Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews on Environmental Health

Editor-in-Chief: Carpenter, David O. / Sly, Peter

Editorial Board: Brugge, Doug / Edwards, John W. / Field, R.William / Garbisu, Carlos / Hales, Simon / Horowitz, Michal / Lawrence, Roderick / Maibach, H.I. / Shaw, Susan / Tao, Shu / Tchounwou, Paul B.

4 Issues per year


IMPACT FACTOR 2017: 1.284

CiteScore 2017: 1.29

SCImago Journal Rank (SJR) 2017: 0.438
Source Normalized Impact per Paper (SNIP) 2017: 0.603

Online
ISSN
2191-0308
See all formats and pricing
More options …
Volume 32, Issue 1-2

Issues

Environmental PAH exposure and male idiopathic infertility: a review on early life exposures and adult diagnosis

Erin P. Madeen
  • Corresponding author
  • Johns Hopkins University, School of Medicine, Division of Clinical Pharmacology, 725 N. Wolfe Street, Baltimore, MD 21205, USA
  • Superfund Research Program, Oregon State University, Agriculture and Life Sciences Bldg, Corvallis, OR 97330, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ David E. Williams
  • Superfund Research Program, Oregon State University, Agriculture and Life Sciences Bldg, Corvallis, OR 97330, USA
  • Department of Environmental and Molecular Toxicology, Agriculture and Life Sciences Bldg, Oregon State University, Corvallis, OR 97330, USA
  • Linus Pauling Institute, Linus Pauling Science Center, Oregon State University, Corvallis, OR 97330, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-12-09 | DOI: https://doi.org/10.1515/reveh-2016-0045

Abstract

The male reproductive system is acutely and uniquely sensitive to a variety of toxicities, including those induced by environmental pollutants throughout the lifespan. Early life hormonal and morphological development results in several especially sensitive critical windows of toxicity risk associated with lifelong decreased reproductive health and fitness. Male factor infertility can account for over 40% of infertility in couples seeking treatment, and 44% of infertile men are diagnosed with idiopathic male infertility. Human environmental exposures are poorly understood due to limited available data. The latency between maternal and in utero exposure and a diagnosis in adulthood complicates the correlation between environmental exposures and infertility. The results from this review include recommendations for more and region specific monitoring of polycyclic aromatic hydrocarbon (PAH) exposure, longitudinal and clinical cohort considerations of exposure normalization, gene-environment interactions, in utero exposure studies, and controlled mechanistic animal experiments. Additionally, it is recommended that detailed semen analysis and male fertility data be included as endpoints in environmental exposure cohort studies due to the sensitivity of the male reproductive system to environmental pollutants, including PAHs.

Keywords: environmental pollution; fertility; male idiopathic infertility; polycyclic aromatic hydrocarbons; reactive oxygen species

References

  • 1.

    Martinez G, Daniels K, Chandra A. Fertility of men and women aged 15–44 years in the United States: National Survey of Family Growth, 2006–2010. Natl Health Stat Report 2012;51:1–28.Google Scholar

  • 2.

    Barker DJ. Fetal origins of coronary heart disease. Br Med J 1995;311(6998):171–4.Google Scholar

  • 3.

    De Boo HA, Harding JE. The developmental origins of adult disease (Barker) hypothesis. Aust NZ J Obstet Gyn 2006;46(1):4–14.Google Scholar

  • 4.

    IARC, Monographs on the Evaluation of Carcinogenic Risks to Humans, in Polynuclear aromatic compounds, Part 1: chemical, environmental, and experimental data. 1983, World Health Organization International Agency For Research On Cancer: Lyon, France.Google Scholar

  • 5.

    Menzie CA, Potocki BB, Santodonato J. Exposure to carcinogenic PAHs in the environment. Environ Sci Technol 1992;26(7):1278–84.Google Scholar

  • 6.

    Zhang YY, Dong S, Wang H, Tao S, Kiyama R. Biological impact of environmental polycyclic aromatic hydrocarbons (ePAHs) as endocrine disruptors. Environ Pollut 2016;213:809–24.Google Scholar

  • 7.

    Peterson BS, Rauh VA, Bansal R, Hao X, Toth Z, et al. Effects of prenatal exposure to air pollutants (polycyclic aromatic hydrocarbons) on the development of brain white matter, cognition, and behavior in later childhood. JAMA Psychiatry 2015;72(6):531–40.Google Scholar

  • 8.

    Nakamura BN, Mohar I, Lawson GW, Cortés MM, Hoang YD, et al. Increased sensitivity to testicular toxicity of transplacental benzo [a] pyrene exposure in male glutamate cysteine ligase modifier subunit knockout (Gclm-/-) mice. Toxicol Sci 2012;126(1):227–41.Google Scholar

  • 9.

    Gaspari L, Chang SS, Santella RM, Garte S, Pedotti P, et al. Polycyclic aromatic hydrocarbon-DNA adducts in human sperm as a marker of DNA damage and infertility. Mutat Res 2003;535(2):155–60.Google Scholar

  • 10.

    Jungwirth A, Diemer T, Dohle GR, Giwercman A, Kopa Z, et al. Guidelines on male infertility. Euro Assoc Urol 2015. Available at: http://uroweb.org/wp-content/uploads/17-Male-Infertility_LR1.pdf.

  • 11.

    Pierik FH, Van Ginneken AM, Dohle GR, Vreeburg JT, Weber RF. The advantages of standardized evaluation of male infertility. Int J Androl 2000;23(6):340–6.Google Scholar

  • 12.

    Nuti F, Krausz C. Gene polymorphisms/mutations relevant to abnormal spermatogenesis. Reprod Biomed Online 2008;16(4):504–13.Google Scholar

  • 13.

    Krausz C, Giachini C. Genetic risk factors in male infertility. Arch Androl 2007;53(3):125–33.Google Scholar

  • 14.

    Tuttelmann F, Rajpert-De Meyts E, Nieschlag E, Simoni M. Gene polymorphisms and male infertility – a meta-analysis and literature review. Reprod Biomed Online 2007;15(6):643–58.Google Scholar

  • 15.

    Jeng HA, Pan C-H, Chao M-R, Lin W-Y. Sperm DNA oxidative damage and DNA adducts. Mutat Res 2015;794:75–82.Google Scholar

  • 16.

    Jeng HA, Pan CH, Lin WY, Wu MT, Taylor S, et al. Biomonitoring of polycyclic aromatic hydrocarbons from coke oven emissions and reproductive toxicity in nonsmoking workers. J Hazard Mater 2013;244:436–43.Google Scholar

  • 17.

    Anderson L, Anderson LM, Coulson M, McIntyre BS, Boekelheide K, et al. Sperm MRNAs are molecular markers of minimal testicular injury in rats. Andrology 2013;1:85–5.Google Scholar

  • 18.

    Ji GX, Yan L, Wu S, Liu J, Wang L, et al. Bulky DNA adducts in human sperm associated with semen parameters and sperm DNA fragmentation in infertile men: a cross-sectional study. Environ Health 2013;12:82.Google Scholar

  • 19.

    Cooke PS, Young P, Cunha GR. Androgen receptor expression in developing male reproductive-organs. Endocrinology 1991;128(6):2867–73.Google Scholar

  • 20.

    Reisert I, Pilgrim C. Sexual-differentiation of monanimergic neurons – genetic or epigenetic. Trends Neurosci 1991;14(10):468–73.Google Scholar

  • 21.

    Takeda H, Chang C. Immunoistochemical and insitu hybridizatin analysis of androgen receptor expression during the development of the mouse prostate gland. J Endocrinol 1991;129(1):83–9.Google Scholar

  • 22.

    Murashima A, Kishigami S, Thomson A, Yamada G. Androgens and mammalian male reproductive tract development. Biochim Biophys Acta 2015;1849(2):163–70.Google Scholar

  • 23.

    De Bellis MD, Keshavan MS, Beers SR, Hall J, Frustaci K, et al. Sex differences in brain maturation during childhood and adolescence. Cereb Cortex 2001;11(6):552–7.Google Scholar

  • 24.

    Hutchison JB. Gender-specific steroid metabolism in neural differentiation. Cell Mol Neurobiol 1997;17(6):603–26.Google Scholar

  • 25.

    Goldstein JM, Seidman LJ, Horton NJ, Makris N, Kennedy DN, et al. Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cereb Cortex 2001;11(6):490–7.Google Scholar

  • 26.

    Segovia S, Guillamón A, del Cerro MC, Ortega E, Pérez-Laso C, et al. The development of brain sex differences: a multisignaling process. Behav Brain Res 1999;105(1):69–80.Google Scholar

  • 27.

    Arnold AP, Gorski RA. Gonadal steroid induction of structural sex – differences in the central nervous system. Annu Rev Neurosci 1984;7:413–42.Google Scholar

  • 28.

    Pilgrim C, Reisert I. Differences between male and female brains – developmental mechanisms and implications. Horm Metab Res 1992;24(8):353–9.Google Scholar

  • 29.

    Roselli CE, Abdelgadir SE, Resko JA. Regulation of aromatase gene expression in the adult rat brain. Brain Res Bull 1997;44(4):351–7.Google Scholar

  • 30.

    BeyerC, Pilgrim C, Reisert I. Dopamine content and metabolism in mesencephalic and diencephalic cell cultures – sex differences and effects on sex steriods. J Neurosci 1991;11(5):1325–33.Google Scholar

  • 31.

    Phoenix CH, Goy RW, Gerall AA, Young WC. Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology 1959;65(3):369–82.Google Scholar

  • 32.

    Dewing P, Shi T, Horvath S, Vilain E. Sexually dimorphic gene expression in mouse brain precedes gonadal differentiation. Mol Brain Res 2003;118(1–2):82–90.Google Scholar

  • 33.

    Rodier PM. Developing brain as a target of toxicity. Environ Health Perspect 1995;103:73–6.Google Scholar

  • 34.

    Grova N, Salquèbre G, Schroeder H, Appenzeller BM. Determination of PAHs and OH-PAHs in rat brain by gas chromatography tandem (triple quadrupole) mass spectrometry. Chem Res Toxicol 2011;24(10):1653–67.Google Scholar

  • 35.

    Brown LA, Khousbouei H, Goodwin JS, Irvin-Wilson CV, Ramesh A, et al. Down-regulation of early ionotrophic glutamate receptor subunit developmental expression as a mechanism for observed plasticity deficits following gestational exposure to benzo(a)pyrene. Neurotoxicology 2007;28(5):965–78.Google Scholar

  • 36.

    Perera FP, Jedrychowski W, Butscher M, Camann D, Kieltyka A, et al. Prenatal airborne polycyclic aromatic hydrocarbon exposure and child IQ at age 5 years. Pediatrics 2009;124(2):E195–202.Google Scholar

  • 37.

    Jedrychowski WA, Perera FP, Camann D, Spengler J, Butscher M, et al. Prenatal exposure to polycyclic aromatic hydrocarbons and cognitive dysfunction in children. Environ Sci Pollut Res 2015;22(5):3631–9.Google Scholar

  • 38.

    Lombardo MV, Ashwin E, Auyeung B, Chakrabarti B, Taylor K, et al. Fetal testosterone influences sexually dimorphic gray matter in the human brain. J Neurosci 2012;32(2):674–80.Google Scholar

  • 39.

    Lin PP, Chang JT, Ko JL, Liao SH, Lo WS. Reduction of androgen receptor expression by benzo a pyrene and 7,8-dihydro-9,10-epoxy-7,8,9,10-tetrahydrobenzo a pyrene in human lung cells. Biochem Pharmacol 2004;67(8):1523–30.Google Scholar

  • 40.

    Li F, Wu H, Li L, Li X, Zhao J, et al. Docking and QSAR study on the binding interactions between polycyclic aromatic hydrocarbons and estrogen receptor. Ecotox Environ Safe 2012;80:273–9.Google Scholar

  • 41.

    Srivastava VK, Li L, Li X, Zhao J, Peijnenburg WJGM. Fetal translocation and metabolism of PAH obtained from cola fly-ash given intratracheally to pregnant rats. J Toxicol Environ Health 1986;18(3):459–69.Google Scholar

  • 42.

    Hatch MC, Warburton D, Santella RM. Polycyclic aromatic hydrocarbons-DNA adducts in spontaneously aborted fetal tissue. Carcinogenesis 1990;11(9):1673–5.Google Scholar

  • 43.

    Sinko I, Sinkó I, Mórocz M, Zádori J, Kokavszky K. Effect of cigarette smoking on DNA damage of human cumulus cells analyzed by comet assay. Reprod Toxicol 2005;20(1):65–71.Google Scholar

  • 44.

    Georgellis A, Toppari J, Veromaa T, Rydström J, Parvinen M. Inhibition of meitoic divisions of rat spermatocytes in vitro by polycyclic aromatic hydrocarbons. Mutat Res 1990;231(2):125–35.Google Scholar

  • 45.

    Pedersen RA, Meneses J, Spindle A, Wu K, Galloway SM. Cytochrome P450 metabolic activity in embryonic and extraembryonic tissue liearges of mouse embryos. Proc Natl Acad Sci USA 1985;82(10):3311–5.Google Scholar

  • 46.

    Jensen TK, Jørgensen N, Punab M, Haugen TB, Suominen J, et al. Association of in utero exposure to maternal smoking with reduced semen quality and testis size in adulthood: a cross-sectional study of 1,770 young men from the general population in five European countries. Am J Epidemiol 2004;159(1):49–58.Google Scholar

  • 47.

    Storgaard L, Bonde JP, Ernst E, Spanô M, Andersen CY, et al. Does smoking during pregnancy affect sons’ sperm counts? Epidemiology 2003;14(3):278–86.Google Scholar

  • 48.

    Fukuda M, Fukuda K, Shimizu T, Andersen CY, Byskov AG. Periconceptual parental smoking and sex ratio of offspring – Reply. Lancet 2002;360(9344):1515–6.Google Scholar

  • 49.

    Viloria T, Rubio MC, Rodrigo L, Calderon G, Mercader A, et al. Smoking habits of parents and male: female ratio in spermatozoa and preimplantation embryos. Hum Reprod 2005;20(9):2517–22.Google Scholar

  • 50.

    Mackenzie KM, Angevine DM. Infertility in mice exposed in utero to benzo[a]pyene. Biol Reprod 1981;24(1):183–91.Google Scholar

  • 51.

    Mohamed ES, Song WH, Oh SA, Park YJ, You YA, et al. The transgenerational impact of benzo(a)pyrene on murine male fertility. Hum Reprod 2010;25(10):2427–33.Google Scholar

  • 52.

    Kim A, Park M, Yoon TK, Lee WS, Ko JJ, et al. Maternal exposure to benzo b fluoranthene disturbs reproductive performance in male offspring mice. Toxicol Lett 2011;203(1):54–61.Google Scholar

  • 53.

    Shorey LE, Castro DJ, Baird WM, Siddens LK, Löhr CV, et al. Transplacental carcinogenesis with dibenzo def,p chrysene (DBC): timing of maternal exposures determines target tissue response in offspring. Cancer Lett 2012;317(1):49–55.Google Scholar

  • 54.

    Jedrychowski WA, Perera FP, Tang D, Rauh V, Majewska R, et al. The relationship between prenatal exposure to airborne polycyclic aromatic hydrocarbons (PAHs) and PAH-DNA adducts in cord blood. J Expo Sci Environ Epidemiol 2013;23(4):371–7.Google Scholar

  • 55.

    Vishnevetsky J, Tang D, Chang HW, Roen EL, Wang Y, et al. Combined effects of prenatal polycyclic aromatic hydrocarbons and material hardship on child IQ. Neurotoxicol Teratol 2015;49:74–80.Google Scholar

  • 56.

    Perera FP, Rauh V, Tsai WY, Kinney P, Camann D, et al. Effects of transplacental exposure to environmental pollutants on birth outcomes in a multiethnic population. Environ Health Perspect 2003;111(2):201–5.Google Scholar

  • 57.

    Dennis MJ, Massey RC, Cripps G, Venn I, Howarth N, et al. Factors affecting the polycyclic aromatic hydrocarbon content of cereals, fats and other food-products. Food Addit Contam 1991;8(4):517–30.Google Scholar

  • 58.

    Jakszyn P, Agudo A, Ibáñez R, García-Closas R, Pera G, et al. Development of a food database of nitrosamines, heterocyclic amines, and polycyclic aromatic hydrocarbons. J Nutr 2004;134(8)2011–4.Google Scholar

  • 59.

    Domingo JL, Nadal M. Human dietary exposure to polycyclic aromatic hydrocarbons: a review of the scientific literature. Food Chem Toxicol 2015;86:144–53.Google Scholar

  • 60.

    Kazerouni N, Sinha R, Hsu CH, Greenberg A, Rothman N. Analysis of 200 food items for benzo a pyrene and estimation of its intake in an epidemiologic study. Food Chem Toxicol 2001;39(5):423–36.Google Scholar

  • 61.

    Boehmer TK, Foster SL, Henry JR, Woghiren-Akinnifesi EL, Yip FY. Residential proximity to major highways – United States, 2010. Morb Mortal Wkly Rep 2013;62(3):46–50.Google Scholar

  • 62.

    Gustafson P, Ostman C, Sallsten G. Indoor levels of polycyclic aromatic hydrocarbons in homes with or without wood burning for heating. Environ Sci Technol 2008;42(14):5074–80.Google Scholar

  • 63.

    Raiyani CV, Shah SH, Desai NM, Venkaiah K, Patel JS, et al. Characterization and problems of indoor pollution due to cooking stove smoke. Atmos Environ 1993;27(11):1643–55.Google Scholar

  • 64.

    Ezzati M, Kammen DM. The health impacts of exposure to indoor air pollution from solid fuels in developing countries: knowledge, gaps, and data needs. Environ Health Perspec 2002;110(11):1057–68.Google Scholar

  • 65.

    Huang L, Bohac SV, Chernyak SM, Batterman SA. Composition and integrity of PAHs, nitro-PAHs, hopanes, and steranes in diesel exhaust particulate matter. Water Air Soil Poll 2013;224(8):1630–1.Google Scholar

  • 66.

    Lafontaine S, Schrlau J, Butler J, Jia Y, Harper B, et al. Relative influence of trans-Pacific and regional atmospheric transport of PAHs in the Pacific Northwest, US. Environ Sci Technol 2015;49(23):13807–16.Google Scholar

  • 67.

    Lundstedt S, White PA, Lemieux CL, Lynes KD, Lambert IB, et al. Sources, fate, and toxic hazards of oxygenated polycyclic aromatic hydrocarbons (PAHs) at PAH-contaminated sites. Ambio 2007;36(6):475–85.Google Scholar

  • 68.

    Heeb NV, Schmid P, Kohler M, Gujer E, Zennegg M, et al. Secondary effects of catalytic diesel particulate filters: conversion of PAHs versus formation of nitro-PAHs. Environ Sci Technol 2008;42(10):3773–9.Google Scholar

  • 69.

    Sienra MD. Oxygenated polycyclic aromatic hydrocarbons in urban air particulate matter. Atmos Environ 2006;40(13):2374–84.Google Scholar

  • 70.

    Sram RJ, Benes I, Binková B, Dejmek J, Horstman D, et al. Teplice program – The impact of air pollution on human health. Environ Health Perspect 1996;104:699–714.Google Scholar

  • 71.

    Lewtas J. Air pollution combustion emissions: characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Mutat Res 2007;636(1–3):95–133.Google Scholar

  • 72.

    Sram RJ, Binková B, Rössner P, Rubes J, Topinka J, et al. Adverse reproductive outcomes from exposure to environmental mutagens. Mutat Res 1999;428(1–2):203–15.Google Scholar

  • 73.

    Dejmek J, Solanský I, Benes I, Lenícek J, Srám RJ. The impact of polycyclic aromatic hydrocarbons and fine particles on pregnancy outcome. Environ Health Perspect 2000;108(12):1159–64.Google Scholar

  • 74.

    Sram RJ. Impact of air pollution on reproductive health. Environ Health Perspect 1999;107(11):A542–3.Google Scholar

  • 75.

    Agarwal A, Mulgund A, Hamada A, Chyatte MR. A unique view on male infertility around the globe. Reprod Biol Endocrinol 2015;13:37.Google Scholar

  • 76.

    Bablok L, Dziadecki W, Szymusik I, Wolczynski S, Kurzawa R, et al. Patterns of infertility in Poland – multicenter study. Neuroendocrinol Lett 2011;32(6):799–804.Google Scholar

  • 77.

    Sanocka D, Kurpisz M. Infertility in Poland-present status, reasons, and prognosis as a reflection of Central and Eastern Europe problems with reproduction. Med Sci Monit 2003;9:16–20.Google Scholar

  • 78.

    Shimada T. Xenobiotic-metabolizing enzymes involved in activation and detoxification of carcinogenic polycyclic aromatic hydrocarbons. Drug Metab Pharmacokinet 2006;21(4):257–76.Google Scholar

  • 79.

    Shahid A, Ali R, Ali N, Hasan SK, Bernwal P, et al. Modulatory effects of catechin hydrate against genotoxicity, oxidative stress, inflammation and apoptosis induced by benzo(a)pyrene in mice. Food Chem Toxicol 2016;92:64–74.Google Scholar

  • 80.

    Rushmore TH, Kong AN. Pharmacogenomics, regulation and signaling pathways of phase I and II drug metabolizing enzymes. Curr Drug Metab 2002;3(5):481–90.Google Scholar

  • 81.

    Salehi Z, Gholizadeh L, Vaziri H, Madani AH. Analysis of GSTM1, GSTT1, and CYP1A1 in idiopathic male infertility. Reprod Sci 2012;19(1):81–5.Google Scholar

  • 82.

    Lu NX, Wu B, Xia Y, Wang W, Gu A, et al. Polymorphisms in CYP1A1 gene are associated with male infertility in a Chinese population. Int J Androl 2008;31(5):527–33.Google Scholar

  • 83.

    Vani GT, Mukesh N, Siva Prasad B, Rama Devi P, Hema Prasad M, et al. Association of CYP1A1*2A polymorphism with male infertility in Indian population. Clin Chim Acta 2009;410(1–2):43–7.Google Scholar

  • 84.

    Aydos SE, Taspinar M, Sunguroglu A, Aydos K. Association of CYP1A1 and glutathione S-transferase polymorphisms with male factor infertility. Fertil Steril 2009;92(2):541–7.Google Scholar

  • 85.

    Yarosh SL, Kokhtenko EV, Starodubova NI, Churnosov MI, Polonikov AV. Smoking status modifies the relation between CYP1A1*2C gene polymorphism and idiopathic male infertility: the importance of gene-environment interaction analysis for genetic studies of the disease. Reprod Sci 2013;20(11):1302–7.Google Scholar

  • 86.

    O’Connell SG, Kind LD, Anderson KA. Silicone wristbands as personal passive samplers. Environ Sci Technol 2014;48(6):3327–35.Google Scholar

  • 87.

    Penning TM. Human aldo-keto reductases and the metabolic activation of polycyclic aromatic hydrocarbons. Chem Res Toxicol 2014;27(11):1901–17.Google Scholar

  • 88.

    Palackal NT, Burczynski ME, Harvey RG, Penning TM. The ubiquitous aldehyde reductase (AKR1A1) oxidizes proximate carcinogen trans-dihydrodiols to o-quinones: potential role in polycyclic aromatic hydrocarbon activation. Biochemistry 2001;40(36):10901–10.Google Scholar

  • 89.

    Sharma RK, Pasqualotto FF, Nelson DR, Thomas AJ Jr, Agarwal A. The reactive oxygen species – total antioxidant capacity score is a new measure of oxidative stress to predict male infertility. Hum Reprod 1999;14(11):2801–7.Google Scholar

  • 90.

    Agarwal A, Makker K, Sharma R. Clinical relevance of oxidative stress in male factor infertility: an update. Am J Reprod Immunol 2008;59(1):2–11.Google Scholar

  • 91.

    Penning TM, Ohnishi ST, Ohnishi T, Harvey RG. Generation of reactive oxygen species during the enzymatic oxidation of polycyclic aromatic hydrocarbon trans-dihydrodiols catalyzed by dihydrodiol dehydrogenase. Chem Res Toxicol 1996;9(1):84–92.Google Scholar

  • 92.

    Eskenazi B, Kidd SA, Marks AR, Sloter E, Block G, et al. Antioxidant intake is associated with semen quality in healthy men. Hum Reprod 2005;20(4):1006–12.Google Scholar

  • 93.

    Hecht SS, Carmella SG, Yoder A, Chen M, Li ZZ, et al. Comparison of polymorphisms in genes involved in polycyclic aromatic hydrocarbon metabolism with urinary phenanthrene metabolite ratios in smokers. Cancer Epidemiol Biomarkers Prev 2006;15(10):1805–11.Google Scholar

  • 94.

    Hakkola J, Pelkonen O, Pasanen M, Raunio H. Xenobiotic-metabolizing cytochrome P450 enzymes in the human feto-placental unit: role in intrauterine toxicity. Crit Rev Toxicol 1998;28(1):35–72.Google Scholar

  • 95.

    Fraga CG, Motchnik PA, Wyrobek AJ, Rempel DM, Ames BN. Smoking and low antioxidant levels increase oxidative damage to sperm DNA. Mutat Res 1996;351(2):199–203.Google Scholar

  • 96.

    Mostafa T, Tawadrous G, Roaia MM, Amer MK, Kader RA, et al. Effect of smoking on seminal plasma ascorbic acid in infertile and fertile males. Andrologia 2006;38(6):221–4.Google Scholar

  • 97.

    Saleh RA, Agarwal A, Sharma RK, Nelson DR, Thomas AJ Jr. Effect of cigarette smoking on level of seminal oxidative stress in fertile men: a prospective study. Fertil Steril 2002;78(3):491–9.Google Scholar

  • 98.

    Kao SH, Chao HT, Chen HW, Hwang TI, Liao TL, et al. Increase of oxidative stress in human sperm with lower motility. Fertil Steril 2008;89(5):1183–90.Google Scholar

  • 99.

    Aydemir B, Onaran I, Kiziler AR, Alici B, Akyolcu MC. The influence of oxidative damage on viscosity of seminal fluid in infertile men. J Androl 2008;29(1):41–6.Google Scholar

  • 100.

    Sharma RK, Pasqualotto AE, Nelson DR, Thomas AJ Jr, Agarwal A. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J Androl 2001;22(4):575–83.Google Scholar

  • 101.

    Tremellen K. Oxidative stress and male infertility – a clinical perspective. Hum Reprod Update 2008;14(3):243–58.Google Scholar

  • 102.

    Tavilani H, Doosti M, Saeidi H. Malondialdehyde levels in sperm and seminal plasma of asthenozoospermic and its relationship with semen parameters. Clin Chim Acta 2005;356(1–2):199–203.Google Scholar

  • 103.

    Li K, Shang XJ, Chen YG. High-performance liquid chromatographic detection of lipid peroxidation in human seminal plasma and its application to male infertility. Clin Chim Acta 2004;346(2):199–203.Google Scholar

  • 104.

    Ko EY, Sabanegh ES, Agarwal A. Male infertility testing: reactive oxygen species and antioxidant capacity. Fertil Steril 2014;102(6):1518–27.Google Scholar

  • 105.

    Gharagozloo P, Aitken RJ. The role of sperm oxidative stress in male infertility and the significance of oral antioxidant therapy. Hum Reprod 2011;26(7):1628–40.Google Scholar

  • 106.

    Inyang F, Ramesh A, Kopsombut P, Niaz MS, Hood DB, et al. Disruption of testicular steroidogenesis and epididymal function by inhaled benzo(a)pyrene. Reprod Toxicol 2003;17(5):527–37.Google Scholar

  • 107.

    Arafa HM, Aly HA, Abd-Ellah MF, El-Refaey HM. Hesperidin attenuates benzo alpha pyrene-induced testicular toxicity in rats via regulation of oxidant/antioxidant balance. Toxicol Ind Health 2009;25(6):417–27.Google Scholar

  • 108.

    Peretti-Watel P, L’Haridon O, Seror V. Time preferences, socioeconomic status and smokers’ behaviour, attitudes and risk awareness. Eur J Public Health 2013;23(5):783–8.Google Scholar

  • 109.

    Winkleby MA, Jatulis DE, Frank E, Fortmann SP. Socioeconomic-status and health-How education, income, and occupation contribute to risk-factors for cardiovascualr-disease. Am J Public Health 1992;82(6):816–20.Google Scholar

  • 110.

    Gilman SE, Breslau J, Subramanian SV, Hitsman B, Koenen KC. Social factors psychopathology, and maternal smoking during pregnancy. Am J Public Health 2008;98(3):448–53.Google Scholar

  • 111.

    Williams DR. Race, socioeconomic status, and health – The added effects of racism and discrimination. Ann NY Acad Sci 1999;896:173–88.Google Scholar

About the article

Corresponding author: Erin P. Madeen, PhD, Johns Hopkins University, School of Medicine, Division of Clinical Pharmacology, 725 N. Wolfe Street, Baltimore, MD 21205, USA, Phone: 815-739-7578


Received: 2016-09-30

Accepted: 2016-10-24

Published Online: 2016-12-09

Published in Print: 2017-03-01


Research funding: This work was supported by the following PHS grants from NIH: P01 CA908907 (DEW), P42 ES016465 (DEW, EPM) and by a Trainee Initiated Collaboration supplement under NIH P42 ES016465 (EPM). Reproductive toxicity training and mentorship was provided by Ulrike Luderer, MD, PhD, MPH at the University of California, Irvine. V. Cibelli provided critical feedback.


Citation Information: Reviews on Environmental Health, Volume 32, Issue 1-2, Pages 73–81, ISSN (Online) 2191-0308, ISSN (Print) 0048-7554, DOI: https://doi.org/10.1515/reveh-2016-0045.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Wei-Dong Li, Shuai Yu, Shi-Ming Luo, Wei Shen, Shen Yin, and Qing-Yuan Sun
Journal of Cellular Physiology, 2018
[2]
Pei Li, Rui Hua, Keyang Li, Shengtao Ma, Biao Wu, Song Quan, and Zhiqiang Yu
Human Fertility, 2018, Page 1
[3]
Mianqun Zhang, Yilong Miao, Qian Chen, Meng Cai, Wenkang Dong, Xiaoxin Dai, Yajuan Lu, Changyin Zhou, Zhaokang Cui, and Bo Xiong
The FASEB Journal, 2018, Volume 32, Number 1, Page 342

Comments (0)

Please log in or register to comment.
Log in