Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews on Environmental Health

Editor-in-Chief: Carpenter, David O. / Sly, Peter

Editorial Board Member: Brugge, Doug / Edwards, John W. / Field, R.William / Garbisu, Carlos / Hales, Simon / Horowitz, Michal / Lawrence, Roderick / Maibach, H.I. / Shaw, Susan / Tao, Shu / Tchounwou, Paul B.

4 Issues per year


CiteScore 2016: 1.95

SCImago Journal Rank (SJR) 2016: 0.543
Source Normalized Impact per Paper (SNIP) 2016: 0.885

Online
ISSN
2191-0308
See all formats and pricing
More options …
Volume 32, Issue 1-2 (Mar 2017)

Issues

Emerging roles of xenobiotic detoxification enzymes in metabolic diseases

Michael C. Petriello
  • Superfund Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, KY 40536, United States of America
  • Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40536, United States of America
  • Lexington Veterans Affairs Medical Center, Lexington Kentucky, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jessie B. Hoffman
  • Superfund Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, KY 40536, United States of America
  • Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrew J. Morris
  • Corresponding author
  • Superfund Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, KY 40536, United States of America
  • Lexington Veterans Affairs Medical Center, Lexington Kentucky, United States of America
  • Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, United States of America
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bernhard Hennig
  • Corresponding author
  • Superfund Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, KY 40536, United States of America
  • Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40536, United States of America, Phone: +1 859-218-1343, Fax: +1 859-257-1811
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-11-12 | DOI: https://doi.org/10.1515/reveh-2016-0050

Abstract

Mammalian systems have developed extensive molecular mechanisms to protect against the toxicity of many exogenous xenobiotic compounds. Interestingly, many detoxification enzymes, including cytochrome P450s and flavin-containing monooxygenases, and their associated transcriptional activators [e.g. the aryl hydrocarbon receptor (AhR)], have now been shown to have endogenous roles in normal physiology and the pathology of metabolic diseases. This mini-review will focus on two such instances: the role of flavin-containing monooxygenase 3 (FMO3) in the formation of the cardiometabolic disease biomarker trimethylamine-N-oxide (TMAO) and the role of AhR as a sensor of endogenous ligands such as those generated by the gut microbiota. Understanding the roles of xenobiotic sensing pathways in endogenous metabolism will undoubtedly lead to a better understanding of how exposure to environmental pollutants can perturb these physiological processes.

Keywords: cardiovascular disease; dioxin; FMO3; metabolic pathologies; TMAO

References

  • 1.

    Nagashima S, Shimizu M, Yano H, Murayama N, Kumai T, et al. Inter-individual variation in flavin-containing monooxygenase 3 in livers from Japanese: correlation with hepatic transcription factors. Drug Metab Pharmacokinet 2009;24(3):218–25.Google Scholar

  • 2.

    Yamazaki M, Shimizu M, Uno Y, Yamazaki H. Drug oxygenation activities mediated by liver microsomal flavin-containing monooxygenases 1 and 3 in humans, monkeys, rats, and minipigs. Biochem Pharmacol 2014;90(2):159–65.Google Scholar

  • 3.

    Jiang Y, Jin J, Iakova P, Hernandez JC, Jawanmardi N, et al. Farnesoid X receptor directly regulates xenobiotic detoxification genes in the long-lived Little mice. Mech Ageing Dev 2013;134(9):407–15.Google Scholar

  • 4.

    Celius T, Pansoy A, Matthews J, Okey AB, Henderson MC, et al. Flavin-containing monooxygenase-3: induction by 3-methylcholanthrene and complex regulation by xenobiotic chemicals in hepatoma cells and mouse liver. Toxicol Applied Pharm 2010;247(1):60–9.Google Scholar

  • 5.

    Klick DE, Shadley JD, Hines RN. Differential regulation of human hepatic flavin containing monooxygenase 3 (FMO3) by CCAAT/enhancer-binding protein beta (C/EBPbeta) liver inhibitory and liver activating proteins. Biochem pharmacol 2008;76(2):268–78.Google Scholar

  • 6.

    Celius T, Roblin S, Harper PA, Matthews J, Boutros PC, et al. Aryl hydrocarbon receptor-dependent induction of flavin-containing monooxygenase mRNAs in mouse liver. Drug Metab Dispos 2008;36(12):2499–505.Google Scholar

  • 7.

    Miao J, Ling AV, Manthena PV, Gearing ME, Graham MJ, et al. Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nat Commun 2015;6:6498.Google Scholar

  • 8.

    Zhang J, Tran Q, Lattard V, Cashman JR. Deleterious mutations in the flavin-containing monooxygenase 3 (FMO3) gene causing trimethylaminuria. Pharmacogenetics 2003;13(8):495–500.Google Scholar

  • 9.

    Schugar RC, Brown JM. Emerging roles of flavin monooxygenase 3 in cholesterol metabolism and atherosclerosis. Curr Opin Lipidol 2015;26(5):426–31.Google Scholar

  • 10.

    Tang WH, Hazen SL. The contributory role of gut microbiota in cardiovascular disease. J Clin Invest 2014;124(10):4204–11.Google Scholar

  • 11.

    Tang WH, Wang Z, Shrestha K, Borowski AG, Wu Y, et al. Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic dysfunction, and adverse clinical outcomes in chronic systolic heart failure. J Card Fail 2015;21(2):91–6.Google Scholar

  • 12.

    Tang WH, Wang Z, Kennedy DJ, Wu Y, Buffa JA, et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res 2015;116(3):448–55.Google Scholar

  • 13.

    Bennett BJ, de Aguiar Vallim TQ, Wang Z, Shih DM, Meng Y, et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab 2013;17(1):49–60.Google Scholar

  • 14.

    Wang Z, Tang WH, Buffa JA, Fu X, Britt EB, et al. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur Heart J 2014;35(14):904–10.Google Scholar

  • 15.

    Hazen SL, Brown JM. Eggs as a dietary source for gut microbial production of trimethylamine-N-oxide. Am J Clin Nutr 2014;100(3):741–3.Google Scholar

  • 16.

    Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. New Engl J Med 2013;368(17):1575–84.Google Scholar

  • 17.

    Fogelman AM. TMAO is both a biomarker and a renal toxin. Circ Res 2015;116(3):396–7.Google Scholar

  • 18.

    Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 2016;165(1):111–24.Google Scholar

  • 19.

    Seldin MM, Meng Y, Qi H, Zhu W, Wang Z, et al. Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-kappaB. J Am Heart Assoc 2016;5(2).Google Scholar

  • 20.

    Warrier M, Shih DM, Burrows AC, Ferguson D, Gromovsky AD, et al. The TMAO-generating enzyme flavin monooxygenase 3 is a central regulator of cholesterol balance. Cell Rep 2015;10(3):326–38.Google Scholar

  • 21.

    Shih DM, Wang Z, Lee R, Meng Y, Che N, et al. Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis. J Lipid Res 2015;56(1):22–37.Google Scholar

  • 22.

    Kewley RJ, Whitelaw ML, Chapman-Smith A. The mammalian basic helix-loop-helix/PAS family of transcriptional regulators. Int J Biochem Cell Biol 2004;36(2):189–204.Google Scholar

  • 23.

    Quintana FJ. The aryl hydrocarbon receptor: a molecular pathway for the environmental control of the immune response. Immunology 2013;138(3):183–9.Google Scholar

  • 24.

    Liu D, Perkins JT, Petriello MC, Hennig B. Exposure to coplanar PCBs induces endothelial cell inflammation through epigenetic regulation of NF-kappaB subunit p65. Toxicol Appl Pharm 2015;289(3):457–65.Google Scholar

  • 25.

    Perkins JT, Petriello MC, Newsome BJ, Hennig B. Polychlorinated biphenyls and links to cardiovascular disease. Environ Sci Pollut Res Int 2016;23(3):2160–72.Google Scholar

  • 26.

    Petriello MC, Han SG, Newsome BJ, Hennig B. PCB 126 toxicity is modulated by cross-talk between caveolae and Nrf2 signaling. Toxicol Appl Pharm 2014;277(2):192–9.Google Scholar

  • 27.

    Schlezinger JJ, Struntz WD, Goldstone JV, Stegeman JJ. Uncoupling of cytochrome P450 1A and stimulation of reactive oxygen species production by co-planar polychlorinated biphenyl congeners. Aquat Toxicol 2006;77(4):422–32.Google Scholar

  • 28.

    Majkova Z, Smart E, Toborek M, Hennig B. Up-regulation of endothelial monocyte chemoattractant protein-1 by coplanar PCB77 is caveolin-1-dependent. Toxicol Applied Pharm 2009;237(1):1–7.Google Scholar

  • 29.

    Lim EJ, Majkova Z, Xu S, Bachas L, Arzuaga X, et al. Coplanar polychlorinated biphenyl-induced CYP1A1 is regulated through caveolae signaling in vascular endothelial cells. Chem-Biol Interact 2008;176(2–3):71–8.Google Scholar

  • 30.

    Gambier N, Marteau JB, Batt AM, Marie B, Thompson A, et al. Interaction between CYP1A1 T3801C and AHR G1661A polymorphisms according to smoking status on blood pressure in the Stanislas cohort. J Hypertens 2006;24(11):2199–205.Google Scholar

  • 31.

    Lanca V, Alcantara P, Braz-Nogueira J, Bicho MP. Cytochrome P450 1A1 (CYP1A1) T6325C polymorphism might modulate essential hypertension-associated stroke risk. Rev Port Cardiol 2004;23(3):343–55.Google Scholar

  • 32.

    Tian J, Feng Y, Fu H, Xie HQ, Jiang JX, et al. The aryl hydrocarbon receptor: a key bridging molecule of external and internal chemical signals. Environ Sci Technol 2015;49(16):9518–31.Google Scholar

  • 33.

    Mimura J, Yamashita K, Nakamura K, Morita M, Takagi TN, et al. Loss of teratogenic response to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mice lacking the Ah (dioxin) receptor. Genes Cells 1997;2(10):645–54.Google Scholar

  • 34.

    Schmidt JV, Su GH, Reddy JK, Simon MC, Bradfield CA. Characterization of a murine Ahr null allele: involvement of the Ah receptor in hepatic growth and development. Proc Natl Acad Sci USA 1996;93(13):6731–6.Google Scholar

  • 35.

    Fernandez-Salguero P, Pineau T, Hilbert DM, McPhail T, Lee SS, et al. Immune system impairment and hepatic fibrosis in mice lacking the dioxin-binding Ah receptor. Science 1995;268(5211):722–6.Google Scholar

  • 36.

    Girer NG, Murray IA, Omiecinski CJ, Perdew GH. Hepatic aryl hydrocarbon receptor attenuates fibroblast growth factor 21 expression. The J Biol Chem 2016;291(29):15378–87.Google Scholar

  • 37.

    Lu P, Yan J, Liu K, Garbacz WG, Wang P, et al. Activation of aryl hydrocarbon receptor dissociates fatty liver from insulin resistance by inducing fibroblast growth factor 21. Hepatology 2015;61(6):1908–19.Google Scholar

  • 38.

    Thackaberry EA, Bedrick EJ, Goens MB, Danielson L, Lund AK, et al. Insulin regulation in AhR-null mice: embryonic cardiac enlargement, neonatal macrosomia, and altered insulin regulation and response in pregnant and aging AhR-null females. Toxicol Sci 2003;76(2):407–17.Google Scholar

  • 39.

    Xu CX, Wang C, Zhang ZM, Jaeger CD, Krager SL, et al. Aryl hydrocarbon receptor deficiency protects mice from diet-induced adiposity and metabolic disorders through increased energy expenditure. Int J Obesity 2015;39(8):1300–9.Google Scholar

  • 40.

    Baker NA, Shoemaker R, English V, Larian N, Sunkara M, et al. Effects of adipocyte aryl hydrocarbon receptor deficiency on PCB-induced disruption of glucose homeostasis in lean and obese mice. Environ Health Perspect 2015;123(10):944–50.Google Scholar

  • 41.

    Barouki R, Coumoul X, Fernandez-Salguero PM. The aryl hydrocarbon receptor, more than a xenobiotic-interacting protein. FEBS Lett 2007;581(19):3608–15.Google Scholar

  • 42.

    Rannug U, Rannug A, Sjoberg U, Li H, Westerholm R, et al. Structure elucidation of two tryptophan-derived, high affinity Ah receptor ligands. Chem Biol 1995;2(12):841–5.Google Scholar

  • 43.

    Kawasaki H, Chang HW, Tseng HC, Hsu SC, Yang SJ, et al. A tryptophan metabolite, kynurenine, promotes mast cell activation through aryl hydrocarbon receptor. Allergy 2014;69(4):445–52.Google Scholar

  • 44.

    Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 2011;478(7368):197–203.Google Scholar

  • 45.

    Sarsero JP, Merino E, Yanofsky C. A Bacillus subtilis operon containing genes of unknown function senses tRNATrp charging and regulates expression of the genes of tryptophan biosynthesis. Proc Natl Acad Sci USA 2000;97(6):2656–61.Google Scholar

  • 46.

    Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 2013;39(2):372–85.Google Scholar

  • 47.

    Takamura T, Harama D, Fukumoto S, Nakamura Y, Shimokawa N, et al. Lactobacillus bulgaricus OLL1181 activates the aryl hydrocarbon receptor pathway and inhibits colitis. Immunol Cell Biol 2011;89(7):817–22.Google Scholar

  • 48.

    Stevens EA, Mezrich JD, Bradfield CA. The aryl hydrocarbon receptor: a perspective on potential roles in the immune system. Immunology 2009;127(3):299–311.Google Scholar

  • 49.

    Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, et al. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 2008;453(7191):65–71.Google Scholar

  • 50.

    De Abrew KN, Phadnis AS, Crawford RB, Kaminski NE, Thomas RS. Regulation of Bach2 by the aryl hydrocarbon receptor as a mechanism for suppression of B-cell differentiation by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Applied Pharm 2011;252(2):150–8.Google Scholar

  • 51.

    Shi LZ, Faith NG, Nakayama Y, Suresh M, Steinberg H, et al. The aryl hydrocarbon receptor is required for optimal resistance to Listeria monocytogenes infection in mice. J Immunol 2007;179(10):6952–62.Google Scholar

  • 52.

    Kiss EA, Vonarbourg C, Kopfmann S, Hobeika E, Finke D, et al. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 2011;334(6062):1561–5.Google Scholar

  • 53.

    Lee JS, Cella M, McDonald KG, Garlanda C, Kennedy GD, et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat Immunol 2012;13(2):144–51.Google Scholar

  • 54.

    Monteleone I, MacDonald TT, Pallone F, Monteleone G. The aryl hydrocarbon receptor in inflammatory bowel disease: linking the environment to disease pathogenesis. Curr Opin Gastroen 2012;28(4):310–3.Google Scholar

  • 55.

    Monteleone I, Rizzo A, Sarra M, Sica G, Sileri P, et al. Aryl hydrocarbon receptor-induced signals up-regulate IL-22 production and inhibit inflammation in the gastrointestinal tract. Gastroenterology 2011;141(1):237–48, 48 e1.Google Scholar

About the article

Received: 2016-09-15

Accepted: 2016-09-30

Published Online: 2016-11-12

Published in Print: 2017-03-01


Research funding: This work was supported in part by the National Institute of Environmental Health Sciences at the National Institutes of Health [P42ES007380].

Conflict of interest: The authors declare that there are no competing financial interests.


Citation Information: Reviews on Environmental Health, ISSN (Online) 2191-0308, ISSN (Print) 0048-7554, DOI: https://doi.org/10.1515/reveh-2016-0050.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Ryan Rossner, Matt Kaeberlein, and Scott F. Leiser
Journal of Biological Chemistry, 2017, Volume 292, Number 27, Page 11138

Comments (0)

Please log in or register to comment.
Log in