Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews on Environmental Health

Editor-in-Chief: Carpenter, David O. / Sly, Peter

Editorial Board: Brugge, Doug / Edwards, John W. / Field, R.William / Garbisu, Carlos / Hales, Simon / Horowitz, Michal / Lawrence, Roderick / Maibach, H.I. / Shaw, Susan / Tao, Shu / Tchounwou, Paul B.

IMPACT FACTOR 2018: 1.616

CiteScore 2018: 1.69

SCImago Journal Rank (SJR) 2018: 0.508
Source Normalized Impact per Paper (SNIP) 2018: 0.664

See all formats and pricing
More options …
Volume 31, Issue 4


Effects of 17β-estradiol (E2) on aqueous organisms and its treatment problem: a review

Emad Nazari
  • Corresponding author
  • Department of Civil and Structural Engineering, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia, Phone: +601114322098
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fatihah Suja
  • Department of Civil and Structural Engineering, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-11-24 | DOI: https://doi.org/10.1515/reveh-2016-0040


Natural estrogens, estrone (E1), 17β-estradiol (E2) and estriol (E3) are endocrine disrupting chemicals (EDCs) that are discharged consistently and directly into surface waters with wastewater treatment plants (WWPTs) effluents, disposal sludges and in storm-water runoff. The most common and highest potential natural estrogen that causes estrogen activity in wastewater influent is E2. This review describes and attempts to summarize the main problems involved in the removal of E2 from WWTP by traditional processes, which fundamentally rely on activated sludge and provide an insufficient treatment for E2, as well as advanced oxidation processes (AOPs) that are applied in tertiary section treatment works. Biological processes affect and play an important role in the degradation of E2. However, some investigations have reported that operations that rely on high retention times have low efficiencies. Although advanced treatment technologies are available, their cost and operational considerations do not make them sustainable solutions. Therefore, E2 is still being released into aqueous areas, as shown in this study that investigates results from different countries. E2 is present on the watch list of substances in the Water Framework Directive (WFD) of the European Union since 2013 and the minimum acceptable concentration of it is 0.4 ng/L.

Keywords: advanced oxidation processes (AOPs); aqueous area; degradation; endocrine disruption; 17β-estradiol (E2); wastewater treatment plant


  • 1.

    European Environment. Endocrine disruptor, what are endocrine disruptors, 2015. (online: January 5/2016).Google Scholar

  • 2.

    Environment Canada. (October 17, 2002). Endocrine disrupting substances in the environment, (online:January 5/2016).Google Scholar

  • 3.

    Slater H. Development of a chemical analysis protocol and application with whole estrogenic and androgenic assay to assess endocrine disruptor activity during wastewater and sludge treatment processes. Thesis of doctor of philosophy. The university of British Colombia civil engineering, 2014. doi:.CrossrefGoogle Scholar

  • 4.

    Rogan WJ, Ragan NB. Some evidence of effects of environmental chemicals on the endocrine system in children. Int J Hyg Environ Health 2007;210:659–67.CrossrefPubMedGoogle Scholar

  • 5.

    William NR, Steven M. Environmental and occupational medicine. publisher: Wolters Kluwer Health, Philadelphia, USA, 4th ed. 74, 1175–6, 2011. ISBN: 9780781762991.Google Scholar

  • 6.

    European Molecular Biology Laboratory (December 29/2015). CHEBI:50114 – estrogen.Google Scholar

  • 7.

    National Center for Biotechnology Information. (CID=5757). Pubchem, summary for CID 5757 (estradiol). (online: Juanuary 5/2016).Google Scholar

  • 8.

    Tekoa LK, Mary CB. Pharmacology For Women’s Health: Steroid hormones. Publisher: Jones and Bartlett, 1st edn, Massachusetts, USA. PP. 367, 2012. ISBN-13: 978-0763753290.Google Scholar

  • 9.

    Julia AF, Marcia GK, Sandhya P. Bioidentical hormone therapy. Mayo Clin Proc 2011;86(7):673–80.PubMedCrossrefGoogle Scholar

  • 10.

    David R. Integrative medicine,. 3rd ed. Philadelphia, USA: Publisher: Elsevier Saunders, pp. 336–8, 2012. ISSN: 978-1-4377-1793-8.Google Scholar

  • 11.

    McCarthy MM. Estradiol and the developing brain. Physiol Rev 2008;88(1):91–124.PubMedCrossrefGoogle Scholar

  • 12.

    National Institute Health (NIH). U.S. National Library of Medicine. Medlineplus. Estradiol blood test, 2013. (Online: December 29/2015).Google Scholar

  • 13.

    Esteban S, Gorga M, Petrovic M, González-Alonso S, Barceló D, et al. Analysis and occurrence of endocrine-disrupting compounds and estrogenic activity in the surface waters of Central Spain. Sci Total Environ 2014;466–467:939–51.PubMedGoogle Scholar

  • 14.

    Qiang ZM, Dong HY, Zhu BY, Qu JH, Nie YF. A comparison of various rural wastewater treatment processes for the removal of endocrine-disrupting chemicals (EDCs). Chemosphere 2013;92(8):986–92.PubMedCrossrefGoogle Scholar

  • 15.

    Gerolin ERR. Occurrence and removal of endocrine disrupters in public supply water from Campinas and Sumaré -São Paulo. PhD thesis in Civil Engineering. Campinas State University, Campinas. (online: January 3/2016), 2008.Google Scholar

  • 16.

    Duong CN, Ra JS, Cho J, Kim SD, Choi HK, et al. Estrogenic chemicals and estrogenicity in river waters of South Korea and seven Asian countries. Chemosphere 2009;78:286–93.Google Scholar

  • 17.

    Ismail, A, Hazizan AF, Zulkifli SZ, Mohamat-Yusuff F, Omar H, et al. Determination of 17β-Estradiol Concentration in Aquatic Environment of Peninsular Malaysia using the ELISA Technique. Life Sci J 2014;11(8):673–9.Google Scholar

  • 18.

    ATSDR. Sunnyside area groundwater contamination. US department of health and human services. Public Health Service: Division of Health Assessment and Consultation. Atlanta, Georgia 30333, 2007.Google Scholar

  • 19.

    Prossnitz ER, Barton M. The G protein-coupled estrogen receptor GPER in health and disease, HHS, PMC3474542. Nat Rev Endocrinol 2011;7(12):715–26.CrossrefGoogle Scholar

  • 20.

    Wright-Walters M, Volz C, Assessment E. Municipal wastewater concentrations of pharmaceutical and xeno-estrogens: Wildlife and human health implications. In Proceedings of the 2007 national conference on environmental science and technology 3, 2007:103–13. doi:.CrossrefGoogle Scholar

  • 21.

    Shappell NW. Estrogenic activity in the environment: municipal wastewater effluent, river, ponds, and wetlands. J Environ Qual 2006;35(1):122–32.PubMedCrossrefGoogle Scholar

  • 22.

    Wu C, Xue W, Zhou H, Huang X, Wen X. Removal of endocrine disrupting chemicals in a large scale membrane bioreactor plant combined with anaerobicanoxic- oxic process for municipal wastewater reclamation. Water Sci Technol 2011;64(7):1511–8.CrossrefGoogle Scholar

  • 23.

    Woods M, Kumar A. Vitellogenin induction by 17β-estradiol and 17α- ethynylestradiol in male Murray rainbowfish (Melanotaenia fluviatilis). Environ Toxicol Chem 2011;30(11):2620–7.CrossrefPubMedGoogle Scholar

  • 24.

    Seki M, Yokota H, Maeda M, Kobayashi K. Fish full life-cycle testing for 17β-estradiol on medaka (Oryzias latipes). Environ Toxicol Chem 2005;24(5):1259–66.CrossrefPubMedGoogle Scholar

  • 25.

    Lei B, Huang S, Zhou Y, Wang D, Wang Z. Levels of six estrogens in water and sediment from three rivers in Tianjin area, China. Chemosphere 2009;76(1):36–42.PubMedCrossrefGoogle Scholar

  • 26.

    Liao T, Guo QL, Jin SW, Cheng W, Xu Y. Comparative responses in rare minnow exposed to 17β-estradiol during different life stages. Fish Physiol Biochem 2009;35(3):341–9.CrossrefPubMedGoogle Scholar

  • 27.

    Imai S, Koyama J, Fujii K. Effects of 17β-estradiol on the reproduction of Java-medaka (Oryzias javanicus), anewtest fish species. Mar Pollut Bull 2005;51:708–14.PubMedCrossrefGoogle Scholar

  • 28.

    Jukosky JA, Watzin MC, Leiter JC. The effects of environmentally relevant mixtures of estrogens on Japanese medaka (Oryzias latipes) reproduction. Aquat Toxicol (Amst) 2008;86(2):323–31.CrossrefGoogle Scholar

  • 29.

    Hirai N, Nanba A, Koshio M, Kondo T, Morita M, Tatarazako N. Feminization of Japanese medaka (Oryzias latipes) exposed to 17β -estradiol: Formation of testis–ova and sex-transformation during early-ontogeny. Aquat Toxicol (Amst) 2006;77(1):78–86.CrossrefGoogle Scholar

  • 30.

    Cripe GM, Hemmer BL, Goodman LR, Fournie JW, Raimondo S, et al. Multigenerational exposure of the estuarine sheepshead minnow (Cyprinodon variegatus) to 17β-estradiol. I. Organism-level effects over three generations. Environ Toxicol Chem 2009;28(11):2397–408.PubMedCrossrefGoogle Scholar

  • 31.

    Toft G, Baatrup E. Altered sexual characteristics in guppies (Poecilia reticulata) exposed to 17b-estradiol and 4-tert-octylphenol during sexual development. Ecotoxicol Environ Saf 2003;56(2):228–37.CrossrefGoogle Scholar

  • 32.

    Robinson CD, Brown E, Craft JA, Davies IM, Megginson C, et al. Bioindicators and reproductive effects of prolonged 17β-oestradiol exposure in a marine fish, the sand goby (Pomatoschistusminutus). Aquat Toxicol (Amst) 2007;81(4):397–408.CrossrefGoogle Scholar

  • 33.

    Caldwell DJ, Mastrocco F, Nowak E, Johnston J, Yekel H, et al. An assessment of potential exposure and risk from estrogens in drinking water. Environ. Health Perspect 2010;118(3):338–44.Google Scholar

  • 34.

    Van der Ven LTM, van den Brandho E-J, Vos JH, Wester PW. Effects of the estrogen agonist 17b-estradiol and antagonist tamoxifen in a partial life-cycle assay with zebrafish (Danio rerio). Environ Toxicol Chem 2007;26(1):92–9.CrossrefGoogle Scholar

  • 35.

    Caldwell DJ, Mastrocco F, Anderson PD, Lange R, Sumpter JP. Predicted-no-effect concentrations for the steroid estrogens estrone, 17β-estradiol, estriol, and 17α-ethinylestradiol. Environ Toxicol Chem 2012;31(6):1396–406.CrossrefPubMedGoogle Scholar

  • 36.

    Braga O, Smythe GA, Schäfer AI, Feitz AJ. Steroid estrogens in ocean sediments. Chemosphere 2005;61(6):827–33.CrossrefPubMedGoogle Scholar

  • 37.

    Rosselli M, Dubey RK. Estrogen metabolism and reproduction –is there a relationship? Journal für Fertilität und Reproduktion 2006;16(4):19.Google Scholar

  • 38.

    Combalbert S, Hemandez-Raquet G. Occurrence, fate, and biodegradation of estrogens in sewage and manure. Appl Microbial Biotechnol 2010;86(6):1671–92.CrossrefGoogle Scholar

  • 39.

    Matsui S, Takigami H, Taniguchi N, Adachi J, Kawami H, et al. Estrogen and estrogen mimics contamination in water and the role of sewage treatment. Water Sci. Technol. 2000;42(12):173–9.Google Scholar

  • 40.

    Sun Y, Huang H, Sun Y, Wang C, Shi XL, et al. Ecological risk of estrogenic endocrine disrupting chemicals in sewage plant effluent and reclaimed water. Environ Pollut 2013;180:339–44.PubMedCrossrefGoogle Scholar

  • 41.

    Petrie B, Barden R, Kasprzyk-Hordern B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring (review). Water Res 2015;72:3–27.CrossrefPubMedGoogle Scholar

  • 42.

    Hoffmann B, Evers P. Anabolic agents with sex hormone-like activitie: problems of residues. In: Rico AG, editor. Drug residues in animals. New York: Academic Press, 1986:111–46.Google Scholar

  • 43.

    Johnson AC, Belfroid A, Di Corcia A. Estimating steroid oestrogen inputs into activated sludge treatment works and observations on their removal from the effluent. Sci Total Environ 2000;256(2–3):163–73.CrossrefPubMedGoogle Scholar

  • 44.

    Knight WM. Estrogens administered to food-producing animals: environmental considerations. In: McLachlan JA, editor. Estrogens in the environment. Developments in toxicology and environmental science, New York: Elsevier/North Holland, 5, 1980:391–401.Google Scholar

  • 45.

    Lange IG, Daxenberger A, Schiffer B, Witters H, Ibarreta D, et al. Sex hormones originating from different livestock production systems: fate and potential disrupting activity in the environment. Anal Chim Acta 2002;473(1–2):27–37.CrossrefGoogle Scholar

  • 46.

    Gaulke LS, Strand SE, Kalhorn TF, Stensel HD. Estrogen biodegradation kinetics and estrogenic activity reduction for two biological wastewater treatment methods. Environ Sci Technol 2009;43(18):7111–6.PubMedCrossrefGoogle Scholar

  • 47.

    Beecher LE. Assessment of 17β-estradiol removal from wastewater via abiotic and biotic routes and potential effects on food chain pathways, Dissertation of Doctor of philosophy Environmental Toxicology, Clemson University, 2013.Google Scholar

  • 48.

    Johnson AL, Van Tienhoven A. Phamacokinetics of 17beta-estradiol in the laying hen. Poult Sci 1981;60(12):2720–3.CrossrefGoogle Scholar

  • 49.

    Schuh MC, Casey FX, Hakk H, Desutter TM, Richards KG, et al. An on-farm survey of spatial and temporal stratifications of 17β- estradiol concentrations. Chemosphere 2011;82(11):1683–9.PubMedCrossrefGoogle Scholar

  • 50.

    Schoenborn A, Kunz P, Koster M. Estrogenic activity in drainage water: a field study on a Swiss cattle pasture. Env Sci Eur 2015;27:17.CrossrefGoogle Scholar

  • 51.

    Johnson AC, Williams RJ, Matthiessen P. The potential steroid hormone contribution of farm animals to freshwaters, the United Kingdom as a case study. Sci Total Environ 2006;362(1–3): 166–78.PubMedCrossrefGoogle Scholar

  • 52.

    Koldovsky O, Thornburg W. Hormones in milk. J Pediatr Gastroenterol Nutr 1987;6(2):172–96.PubMedGoogle Scholar

  • 53.

    Pape-Zambito DA., Roberts RF, Kensinger RS. Estrone and 17β- estradiol concentrations in pasteurized-homogenized milk and commercial dairy products. J Dairy Sci 2010;93(6):2533–40.CrossrefPubMedGoogle Scholar

  • 54.

    Farre M, Kuster M, Brix R, Rubio F, Lopez de Alda MJ, et al. Comparative study of an estradiol enzyme-linked immunosorbent assay kit, liquid chromatography-tandem mass spectrometry, and ultra-performance liquid chromatography-quadrupole time of flight mass spectrometry for part-per trillion analysis of estrogens in water samples. J Chromatogr A 2007;1160(1–2):166–75.PubMedGoogle Scholar

  • 55.

    Jones-Lepp TL, Alvarez D, Englert B, Batt A. Pharmaceuticals and hormones in the environment. Encyclopedia of Analytical Chemistry 2009;75(1):1–59.Google Scholar

  • 56.

    Peng X, Yu Y, Tang C, Tan J, Huang Q, Wang Z. Occurrence of steroid estrogens, endocrinedisrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China. Sci Total Environ 2008;397(1–3):158–66.CrossrefGoogle Scholar

  • 57.

    Li Z, Dvorak B, Li X. Removing 17β-estradiol from drinking water in abiologically active carbon (BAC) reactor modified from a granular activated carbon (GAC) reactor. Water Res 2012;46(9):2828–36.CrossrefGoogle Scholar

  • 58.

    Filby AL, Shears JA, Drage BE, Churchley JH, Tyler CR. Effects of advanced treatments of wastewater effluents on estrogenic and reproductive health impacts in fish. Environ Sci Technol 2010;44(11):4348–54.CrossrefPubMedGoogle Scholar

  • 59.

    Racz L, Goel RK. Fate and removal of estrogens in municipal wastewater. J Environ Monit 2010;12(1):58–70.CrossrefPubMedGoogle Scholar

  • 60.

    Brennan SJ, Brougham C, Roche JJ, Fogarty AM. Multi-generational effects of four selected environmental oestrogens on Daphnia magna. Chemosphere 2006;64(1):49–55.PubMedCrossrefGoogle Scholar

  • 61.

    Ye X, Guo X, Cui X, Zhang X, Zhang H, et al. Occurrence and removal of endocrine-disrupting chemicals in wastewater treatmentplants in the three gorges reservoir area, Chongqing, China. J Environ Monit 2012;14(8):2204–11.CrossrefGoogle Scholar

  • 62.

    Truman PS, Van den Hurk P. Xenoestrogen exposure and effects in bluegill from the Reedy River, South Carolina, USA. Arch Environ Contam Toxicol 2010;58(1):165–75.CrossrefPubMedGoogle Scholar

  • 63.

    Benotti MJ, Trenholm RA, Vanderford BJ, Holady JC, Stanford BD, et al. Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Environ Sci Technol 2009;43(3):597–603.CrossrefPubMedGoogle Scholar

  • 64.

    Wang G, Ma P, Zhang Q, Lewis J, Lacey M, et al. Endocrine disrupting chemicals in New Orleans surface waters and Mississippi Sound sediments. J Environ Monit 2012;14(5):1353–64.PubMedCrossrefGoogle Scholar

  • 65.

    Wang L, Ying GG, Zhao JL, Liu S, Yang B, et al. Assessing estrogenic activity in surface water and sediment of the Liao River system in northeast China using combined chemical and biological tools. Environ Pollut 2011;159(1):148–56.CrossrefPubMedGoogle Scholar

  • 66.

    Pelayo S, López-Roldán R, González S, Casado M, Raldua D, et al. A zebrafish scale assay to monitor dioxin-like activity in surface water samples. Anal Bioanal Chem 2011;401(6):1861–9.PubMedCrossrefGoogle Scholar

  • 67.

    Moreira M, Aquino S, Coutrim M, Silva J, Afonso R. Determination of endocrine-disrupting compounds inwaters from Rio das Velhas, Brazil, by liquid chromatography/high resolution mass spectrometry (ESI-LC-IT-TOF/MS). Environ Technol 2011;32(11–12):1409–17.PubMedCrossrefGoogle Scholar

  • 68.

    Koyama J, Imai S, Fujii K, Kawai S, Yap CK, Ismail A. Pollution by estrogen in river and estuarine waters around Kuala Lumpur, Malaysia, and their effects on the estuarine Java medaka, Oryzias javanicus. Jpn J Environ Toxicol 2006;9(2):141–7.Google Scholar

  • 69.

    Zuo Y, Zhang K, Deng Y. Occurence and photochemical degradation of 17α-ethinylestradiol in Acushnet River Estuary. Chemosphere 2006;63(9):1583–90.CrossrefGoogle Scholar

  • 70.

    Jafari AJ, Abasabad RP, Salehzadeh A. Endocrine disrupting contaminants in water resources and sewage in Hamadan city of Iran. Iran J Environ Health Sci Eng 2009;2:89–96.Google Scholar

  • 71.

    Singh SP, Azua A, Chaudhary A, Khan S, Willet KL, et al. Occurrence and distribution of steroids, hormones and selected pharmaceuticals in South Florida coastal environments. Ecotoxicology 2010;19(2):338–50.CrossrefPubMedGoogle Scholar

  • 72.

    Aydin E, Talinli I. Analysis, occurence and fate of commonly used pharmaceutical and hormones in the BuyukcekmeceWatershed, Turkey. Chemosphere 2013;90(6):2004–12.CrossrefGoogle Scholar

  • 73.

    Ying GG, Kookana RS, Kumar A, Mortimer M. Occurrence and implications of estrogens and xenoestrogens in sewage effluents and receivingwaters fromSouth East Queensland. Sci Total Environ 2009;407(18):5147–55.CrossrefGoogle Scholar

  • 74.

    Stachel B, Ehrhorn U, Heemken O-P, Lepom P, Reincke H, et al. Xenoestrogens in the River Elbe and its tributaries. Environ Pollut 2003;124(3):497–507.PubMedCrossrefGoogle Scholar

  • 75.

    Sodré FF, Pescara IC, Montagner CC, Jardin WF. Assessing selected estrogens and xenoestroges in Brazillian surface waters by liquid chromatography-tandem mass spectrometry. Microchem J 2010;96:92–8.CrossrefGoogle Scholar

  • 76.

    Viganò L, Mandich A, Benfenati E, Bertolotti R, Bottero S, Porazzi E, et al. Investigating the estrogenic risk along the River Po and its intermediate section. Arch Environ Contam Toxicol 2006;51(4):641–51.PubMedCrossrefGoogle Scholar

  • 77.

    Vethaak AD, Lahr J, Schrap SM, Belfroid AC, Rijs GBJ, et al. An integrated assessment of estrogenic contamination and biological effects in the aquatic environment of The Netherlands. Chemosphere 2005;59(4):511–24.CrossrefPubMedGoogle Scholar

  • 78.

    Pojana G, Gomiero A, Jonkers N, Marcomini A. Natural and synthetic endocrine disrupting compounds (EDCs) in water, sediment and biota of a coastal lagoon. Environ Int 2007;33(7):929–36.PubMedCrossrefGoogle Scholar

  • 79.

    Chen CY, Wen TY,Wang GS, Cheng HW, Lin YH, Lien GW. Determining estrogenic steroids in Taipei waters and removal in drinking water treatment using high-flow solidphase extraction and liquid chromatography/tandem mass spectrometry. Sci. Total Environ 2007;378(3):352–65.CrossrefGoogle Scholar

  • 80.

    Bogi C, Schwaiger J, Ferling H, Mallow U, Steineck C, et al. Endocrine effects of environmental pollution on Xenopus laevis and Rana temporaria. Environ Res 2003;93(2):195–201.CrossrefPubMedGoogle Scholar

  • 81.

    Zhou X, Lian Z, Wang J, Tan L, Zhao Z. Distribution of estrogens along Licun River in Qingdao, China. 2011 3rd international Conference on Environmental Science and Information Application Technology (ESIAT 2011). Proc Environ Sci 2011;10:1876–80.Google Scholar

  • 82.

    Zhang X, Gao Y, Li Q, Li G, Guo Q, et al. Estrogenic compounds and estrogenicity in surface water, sediments, and organisms from Yudang Lagoon in Xiamen, China. Arch Environ Contam Toxicol 2011;61(1):93–100.PubMedCrossrefGoogle Scholar

  • 83.

    Zhang Z, Rhind SM, Kerr C, Osprey M, Kyle CE. Selective pressurized liquid extraction of estrogenic compounds in soil and analysis by gas chromatography-mass spectrometry. Anal Chim Acta 2011;685(1):29–35.CrossrefPubMedGoogle Scholar

  • 84.

    Yuan X, Li T, Zhou L, Zhao X. Characteristics and Risk Assessment of Estrogenic Compounds in Rivers of Southern Jiangsu Province, China. ScienceDirect (ESSE 2014) 2014;9:176–84.Google Scholar

  • 85.

    Liu S, Ying GG, Zhou LJ, Zhang RQ, Chen ZF, et al. Steroids in typical swine farm and their release into the environment. Water Res 2012;46(12):3754–68.PubMedCrossrefGoogle Scholar

  • 86.

    Wang Y, Wang Q, Hu L, Lu G, Li Y. Occurrence of estrogens in water, sediment and biota and their ecological risk in Northern Taihu Lake in China. Environ Geochem Health 2015;37(1):147–56.CrossrefPubMedGoogle Scholar

  • 87.

    Wang L, Ying GG, Chen F, Zhang LJ, Zhao JL, Lai HJ, et al. Monitoring of selected estrogenic compounds and estrogenic activity in surface water and sediment of the Yellow River in China using combined chemical and biological tools. Environ Pollut 2012;165:241–9.CrossrefPubMedGoogle Scholar

  • 88.

    Schmitt C, Balaam J, Leonards P, Brix R, Streck G, et al. Characterizing field sediments from three European rivers basins with special emphasis on endocrine effects – A recommendation for Potamopyrus antipodarum as test organism. Chemosphere 2010;80(1):13–9.PubMedCrossrefGoogle Scholar

  • 89.

    Labadie P, Hill EM. Analysis of estrogens in river sediments by liquid chromatographyelectrospray ionisation mass spectrometry, Comparison of tandem mass spectrometry and time-of-flight mass spectrometry. J Chromatogr A 2007;1141(2):174–81.CrossrefGoogle Scholar

  • 90.

    Froehner S, Machado KS, Stefen E, Bleininger T, da Rosa EC, Martins CDC. Occurrence of selected estrogens in mangrove sediments. Mar Pollut Bull 2012;64(1):75–9.CrossrefPubMedGoogle Scholar

  • 91.

    Kinani S, Bouchonnet S, Creusot N, Bourcier S, Balaguer P, et al. Bioanalytical characterisation of multiple endocrine- and dioxin-like activities in sediments from reference and impacted small rivers. Environ Pollut 2010;158(1):74–83.PubMedCrossrefGoogle Scholar

  • 92.

    Isobe T, Serizawa S, Horiguchi T, Shibata Y, Managaki S, et al. Horizontal distribution of steroid estrogens in surface sediments in Tokyo Bay. Environ Pollut 2006;144(2):632–8.PubMedCrossrefGoogle Scholar

  • 93.

    Gong J, Ran Y, Chen DY, Yang Y. Occurrence of endocrine-disrupting chemicals in riverine sediments from the earl River Delta, China. Mar Pollut Bull 2011;63(5–12):556–63.CrossrefGoogle Scholar

  • 94.

    Zhang X, Li Q, Li G, Wang Z, Yan C. Levels of estrogenic compounds in Xiamen Bay sediment, China. Mar Pollut Bull 2009;58(8):1210–6.PubMedCrossrefGoogle Scholar

  • 95.

    Bertin A, Inostroza AP, Quinones RA, Estrogen pollution in a highly productive ecosystem off central-south Chile. Science Direct Mar Pollut Bull 2011;62(7):1530–1537.CrossrefGoogle Scholar

  • 96.

    Mustafa MA, Norazit A, Malintan N. Symposium on POPs in Asia: Its Status and Future (7–8 Nov 2006), NISMED Auditorium, University of the Philippines, Diliman, Quezon City, Philippines, 2006.Google Scholar

  • 97.

    Shore LS, Kapulnik Y, Ben-Dov B, Fridman Y, Wininger S, et al. Effects of estrone and 17β- estradiol on vegetative growth of Medicago sativa. Physiol Plant 1992;84(2):217–22.CrossrefGoogle Scholar

  • 98.

    Shore LS, Shemesh M. Naturally produced steroid hormones and their release into the environment. Pure Appl Chem 2003;75(11–12):1859–71.Google Scholar

  • 99.

    Arnon S, Dahan O, Elhanany S, Cohen K, Pankratov I, et al. Transport of testosterone and estrogen from dairy-farm waste lagoons to groundwater. Environ Sci Technol 2008;42(15):5521–6.CrossrefPubMedGoogle Scholar

  • 100.

    Nash JP, Kime DE, Van der Ven LTM, Wester PW, Brion F, et al. Long-term exposure to environmental concentrations of the pharmaceutical ethynylestradiol causes reproductive failure in fish. Environ Health Perspect 2004;112(17);1725–33.CrossrefPubMedGoogle Scholar

  • 101.

    Shi W, Wang L, Rousseau DP, Lens PN. Removal of estrone, 17alpha-ethinylestradiol, and 17beta-estradiol in algae and duckweed-based wastewater treatment systems. Environ Sci Pollut Res Int 2010;17(4):824–33.CrossrefPubMedGoogle Scholar

  • 102.

    Ma T, Wan X, Huang Q, Wang Z, Liu J. Biomarker responses and reproductive toxicity of the effluent from a Chinese large sewage treatment plant in Japanese medaka (Oryzias latipes). Chemosphere 2005;59(2):281–8.CrossrefPubMedGoogle Scholar

  • 103.

    Fukuhara T, Iwasaki S, Kawashima M, Shinohara O, Abe I. Absorbability of estrone and 17beta-estradiol in water onto activated carbon. Water Res 2006;40(2):241–8.CrossrefPubMedGoogle Scholar

  • 104.

    Yu ZQ, Huang WL. Competitive sorption between 17α-ethinylestradiol and naphthalene/phenanthrene by sediments. Environ Sci Technol 2005;39(13):4878–85.CrossrefGoogle Scholar

  • 105.

    Sarkar S. Fate of Estrogens in Anaerobic Digestion and their removal in Advanced Oxidation. A Electronic Thesis and Dissertation Repository. The University of Western Ontario. A thesis submitted in partial fulfillment of the requirements for the degree in Master of Engineering Science, 2013.Google Scholar

  • 106.

    Koh YK, Chiu TY, Boobis AR, Scrimshaw MD, Bagnall JP, et al. Influence of operating parameters on the biodegradation of steroid estrogens and nonylphenolic compounds during biological wastewater treatment processes. Environ Sci Technol 2009;43(17):6646–54.CrossrefPubMedGoogle Scholar

  • 107.

    Snow DD, Bartelt–Hunt SL, Brown DL, Sangster J, Cassada D. Detection, occurrence and fate of pharmaceuticals and steroid hormones in agricultural environments. Water Environ Res 2010;82(10):869–82.CrossrefGoogle Scholar

  • 108.

    Hashimoto T, Murakami T. Removal and degradation characteristics of natural and synthetic estrogens by activated sludge in batch experiments. Water Res 2009;43(3):573–82.CrossrefPubMedGoogle Scholar

  • 109.

    Carballa M, Omil F, Ternes T, Lema JM. Fate of pharmaceutical and personal care products (PPCPs) during anaerobic digestion of sewage sludge. Water Res 2007;41(10):2139–50.CrossrefPubMedGoogle Scholar

  • 110.

    Kreuzinger N, Clara M, Strenn B, Kroiss H. Relevance of the sludge retention time (SRT) as design criteria for wastewater treatment plants for the removal of endocrine disruptors and pharmaceuticals from wastewater. Water Sci Technol 2004;50(5):149–56.PubMedGoogle Scholar

  • 111.

    Koh YK, Chiu TY, Boobis AR, Cartmell E, Scrimshaw MD, et al. Treatment and removal strategies for estrogens from wastewater. Environ Technol 2008;29(3):245–67.PubMedCrossrefGoogle Scholar

  • 112.

    Hernandez-Raquet S, Combalbert G. Occurrence, fate, and biodegradation of estrogens in sewage and manure. Appl Microbiol Biotechnol 2010;86(6):1671–92.CrossrefPubMedGoogle Scholar

  • 113.

    Holbrook RD, Novak JT, Grizzard TJ, Love NG. Estrogen receptor agonist fate during wastewater and biosolids treatment processes: a mass balance analysis. Environ Sci Technol 2002;36(21):4533–9.PubMedCrossrefGoogle Scholar

  • 114.

    de Mes TZ, Kujawa-Roeleveld K, Zeeman G, Lettinga G. Anaerobic biodegradation of estrogens – hard to digest. Water Sci Technol 2008;57(8):1177–82.CrossrefPubMedGoogle Scholar

  • 115.

    Fujii K, Kikuchi S, Satomi M, Ushio-sata N, Morita N. Degradation of 17β-Estradiol by a Gram-Negative Bacterium Isolated from Activated Sludge in a Sewage Treatment Plant in Tokyo, Japan. Appl Environ Microbiol 2002;68(4):2057–60.CrossrefGoogle Scholar

  • 116.

    Andersen H, Siegrist H, Halling-Sørensen B, Ternes TA. Fate of estrogens in a municipal sewage treatment plant. Environ Sci Technol 2003;37(18):4021–6.CrossrefGoogle Scholar

  • 117.

    Weber S, Leuschner P, Kämpfer P, Dott W, Hollender J. Degradation of estradiol and ethinyl estradiol by activated sludge and by a defined mixed culture. Appl Microbiol Biotechnol 2005;67(1):106–20.CrossrefPubMedGoogle Scholar

  • 118.

    Roh H, Chu KH. A 17beta-estradiol-utilizing bacterium, Sphingomonas strain KC8: part I –characterization and abundance in wastewater treatment plants. Environ Sci Tech 2010;44(13):4943–50.CrossrefGoogle Scholar

  • 119.

    Yoshimoto T, Nagai F, Fujimoto J, Mizukoshi H, Makino T, et al. Degradation of estrogens by rhodococcus zopfii and rhodococcus equi isolates from activated sludge in wastewater treatment plants. Appl Environ Microbiol 2004;70(9):5283–9.PubMedCrossrefGoogle Scholar

  • 120.

    Jurgens MD, Holthaus KIE, Johnson AC, Smith JL, Hetheridge M, et al. The potential for estradiol and ethinylestradiol degradation in English rivers. Environ Toxicol Chem 2002;21(3):480–8.PubMedCrossrefGoogle Scholar

  • 121.

    Carballa M, Omil F, Alder AC, Lema JM. Comparison between the conventional anaerobic digestion of sewage sludge and its combination with a chemical or thermal pre-treatment concerning the removal of pharmaceuticals and personal care products. Water Sci Technol 2006;53(8):109–17.CrossrefPubMedGoogle Scholar

  • 122.

    Reungoat J, Escher BI, Macova M, Keller J. Biofiltration of wastewater treatment plant effluent: effective removal of pharmaceuticals and personal care products and reduction of toxicity. Water Res 2011;45(9):2751–62.CrossrefPubMedGoogle Scholar

  • 123.

    Snyder SA, Adham S, Redding AM, Cannon FS, Decarolis J, et al. Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination 2006;202(1–3):156–81.Google Scholar

  • 124.

    Zhang YP, Zhou JL. Removal of estrone and 17 beta-estradiol from water by adsorption. Water Res 2005;39(16):3991–4003.PubMedCrossrefGoogle Scholar

  • 125.

    Yoon Y, Westerhoff P, Snyder SA, Wert EC. Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products. J Membr Sci 2006;270(1–2):88–100.CrossrefGoogle Scholar

  • 126.

    Chiu TY, Lara Dominguez MV, James AE. Critical flux and rejection behaviour of non-circular-channelled membranes: Influence of some operating conditions. Sep Purif Technol 2006;50(2):212–9.CrossrefGoogle Scholar

  • 127.

    Adams C, Wang Y, Loftin K, Meyer, M. Removal of antibiotics from surface and distilled water in conventional water treatment processes. J Environ Eng 2002;128(3):253–60.CrossrefGoogle Scholar

  • 128.

    Bodzek M, Dudziak M. Elimination of steroidal sex hormones by conventional water treatment and membrane processes. Desalination 2006;198(1–3):24–32.CrossrefGoogle Scholar

  • 129.

    Jonathan TA, Faisal IH, Turki MA. Chemical coagulation-based processes for trace organic contaminant removal. J Environ Manage 2012;111:195–207.CrossrefPubMedGoogle Scholar

  • 130.

    Deborde M, Rabouan S, Duguet JP, Legube B. Kinetics of aqueous ozone-induced oxidation of some endocrine disruptors. Environ Sci Technol 2005;39(16):6086–92.PubMedCrossrefGoogle Scholar

  • 131.

    Huber MM, Gobel A, Joss A, Hermann N, Loffler D, et al. Oxidation of pharmaceuticals during ozonation of municipal wasterwater effluents: a pilot study. Environ Sci Technol 2005;39:4290–9.CrossrefGoogle Scholar

  • 132.

    Rosenfeldt EJ, Chen PJ, Kullman S, Linden KG. Destruction of estrogenic activity in water using UV advanced oxidation. Sci Total Environ 2007;377(1):105–13.CrossrefPubMedGoogle Scholar

  • 133.

    Jiang L, Huang C, Chen J, Chen X. Oxidative transformation of 17b-estradiol by MnO2 in aqueous solution. Arch Environ Contam Toxicol 2009;57(2):221–9.CrossrefGoogle Scholar

  • 134.

    Lee Y, Yoon J, Von Gunten U. Kinetics of the oxidation of phenols and phenolic endocrine disruptors during water treatment with ferrate (Fe(VI)). Environ Sci Technol 2005;39(22):8978–84.CrossrefPubMedGoogle Scholar

  • 135.

    Demir E, Kaya N, Kaya B. Genotoxic effects of zinc oxide and titanium dioxide nanoparticles on root meristem cells of Allium cepa by comet assay. Research article TUBITAK 2014;38:31–9.Google Scholar

  • 136.

    Moriyama K, Matsufuji H, Chino M, Takeda M. Identification and behavior of reaction products formed by chlorination of ethynylestradiol. Chemosphere 2004;55(6):839–47.CrossrefPubMedGoogle Scholar

  • 137.

    Hu J, Cheng S, Aizawa T, Asuterao Y, Kunikane S. Products of Aqueous Chlorination of 17β-Estradiol and Their Estrogenic Activities. Environ Sci Technol 2003;37(24):5665–70.PubMedCrossrefGoogle Scholar

  • 138.

    Zhang Y, Zhou JL, Ning B. Photodegradation of estrone and 17β-estradiol in water. Water Res 2007;41(1):19–26.PubMedCrossrefGoogle Scholar

  • 139.

    Frontistis Z, Drosou C, Tyrovola K, Mantzavinos D, Fatta-Kassinos D, et al. Experimental and Modeling Studies of the Degradation of Estrogen Hormones in Aqueous TiO2 Suspensions under Simulated Solar Radiation. ACS 2012;51(51):16552–63.Google Scholar

  • 140.

    Yaping Z, Jiangyong H. Photo-Fenton degradation of 17β-estradiol in presence of a-FeOOHR and H2O2. Appl Catal. B 2008;78(3–4):250–8.CrossrefGoogle Scholar

  • 141.

    Chen WS, Huang GC. Sonochemical decomposition of dinitrotoluenes and trinitrotoluene in wastewater. J Hazard Mater 2009;169(1–3):868–74.PubMedCrossrefGoogle Scholar

  • 142.

    Neppolian B, Asokkumar M, Saez V, Esclapes MD, Bonete P. Hybrid sonochemical treatments of wastewater: sonophotechemical and sonoelectrochemical approaches. In: Sharma SK, Sanghi R, editors. Advances in Water treatment and pollution prevention’ published: Springer Netherlands, first edition 11, 2012:303–36. doi:.CrossrefGoogle Scholar

  • 143.

    Ma YS. Current trends and future challenges in the application of sono-Fenton oxidation for wastewater treatment, Sustain. Environ Res 2012;22(5):271–8.Google Scholar

  • 144.

    Aris AZ, Shamsuddin AS, Praveena SM. Occurrence of 17α-ethynylestradiol (EE2) in the environment and effect on exposed biota: a review. Environ Int 2014;69:104–19.CrossrefPubMedGoogle Scholar

  • 145.

    Jiang JQ, Lloyd B. Progress in the development and use of ferrate(VI) salt as an oxidant and coagulant for water and wastewater treatment. Water Res 2002;36(6):1397–408.CrossrefPubMedGoogle Scholar

  • 146.

    Naimi I, Bellakhal N. Removal of 17β-Estradiol by electro-fenton process. Sci Res MSA 2012;3(12):880–6.Google Scholar

  • 147.

    Pereira RO, Lopez M, de Alda ML, Joglar J, Daniel LA, et al. Identification of new ozonation disinfection byproducts of 17β-estradiol and estrone in water. Chemosphere 2011;84(11):1535–41.PubMedCrossrefGoogle Scholar

  • 148.

    European Union Environmental Objectives. Surface waters Amendment regulations, S.I. No. 386, 2015.Google Scholar

About the article

Received: 2016-08-09

Accepted: 2016-10-13

Published Online: 2016-11-24

Published in Print: 2016-12-01

Funding Source: Ministry of Higher Education

Award identifier / Grant number: RGS/1/2015/SG05/UKM/02/4

The authors gratefully acknowledge the support of the Ministry of Higher Education (MOHE) Malaysia for providing the research grant RGS/1/2015/SG05/UKM/02/4, without which the present study could not have been completed.

Conflict of interest: The author declares that there is no conflict of interest regarding the publication of this manuscript.

Citation Information: Reviews on Environmental Health, Volume 31, Issue 4, Pages 465–491, ISSN (Online) 2191-0308, ISSN (Print) 0048-7554, DOI: https://doi.org/10.1515/reveh-2016-0040.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Rong Rong, Zhiming Li, Yusheng Zheng, and Fengsong Zhang
Waste and Biomass Valorization, 2019
Teresa Balbi, Caterina Ciacci, and Laura Canesi
Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2019, Volume 222, Page 135
A. Angkaew, C. Sakulthaew, T. Satapanajaru, and C. Chokejaroenrat
Journal of Environmental Chemical Engineering, 2018, Page 102858
Stuart J. Khan, Ruth Fisher, and David J. Roser
Current Opinion in Environmental Science & Health, 2018
Yao Zheng, Julin Yuan, Shunlong Meng, Jiazhang Chen, and Zhimin Gu
Chemosphere, 2018
Chao Liu, Kun Liang, Zhengxuan Jiang, and Liming Tao
Medicine, 2018, Volume 97, Number 40, Page e12572
Krisiam Ortiz-Martínez, Doris A. Vargas-Valentín, and Arturo J. Hernández-Maldonado
Industrial & Engineering Chemistry Research, 2018
Emanuela Pignotti, Marinella Farré, Damià Barceló, and Enrico Dinelli
Environmental Science and Pollution Research, 2017, Volume 24, Number 26, Page 21153
Karolina Czarny, Dominik Szczukocki, Barbara Krawczyk, Marek Zieliński, Ewa Miękoś, and Renata Gadzała-Kopciuch
Critical Reviews in Environmental Science and Technology, 2017, Page 1

Comments (0)

Please log in or register to comment.
Log in