Stein, Renato / Tao, Shu / Tchounwou, Paul B.

4 Issues per year

SCImago Journal Rank (SJR) 2015: 0.776
Source Normalized Impact per Paper (SNIP) 2015: 0.676
Impact per Publication (IPP) 2015: 1.795

See all formats and pricing
Volume 31, Issue 2 (Jun 2016)


A cautionary approach in transitioning to ‘green’ energy technologies and practices is required

Puleng Matatiele
  • Corresponding author
  • Toxicology Section, National Institute for Occupational Health, Johannesburg, South Africa
  • Email:
/ Mary Gulumian
  • Toxicology Section, National Institute for Occupational Health, Johannesburg, South Africa
  • Haematology and Molecular Medicine, School of Pathology, University of Witwatersrand, Johannesburg, South Africa
Published Online: 2016-05-14 | DOI: https://doi.org/10.1515/reveh-2016-0004


Renewable energy technologies (wind turbines, solar cells, biofuels, etc.) are often referred to as ‘clean’ or ‘green’ energy sources, while jobs linked to the field of environmental protection and energy efficiency are referred to as ‘green’ jobs. The energy efficiency of clean technologies, which is likely to reduce and/or eliminate reliance on fossil fuels, is acknowledged. However, the potential contribution of green technologies and associated practices to ill health and environmental pollution resulting from consumption of energy and raw materials, generation of waste, and the negative impacts related to some life cycle phases of these technologies are discussed. Similarly, a point is made that the green jobs theme is mistakenly oversold because the employment opportunities generated by transitioning to green technologies are not necessarily safe and healthy jobs. Emphasis is put on identifying the hazards associated with these green designs, assessing the risks to the environment and worker health and safety, and either eliminating the hazards or minimizing the risks as essential elements to the design, construction, operation, and maintenance of green technologies. The perception that it is not always economically possible to consider all risk factors associated with renewable energy technologies at the beginning without hampering their implementation, especially in the poor developing countries, is dismissed. Instead, poor countries are encouraged to start implementing environmentally sound practices while transitioning to green technologies in line with their technological development and overall economic growth.

Keywords: green; hazards; health; jobs; pollution; renewable energy


  • 1.

    UNEP(United Nations Environment Programme). Towards a green economy: Pathways to sustainable development and poverty eradication. In: Green Economy Initiative. United Nations Environment Programme; 2011.

  • 2.

    Barbier E. The policy challenges for green economy and sustainable economic development. In: Natural resources forum: 2011. Wiley Online Library, 233–45.

  • 3.

    ILO (International Labour Organization). What is a green job? In Geneva, Switzerland: International Labour Organization; 2013. http://www.ilo.org/global/topics/green-jobs/news/WCMS_220248/lang--en/index.htm. Accessed 18 Jun 2015.

  • 4.

    EIA(US Energy Information Administration). Renewable energy shows strongest growth in global electric generating capacity. In: Today in energy. Washington, DC: U.S. Energy Information Administration; 2011. https://www.eia.gov/todayinenergy/detail.cfm?id=3270. Accessed 03 Dec 2015.

  • 5.

    Kieffer G, Couture T. Renewable energy target setting. The International Renewable Energy Agency. Abu Dhabi, United Arab Emirates; 2015. http://www.irena.org/DocumentDownloads/Publications/IRENA_RE_Target_Setting_2015.pdf. Accessed 23 Nov 2015.

  • 6.

    Li X, Chen Z, Chen Z, Zhang Y. A human health risk assessment of rare earth elements in soil and vegetables from a mining area in Fujian Province, Southeast China. Chemosphere 2013;93(6):1240–6.

  • 7.

    Brand U. Green economy–the next oxymoron? No lessons learned from failures of implementing sustainable development. GAIA 2012;21(1):28–32.

  • 8.

    Marello M, Helwege A. Solid waste management and social inclusion of waste pickers: opportunities and challenges. In: Social-Inclusion-Working-Paper. Global Economic Governance Initiative, Paper 7, September; 2014.

  • 9.

    Azadi H, de Jong S, Derudder B, De Maeyer P, Witlox F. Bitter sweet: how sustainable is bio-ethanol production in Brazil? Renew Sust Energ Rev 2012;16(6):3599–603.

  • 10.

    Phillips T. Brazil’s ethanol slaves: 200,000 migrant sugar cutters who prop up renewable energy boom’. The Guardian 2007, 9. http://www.theguardian.com/world/2007/mar/09/brazil.renewableenergy. Accessed 06 Jul 2015.

  • 11.

    Mulloy KB, Sumner SA, Rose C, Conway GA, Reynolds SJ, et al. Renewable energy and occupational health and safety research directions: a white paper from the energy summit, Denver Colorado, April 11–13, 2011. Am J Ind Med 2013;56(11):1359–70.

  • 12.

    Mulvaney D, editor. Green technology: an A-to-Z guide. USA: SAGE publications, 2011; 10. [Crossref].

  • 13.

    Dresselhaus M. Thomas I: alternative energy technologies. Nature 2001;414(6861):332–7.

  • 14.

    Clift R. Clean technology – an introduction. J Chem Technol Biotechnol 1995;62(4):321–6.

  • 15.

    McEvoy A, Castañer L, Markvart T. Solar cells: materials, manufacture and operation. UK: Academic Press; 2012.

  • 16.

    Fthenakis V, Kim HC, Frischknecht R, Raugei M, Sinha P, et al. Life Cycle Inventories and Life Cycle Assessment of Photovoltaic Systems, International Energy Agency (IEA) PVPS Task 12, Report T12-02:2011. In: International Energy Agency (IEA) PVPS Task 12, Report T12. vol. 4; 2011. https://www.bnl.gov/pv/files/pdf/226_Task12_LifeCycle_Inventories.pdf. Accessed 23 Nov 2015.

  • 17.

    Xakalashe BS, Tangstad M. Silicon processing: from quartz to crystalline silicon solar cells. Chem Technol 2012 (April);32–7.

  • 18.

    Mikhail SA, Turcotte A-M. The determination of low levels of crystalline silica in slag and silica fume. Thermochim Acta 1997;292(1):111–4.

  • 19.

    Fletcher A, Phillips D, Barrow I. Determination of crystalline silica in silica fume. Talanta 1994;41(10):1663–8.

  • 20.

    Steenland K. One agent, many diseases: exposure-response data and comparative risks of different outcomes following silica exposure. Am J Ind Med 2005;48(1):16–23.

  • 21.

    Calvert GM, Rice FL, Boiano JM, Sheehy JW, Sanderson WT. Occupational silica exposure and risk of various diseases: an analysis using death certificates from 27 states of the United States. Occ Environ Med 2003;60(2):122–9.

  • 22.

    Soo J-C, Li S-R, Chen J-R, Chang C-P, Ho Y-F, et al. Acid gas, acid aerosol and chlorine emissions from trichlorosilane burning processes. Aerosol Air Qual Res 2011;11(3):323–30.

  • 23.

    Ngai EY. Photovoltaic specialty materials safety. In: Photovoltaic Specialists Conference (PVSC), Austin Convention Center, Austin, Texas, 2012 38th IEEE: 2012: IEEE; 2012: 000619–000624.

  • 24.

    Otanicar TP, Phelan PE, Prasher RS, Rosengarten G, Taylor RA. Nanofluid-based direct absorption solar collector. J Renew Sustain Ener 2010;2(3):033102.

  • 25.

    Krajnik P, Pusavec F, Rashid A. Nanofluids: properties, applications and sustainability aspects in materials processing technologies. In: Seliger G, Khraisheh MMK, Jawahir IS, editors. Advances in sustainable manufacturing. Springer: Berlin, Heidelberg, 2011;107–13.

  • 26.

    Mlinar V. Engineered nanomaterials for solar energy conversion. Nanotechnology 2013;24(4):042001.

  • 27.

    Song T, Lee S-T, Sun B. Prospects and challenges of organic/group IV nanomaterial solar cells. J Mater Chem 2012;22(10):4216–32.

  • 28.

    Ardente F, Beccali G, Cellura M, Brano VL. Life cycle assessment of a solar thermal collector: sensitivity analysis, energy and environmental balances. Renew Energ 2005;30(2):109–30.

  • 29.

    Jordan DC, Kurtz SR. Photovoltaic degradation rates – an analytical review. Prog Photovolt Res Appl 2013;21(1):12–29.

  • 30.

    Mittelman G, Davidson JH, Mantell SC, Su Y. Prediction of polymer tube life for solar hot water systems: a model of antioxidant loss. Sol Energy 2008;82(5):452–61.

  • 31.

    Camisa W, Mantell SC, Davidson JH, Singh G. Prediction of degradation of polyolefins used in solar domestic hot water components. In: ASME 2010 4th International Conference on Energy Sustainability, Phoenix, Arizona, USA: 2010, 301–8. American Society of Mechanical Engineers.

  • 32.

    Timilsina G, Mevel S. Biofuels and climate change mitigation. In: Timilsina GR, Zilberman D, editors. The impacts of biofuels on the economy, environment, and poverty. New York: Springer, 2014:111–22.33.

  • 33.

    Ogle SM, Del Grosso SJ, Adler PR, Parton WJ. Soil nitrous oxide emissions with crop production for biofuel: implications for greenhouse gas mitigation. In: Joe L. Outlaw, David P. Ernstes, editors. The Lifecycle Carbon Footprint of Biofuels. Proceedings of a conference January 29, 2008, in Miami Beach, FL. Oak Brook, Illinois, USA: Farm Foundation, 2008:11–8.

  • 34.

    Ravishankara A, Daniel JS, Portmann RW. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 2009;326(5949):123–5.

  • 35.

    Hoefnagels R, Smeets E, Faaij A. Greenhouse gas footprints of different biofuel production systems. Renew Sust Energ Rev 2010;14(7):1661–94.

  • 36.

    Börjesson P, Tufvesson LM. Agricultural crop-based biofuels – resource efficiency and environmental performance including direct land use changes. J Clean Prod 2011;19(2–3):108–20.

  • 37.

    Travis N. Breathing easier? The known impacts of biodiesel on air quality. Biofuels 2012;3(3):285–91.

  • 38.

    de Oliveira BF, Ignotti E, Artaxo P, do Nascimento Saldiva P, Junger W, et al. Risk assessment of PM2.5 to child residents in Brazilian Amazon region with biofuel production. Environ Health 2012;11(1):64.

  • 39.

    Cheung KL, Ntziachristos L, Tzamkiozis T, Schauer JJ, Samaras Z, et al. Emissions of particulate trace elements, metals and organic species from gasoline, diesel, and biodiesel passenger vehicles and their relation to oxidative potential. Aerosol Sci Technol 2010;44(7):500–13.

  • 40.

    Kisin ER, Shi XC, Keane MJ, Bugarski AB, Shvedova AA. Mutagenicity of biodiesel or diesel exhaust particles and the effect of engine operating conditions. J Environ Eng Ecol Sci 2013;2(1):3.

  • 41.

    Pourkhesalian AM, Stevanovic S, Rahman MM, Faghihi EM, Bottle SE, et al. Effect of atmospheric ageing on volatility and ROS of biodiesel exhaust nano-particles. Atmos Chem Phys Discuss 2015;15(5):6481–508.

  • 42.

    Johnson E. Goodbye to carbon neutral: getting biomass footprints right. Environ Impact Assess Rev 2009;29(3):165–8.

  • 43.

    HLPE. Biofuels and food security. A report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security, Rome, 2013.

  • 44.

    Pimentel D. Ethanol fuels: energy balance, economics, and environmental impacts are negative. Nat Resour Res 2003;12(2):127–34.

  • 45.

    Elkurtehi BS. Processing and characterization of fiber/plastic composite for turbine blade. Sci J Phys 2014. [Crossref].

  • 46.

    Zhang B, Misak H, Dhanasekaran P, Kalla D, Asmatulu R. Environmental impacts of nanotechnology and its products. In: Proceedings of the 2011 Midwest Section Conference of the American Society for Engineering Education, Lake Point Conference Center, Arkansas Tech University Russellville, Arkansas; 2011:1–9.

  • 47.

    Ging J, Tejerina-Anton R, Ramakrishnan G, Nielsen M, Murphy K, et al. Development of a conceptual framework for evaluation of nanomaterials release from nanocomposites: environmental and toxicological implications. Sci Total Environ 2014;473:9–19.

  • 48.

    Kingston C, Zepp R, Andrady A, Boverhof D, Fehir R, et al. Release characteristics of selected carbon nanotube polymer composites. Carbon 2014;68:33–57.

  • 49.

    Miseljic M, Olsen SI. Life-cycle assessment of engineered nanomaterials: a literature review of assessment status. J Nanopart Res 2014;16(6):1–33.

  • 50.

    Iavicoli I, Leso V, Ricciardi W, Hodson L, Hoover M. Opportunities and challenges of nanotechnology in the green economy. Environ Health 2014;13(1):78.

  • 51.

    Chakhmouradian AR, Wall F. Rare earth elements: minerals, mines, magnets (and more). Elements 2012;8(5):333–40.

  • 52.

    Weber RJ, Reisman DJ. Rare Earth Elements: A Review of Production, Processing, Recycling, and Associated Environmental Issues. In: US EPA Region; 2012. Available at: https://clu-in.org/download/issues/mining/weber-presentation.pdf. Accessed 07 Dec 2015.

  • 53.

    Ragheb M, Tsoukalas L. Global and USA thorium and rare earth elements resources. In: Proceedings of the 2nd thorium energy alliance conference, the future thorium economy, Google Campus, Mountain View, California, 2010:1–17.

  • 54.

    Zu-yi C. Accumulation and toxicity of rare earth elements in brain and their potential effects on health. Rural Eco-Environ 2005;4:014.

  • 55.

    Rim KT, Koo KH, Park JS. Toxicological evaluations of rare earths and their health impacts to workers: a literature review. Saf Health Work 2013;4(1):12–26.

  • 56.

    Liu P, Barlow C. An update for wind turbine blade waste inventory. In: EWEA (European Wind Energy Association) 2015. Porte de Versailles Pavillon 1, Paris, France: European Wind Energy Association, 2015:PO.010.

  • 57.

    Jacob A. Composites can be recycled. Reinf Plast 2011;55: 45–6.

  • 58.

    Cherrington R, Goodship V, Meredith J, Wood BM, Coles SR, et al. Producer responsibility: defining the incentive for recycling composite wind turbine blades in Europe. Energy Policy 2012;47:13–21.

  • 59.

    Ortegon K, Nies LF, Sutherland JW. Preparing for end of service life of wind turbines. J Clean Prod 2013;39:191–9.

  • 60.

    Hurter S, Schellschmidt R. Atlas of geothermal resources in Europe. Geothermics 2003;32(4):779–87.

  • 61.

    Giardini D. Geothermal quake risks must be faced. Nature 2009;462(7275):848–9.

  • 62.

    Matek B. The manageable risks of conventional hydrothermal geothermal power systems: a factbook on geothermal power’s risks and methods to mitigate them. In.: Geothermal Energy Association (GEA) 2014. http://geo-energy.org/reports/Geothermal%20Risks_Publication_2_4_2014.pdf. Accessed 03 Dec 2015.

  • 63.

    Majer E, Nelson J, Robertson-Tait A, Savy J, Wong I. Protocol for addressing induced seismicity associated with enhanced geothermal systems. US Department of Energy, 2012. Available at: https://www1.eere.energy.gov/geothermal/pdfs/geothermal_seismicity_protocol_012012.pdf. Accessed 15 Nov 2015.

  • 64.

    Mena B, Wiemer S, Bachmann C. Building robust models to forecast the induced seismicity related to geothermal reservoir enhancement. Bull Seismol Soc Am 2013;103(1):383–93.

  • 65.

    Douglas J, Edwards B, Convertito V, Sharma N, Tramelli A, et al. Predicting ground motion from induced earthquakes in geothermal areas. Bull Seismol Soc Am 2013;103(3):1875–97.

  • 66.

    Bravi M, Basosi R. Environmental impact of electricity from selected geothermal power plants in Italy. J Clean Prod 2014;66:301–8.

  • 67.

    Huang S, Liu J. Geothermal energy stuck between a rock and a hot place. Nature 2010;463(7279):293.

  • 68.

    Stewart C. Geothermal energy – Effects on the environment, Te Ara – the Encyclopedia of New Zealand, updated 13-Jul-12 [http://www.TeAra.govt.nz/en/geothermal-energy/page-5]. Accessed 02 Dec 2015.

  • 69.

    Bayer P, Rybach L, Blum P, Brauchler R. Review on life cycle environmental effects of geothermal power generation. Renew Sust Energ Rev 2013;26:446–63.

  • 70.

    Olafsdottir S, Gardarsson SM. Impacts of meteorological factors on hydrogen sulfide concentration downwind of geothermal power plants. Atmos Environ 2013;77:185–92.

  • 71.

    Birkle P, Merkel B. Environmental impact by spill of geothermal fluids at the geothermal field of Los Azufres, Michoacán, Mexico. Water Air Soil Poll 2000;124(3-4):371–410.

  • 72.

    Aksoy N, Şimşek C, Gunduz O. Groundwater contamination mechanism in a geothermal field: a case study of Balcova, Turkey. J Contam Hydrol 2009;103(1):13–28.

  • 73.

    Loppi S, Nascimbene J. Monitoring H2S air pollution caused by the industrial exploitation of geothermal energy: the pitfall of using lichens as bioindicators. Environ Pollut 2010;158(8):2635–9.

  • 74.

    Thorsteinsson T, Hackenbruch J, Sveinbjörnsson E, Jáhannsson T. Statistical assessment and modeling of the effects of weather conditions on H2S plume dispersal from Icelandic geothermal power plants. Geothermics 2013;45:31–40.

  • 75.

    Kage S, Ito S, Kishida T, Kudo K, Ikeda N. A fatal case of hydrogen sulfide poisoning in a geothermal power plant. J Clin Forensic Med 1998;5(4):214–5.

  • 76.

    Daldal H, Beder B, Serin S, Sungurtekin H. Hydrogen sulfide toxicity in a thermal spring: a fatal outcome. Clin Toxicol 2010;48(7):755–6.

  • 77.

    Bassindale T, Hosking M. Deaths in Rotorua’s geothermal hot pools: hydrogen sulphide poisoning. Forensic Sci Int 2011;207(1–3):e28–9.

  • 78.

    Bates MN, Garrett N, Shoemack P. Investigation of health effects of hydrogen sulfide from a geothermal source. Arch Environ Health 2002;57(5):405–11.

  • 79.

    Kristbjornsdottir A, Rafnsson V. Incidence of cancer among residents of high temperature geothermal areas in Iceland: a census based study 1981 to 2010. Environ Health 2012;11(1):73.

  • 80.

    Carlsen HK, Zoëga H, Valdimarsdóttir U, Gíslason T, Hrafnkelsson B. Hydrogen sulfide and particle matter levels associated with increased dispensing of anti-asthma drugs in Iceland’s capital. Environ Res 2012;113:33–9.

  • 81.

    Clark C, Harto C, Sullivan J, Wang M. Water use in the development and operation of geothermal power plants. In: Argonne National Laboratory (ANL), 2010. Available at: http://www1.eere.energy.gov/geothermal/pdfs/geothermal_water_use_draft.pdf. Accessed 16 Nov 2015.

  • 82.

    Bundschuh J, Maity JP. Geothermal arsenic: Occurrence, mobility and environmental implications. Renew Sust Energ Rev 2015;42:1214–22.

  • 83.

    Gunduz O, Simsek C, Hasozbek A. Arsenic pollution in the groundwater of Simav Plain, Turkey: its impact on water quality and human health. Water Air Soil Poll 2010; 205(1–4):43–62.

  • 84.

    Sundar S, Chakravarty J. Antimony toxicity. Int J Environ Res Public Health 2010;7(12):4267–77.

  • 85.

    Sharma S. Geochemical interaction of fluorite and geofluid cripples life in parts of India. Geochim Cosmochim Acta 2008;(Suppl 72):851.

  • 86.

    DiPippo R. Chapter 19 – environmental impact of geothermal power plants. Geothermal power plants, 2nd ed. Oxford: Butterworth-Heinemann, 2008:385–410.

  • 87.

    Barta B, Van Dijk M, Van Vuuren F. Renewable energy: hydropower. J S Afr Inst Civ Eng 2011;19(5):37–41.

  • 88.

    Harris M. Hydroelectric power, other renewables emphasized at G20 summit. In: Hydroworldcom. Tulsa, 2015. Available at: http://www.hydroworld.com/articles/2015/10/hydroelectric-power-other-renewables-emphasized-at-g20-summit.html. Accessed 13 Oct 2015.

  • 89.

    Harris M. National Hydropower Association joins other energy advocates to push renewables before COP21. In: Hydroworldcom. Tulsa: Hydro Review, 2015. Available at: http://www.hydroworld.com/articles/2015/11/national-hydropower-association-joins-other-energy-advocates-to-push-renewables-before-cop21.html. Accessed 13 Oct 2015.

  • 90.

    Klunne WJ. Small and micro-hydro developments in Southern Africa. In.: Energize, 2012. Available at: http://www.ee.co.za/wp-content/uploads/legacy/energize_2012/09_ST_01_Small.pdf. Accessed 25 Nov 2015.

  • 91.

    Klunne W. Sustainable implementation of microhydro to eradicate poverty in Africa. In: Proceedings of the World Energy Congress Conference, Montreal, Canada, 2010. Available at: http://www.researchgate.net/publication/267384058. Accessed 25 Nov 2015.

  • 92.

    Klunne WJ. Small hydropower in southern Africa-an overview of five countries in the region. J Energy South Afr 2013;24(3):14–25.

  • 93.

    Carvalho GO. Environmental resistance and the politics of energy development in the Brazilian Amazon. J Env Dev 2006;15(3):245–68.

  • 94.

    Schwartzman S, Alencar A, Zarin H, Santos Souza AP. Social movements and large-scale tropical forest protection on the Amazon Frontier: conservation from Chaos. J Environ Dev 2010;19(3):274–99.

  • 95.

    Polimeni JM, Iorgulescu RI, Chandrasekara R. Trans-border public health vulnerability and hydroelectric projects: the case of Yali Falls Dam. Ecol Econ 2014;98:81–9.

  • 96.

    Premalatha M, Tabassum A, Abbasi T, Abbasi SA. A critical view on the eco-friendliness of small hydroelectric installations. Sci Total Environ 2014;481:638–43.

  • 97.

    Hydro Review. Dam safety and security. In: Hydro Review. vol. 34. Tulsa: Hydroworld.com, 2015. Available at: http://www.hydroworld.com/articles/hr/print/volume-34/issue-7/departments/dam-safety-and-security.html. Accessed 30 Nov 2015.

  • 98.

    Charles JA. Delivering benefits through evidence: lessons from historical dam incidents. In: Project Report. Bristol: Environment Agency, 2011. Available at: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/290812/scho0811buba-e-e.pdf. Accessed 04 Dec 2015.

  • 99.

    Hogan CJ. Hydroelectricity. In: Cleveland C, editor. Encyclopedia of Earth, 2014. Available at: http://www.eoearth.org/view/article/153619. Accessed 03 December 2015.

  • 100.

    Imbrogno DF. Analysis of dam failures and development of a dam safety evaluation program. The Ohio State University, 2014. Available at: https://etd.ohiolink.edu/!etd.send_file?accession=osu1406168902&disposition=inline. Accessed 30 Nov 2015.

  • 101.

    Li S, Lu XX. Greenhouse gas emissions from reservoirs could double within 40 years. In: Science, E-Letters, 28 July 2011.

  • 102.

    Fearnside PM. Greenhouse gas emissions from hydroelectric dams: controversies provide a springboard for rethinking a supposedly ‘clean’energy source. An editorial comment. Climatic Change 2004;66(1):1–8.

  • 103.

    Fearnside PM. Carbon credit for hydroelectric dams as a source of greenhouse-gas emissions: The example of Brazil’s Teles Pires Dam. Mitig Adapt Strat Gl 2013;18(5):691–9.

  • 104.

    Bai J, Cui B, Xu X, Ding Q, Gao H. Heavy metal contamination in riverine soils upstream and downstream of a hydroelectric dam on the Lancang River, China. Environ Eng Sci 2009;26(5): 941–6.

  • 105.

    Wang X, Yang H, Gong P, Zhao X, Wu G, et al. One century sedimentary records of polycyclic aromatic hydrocarbons, mercury and trace elements in the Qinghai Lake, Tibetan Plateau. Environ Pollut 2010;158(10):3065–70.

  • 106.

    Zhao Q, Liu S, Deng L, Dong S, Wang C. Longitudinal distribution of heavy metals in sediments of a canyon reservoir in Southwest China due to dam construction. Environ Monit Assess 2013;185(7):6101–10.

  • 107.

    Adal A, Wiener SW. Heavy metal toxicity. http://emedicine.medscape.com/article/814960-overview. Accessed 30 Oct 2015.

  • 108.

    Inoue K. Heavy metal toxicity. J Clin Toxicol 2013;s3:007.

  • 109.

    Larssen T. Mercury in Chinese reservoirs. Environ Pollut 2010;158(1):24–5.

  • 110.

    Schreier H, Hsu H-H, Amarasiriwardena C, Coull B, Schnaas L, et al. Mercury and psychosocial stress exposure interact to predict maternal diurnal cortisol during pregnancy. Environ Health 2015;14(1):28.

  • 111.

    Eisler R. Polycyclic aromatic hydrocarbon hazards to fish, wildlife, and invertebrates: a synoptic review. US Fish Wildlife Service Biological Report 1987;85(1.11):81.

  • 112.

    Choi H, Harrison R, Komulainen H, Saborit JM. Polycyclic aromatic hydrocarbons. In: WHO Guidelines for Indoor Air Quality: Selected Pollutants. Geneva: World Health Organization, 2010. 6. Available at: http://www.ncbi.nlm.nih.gov/books/NBK138709/.

  • 113.

    Fankhauser S, McDermott TK. Understanding the adaptation deficit: why are poor countries more vulnerable to climate events than rich countries? Glob Environ Chang 2014;27:9–18.

  • 114.

    Semenza J, Ploubidis G, George L. Climate change and climate variability: personal motivation for adaptation and mitigation. Environ Health 2011;10(1):46.

  • 115.

    Othman E, Ahmed A. Challenges of mega construction projects in developing countries. OTMCJ 2013;5(1):730–46.

  • 116.

    Ibáñez-Forés V, Bovea M. A decision support tool for communicating the environmental performance of products and organisations from the ceramic sector. Clean Techn Environ Policy 2015;18:123–38.

  • 117.

    Banegil T, Chamorro A. World trade and ecolabelling: adverse implications and measures adopted. ICE 2005;824:157.

  • 118.

    Urpelainen J. Environmental regulation in the shadow of international trade law. University of Pittsburgh, 2010. Available at: https://ipec.gspia.pitt.edu/Portals/7/Papers/ShadowUrpelainen.pdf. Accessed 13 March 2015.

  • 119.

    Mudgal S, Muehmel K, Kong M, Labouze E, Gerstetter C, et al. Study on different options for communicating environmental information for products. In: Galatola M, editor. European Commission – DG Environment Final Report. Paris: BIO Intelligence Service, 2012. Available at: http://www.ecologic.eu/sites/files/publication/2014/different-options-for-communication-environmental-information-for-products-2012_0.pdf. Accessed 12 August 2015.

  • 120.

    Tóth L, Torgyik T, Nagy L, Abonyi J. Multiobjective optimization for efficient energy utilization in batch biodiesel production. Clean Techn Environ Policy 2015;18:95–104.

  • 121.

    Bruneau J, Echevarria C. The poor are green too. Int J Cooper Stud 2009;16(3):1–22.

About the article

Received: 2016-02-04

Accepted: 2016-04-08

Published Online: 2016-05-14

Published in Print: 2016-06-01

Citation Information: Reviews on Environmental Health, ISSN (Online) 2191-0308, ISSN (Print) 0048-7554, DOI: https://doi.org/10.1515/reveh-2016-0004. Export Citation

Comments (0)

Please log in or register to comment.
Log in