Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews on Environmental Health

Editor-in-Chief: Carpenter, David O. / Sly, Peter

Editorial Board: Brugge, Doug / Edwards, John W. / Field, R.William / Garbisu, Carlos / Hales, Simon / Horowitz, Michal / Lawrence, Roderick / Maibach, H.I. / Shaw, Susan / Tao, Shu / Tchounwou, Paul B.

IMPACT FACTOR 2018: 1.616

CiteScore 2018: 1.69

SCImago Journal Rank (SJR) 2018: 0.508
Source Normalized Impact per Paper (SNIP) 2018: 0.664

See all formats and pricing
More options …
Volume 33, Issue 1


Effects of climate change on the spread of zika virus: a public health threat

Hina Asad / David O. Carpenter
Published Online: 2018-03-03 | DOI: https://doi.org/10.1515/reveh-2017-0042


Zika is a vector-borne viral disease transmitted to humans primarily by Aedes aegypti mosquitoes. The increased climate instability has contributed to the emergence of infections carried by mosquitoes like dengue, chikungunya and zika. While infection with the zika virus is not new, the recent epidemic of microcephaly in Brazil and other countries in South America resulting from the infection of pregnant women with the zika virus raise a number of serious public health concerns. These include the question of how climate change affects the range of zika vectors, what can we do to shorten the length of mosquito season, how and why the symptoms of zika infection have changed and what can be done to reduce the burden of human disease from this infection? Another important question that needs to be answered is what are the factors that caused the zika virus to leave the non-human primates and/or other mammals and invade the human population?

Keywords: Aedes aegypti; climate change; dengue; El Niño; global warming; microcephaly; natural disasters; urbanization; vector-borne diseases


  • 1.

    Eppes C, Rac M, Dunn J, Versalovic J, Murray KO, et al. Testing for Zika virus infection in pregnancy: key concepts to deal with an emerging epidemic. Am J Obstet Gynecol 2017;216(3):209–25.CrossrefPubMedGoogle Scholar

  • 2.

    Zhou H, Eaton B, Hu Z, Arif B. Accidental discovery and isolation of Zika virus in Uganda and the relentless epidemiologist behind the investigations. Virol Sin 2016;31(4):357–61.PubMedCrossrefGoogle Scholar

  • 3.

    Macnamara FN. Zika virus: a report on three cases of human infection during an epidemic of jaundice in Nigeria. Trans Soc Trop Med Hyg 1954:48(2):139–145.CrossrefGoogle Scholar

  • 4.

    Song BH, Yun SI, Woolley M, Lee YM. Zika virus: History, epidemiology, transmission, and clinical presentation. J Neuroimmunol 2017;308:50–64.CrossrefPubMedGoogle Scholar

  • 5.

    Bogoch II, Brady OJ, Kraemer MU, German M, Creatore MI, et al. Anticipating the international spread of Zika virus from Brazil. Lancet 2016;387(10016):335–6.CrossrefPubMedGoogle Scholar

  • 6.

    Heymann DL, Hodgson A, Sall AA, Freedman DO, Staples JE, et al. Zika virus and microcephaly: why is this situation a PHEIC? Lancet 2016;387(10020):719–21.CrossrefPubMedGoogle Scholar

  • 7.

    Yang YT, Sarfaty M. Zika virus: a call to action for physicians in the era of climate change. Prev Med Rep 2016;4:444–6.CrossrefGoogle Scholar

  • 8.

    Ali S, Gugliemini O, Harber S, Harrison A, Houle L, et al. Environmental and social change drive the explosive emergence of Zika virus in the Americas. PLoS Negl Trop Dis 2017;11(2):e0005135.CrossrefPubMedGoogle Scholar

  • 9.

    McCracken M, Gromowski G, Friberg H, Lin X, Abbink P, et al. Impact of prior flavivirus immunity on Zika virus infection in rhesus macaques. PLoS Pathog 2017;13(8):e1006487.CrossrefPubMedGoogle Scholar

  • 10.

    Centers for disease control and prevention. CDC Zika virus, clinical evaluation, and disease (Modes of transmission). Available at http://www.cdc.gov/ZIKA/hc-providers/preparing-for-ZIKA/clinicalevaluationdisease.html.

  • 11.

    Centers for disease control and prevention. CDC Zika virus, Transmission (Zika and animals). Available at www.cdc.gov/ZIKA/transmission/qa-animals.html.

  • 12.

    Bueno M, Martinez N, Abdalla L, Santos C, Chame M. Animals in the Zika virus life cycle:what to expect from megadiverse Latin American countries. PLoS Negl Trop Dis 2016;10(12):e0005073.CrossrefPubMedGoogle Scholar

  • 13.

    Vorou R. Zika virus, vectors, reservoirs, amplifying hosts, and their potential to spread worldwide: what we know and what we should investigate urgently. Int J Infect Dis 2016;48:85–90.CrossrefPubMedGoogle Scholar

  • 14.

    Ozkurt Z, Tanriverdi E. Global alert: Zika virus–an emerging arbovirus. Eurasian J Med 2017;49(2):142–7.CrossrefPubMedGoogle Scholar

  • 15.

    Baud D, Musso D, Vouga M, Alves M, Vulliemoz N. Zika virus: a new threat to human reproduction. Am J Reprod Immunol 2017;77(2):e12614.CrossrefGoogle Scholar

  • 16.

    Klein RS. Dual Blades: The role of musashi 1 in Zika replication and microcephaly. Cell Host Microbe 2017;22(1):9–11.CrossrefPubMedGoogle Scholar

  • 17.

    Gyawali N, Bradbury R, Taylor-Robinson A. The global spread of Zika virus: is public and media concern justified in regions currently unaffected? Infect Dis Poverty 2016;5:37.CrossrefPubMedGoogle Scholar

  • 18.

    Baud D, Gubler DJ, Schaub B, Lanteri MC, Musso D. An update on Zika virus infection. Lancet 2017;390(10107):2099–2109.PubMedCrossrefGoogle Scholar

  • 19.

    Jaenisch T, Rosenberger KD, Brito C, Brady O, Brasil P, et al. Risk of microcephaly after Zika virus infection in Brazil, 2015 to 2016. Bull World Health Organ 2017;95(3):191–8.PubMedCrossrefGoogle Scholar

  • 20.

    Imperato PJ. The convergence of a virus, mosquitoes, and human travel in globalizing the Zika epidemic. J Community Health 2016;41(3):674–9.CrossrefPubMedGoogle Scholar

  • 21.

    Panchaud A, Stojanov M, Ammerdorffer A, Vouga M, Baud D. Emerging role of Zika virus in adverse fetal and neonatal outcomes. Clin Microbiol Rev 2016;29(3):659–94.CrossrefPubMedGoogle Scholar

  • 22.

    Cao-Lormeau VM, Blake A, Mons S, Lastere S, Roche C, et al. Guillain-Barré syndrome outbreak caused by ZIKA virus infection in French Polynesia. Lancet 2016;387(10027):1531–9.CrossrefGoogle Scholar

  • 23.

    Calvet GA, Santos FB, Sequeira PC. Zika virus infection: epidemiology, clinical manifestations, and diagnosis. Curr Opin Infect Dis 2016;29(5):459–66.PubMedCrossrefGoogle Scholar

  • 24.

    Centers for disease control and prevention. CDC Zika virus, Zika travel information. Available at wwwnc.cdc.gov/travel/page/world-map-areas-with-zika.

  • 25.

    Gardner L, Chen N, Sarkar S. Vector status of Aedes species determines the geographical risk of autochthonous Zika virus establishment. PLoS Negl Trop Dis 2017;11(3):e0005487.PubMedCrossrefGoogle Scholar

  • 26.

    Priya Doss C, Siva R, Christopher B, Chakraborty C, Zhu H. Zika: how safe is India? Infect Dis Poverty 2017;6:37.PubMedCrossrefGoogle Scholar

  • 27.

    Balbus J, Boxall A, Fenske R, Mckone T, Zeise L. Implications of global climate change for the assessment and management of human health risks of chemicals in the natural environment. Environ Toxicol Chem 2013;32(1):62–78.CrossrefPubMedGoogle Scholar

  • 28.

    Semenza JC, Menne B. Climate change and infectious diseases in Europe. Lancet Infect Dis 2009;9(6):365–75.CrossrefPubMedGoogle Scholar

  • 29.

    Al-Qahtani AA, Nazir N, Al-Anazi MR, Rubino S, Al-Ahdal MN. Zika virus: a new pandemic threat. J Infect Dev Ctries 2016;10(3):201–7.CrossrefPubMedGoogle Scholar

  • 30.

    Igbinosa I, Rabe I, Oduyebo T, Rasmussen S. Zika virus: common questions and answers. Am Fam Physician 2017;95(8):507–513.PubMedGoogle Scholar

  • 31.

    Baca-Carrasco D, Velasco-Hernández JX. Sex, mosquitoes and epidemics: an evaluation of Zika disease dynamics. Bull Math Biol 2016;78(11):2228–42.CrossrefPubMedGoogle Scholar

  • 32.

    Kindhauser M, Allen T, Frank V, Santhana R, Dye C. ZIKA: the origin and spread of mosquito-borne virus. Bull World Health Organ 2016;94(9):675–686C.CrossrefGoogle Scholar

  • 33.

    Cable J, Barber I, Boag B, Ellison A, Morgan E, et al. Global change, parasite transmission and disease control: lessons from ecology. Philos Trans R Soc Lond B Biol Sci 2017;372(1719):20160088.PubMedCrossrefGoogle Scholar

  • 34.

    Mills J, Gage K, Khan A. Potential influence of climate change on vector borne and zoonotic diseases: a review and proposed research plan. Environ Health Perspect 2010;118(11):1507–1514.CrossrefPubMedGoogle Scholar

  • 35.

    Sutherst R. Global change and human vulnerability to vector-borne diseases. Clin Microbial Rev 2004;17(1):136–73.CrossrefGoogle Scholar

  • 36.

    Waldock J, Chandra N, Lelieveld J, Proestos Y, Michael E, et al. The role of environmental variables on Aedes Albopictus biology and Chikungunya epidemiology. Pathog Glob Health 2013;107(5):224–41.CrossrefPubMedGoogle Scholar

  • 37.

    Xiaoxu Wu, Yongmei Lu, Zhou S, Chen L, Chen L, et al. Impact of climate change on human infectious diseases: empirical evidence and human adaptation. Environ Int 2016;86:14–23.CrossrefPubMedGoogle Scholar

  • 38.

    Lafferty KD, Mordecai EA. The rise and fall of infectious disease in a warmer world. F1000Res 2016;5:F1000.Google Scholar

  • 39.

    Matysiak A, Roess A. Interrelationship between climatic, ecologic, social, and cultural determinants affecting Dengue emergence and transmission in Puerto Rico and their implications for Zika response. J Trop Med 2017;2017:14.Google Scholar

  • 40.

    Climate Central. Climate central information on More Mosquito Days Increasing Zika Risk in U.S. Available at: http://www.climatecentral.org/news/more-mosquito-days-increasing-zika-risk-in-us-20553.

  • 41.

    Lee SH, Nam KW, Jeong JY, Yoo SJ, Koh YS, et al. The effects of climate change and globalization on mosquito vectors: evidence from Jeju Island, South Korea on the potential for Asian tiger mosquito (Aedes albopictus) influxes and survival from Vietnam rather than Japan. PLoS One 2013;8(7):e68512.PubMedCrossrefGoogle Scholar

  • 42.

    Medlock J, Leach S. Effect of climate change on vector-borne disease risk in the UK. Lancet Infect Dis 2015;15(6):721–30.PubMedCrossrefGoogle Scholar

  • 43.

    Paz S, Semenza JC. El Niño and climate change – contributing factors in the dispersal of Zika virus in the Americas? Lancet 2016;387(10020):745.PubMedCrossrefGoogle Scholar

  • 44.

    Chang AY, Fuller DO, Carrasquillo O, Beier JC. Social justice, climate change, and dengue. Health Hum Rights 2014;16(1):93–104.PubMedGoogle Scholar

  • 45.

    Tjaden N, Suk J, Fischer D, Thomas S, Beierkuhnlein C, et al. Modelling the effects of global climate change on Chikungunya transmission in the 21st century. Sci Rep 2017;7:3813.CrossrefPubMedGoogle Scholar

  • 46.

    Lima-Camara TN. Emerging arboviruses and public health challenges in Brazil. Rev Saude Publica 2016;50(26):1–7.Google Scholar

  • 47.

    Haribar L, Demay D, Lund U. The association between meteorological variables and the abundance of Aedes taeniorhynchus in the Florida Keys. J Vector Ecol 2010;35(2):339–46.PubMedCrossrefGoogle Scholar

  • 48.

    Eisenberg J, Cevallos W, Ponce K, Levy K, Bates S, et al. Environmental change and infectious disease: how new roads affect the transmission of diarrheal pathogens in rural Ecuador. Proc Natl Acad Sci USA 2006;103(51):19460–5.CrossrefGoogle Scholar

  • 49.

    Shragai T, Tesla B, Murdock C, Harrington LC. Zika and chikungunya: mosquito-borne viruses in a changing world. Ann N Y Acad Sci 2017;1399(1):61–77.CrossrefGoogle Scholar

  • 50.

    Mier-Y-Teran-Romero L, Tatem AJ, Johansson MA. Mosquitoes on a plane: disinsection will not stop the spread of vector-borne pathogens, a simulation study. PLoS Negl Trop Dis 2017;11(7):e0005683.CrossrefPubMedGoogle Scholar

  • 51.

    Khawar W, Bromberg R, Moor M, Lyubynska N, Mahmoudi H. Seven cases of Zika virus infection in South Florida. Cureus 2017;9(3):e1099.PubMedGoogle Scholar

  • 52.

    Ho L, Tsai Y, Lee W, Liao S, Wu L, et al. Taiwan’s travel and border health measures in response to Zika. Health Secur 2017;15(2):185–91.PubMedCrossrefGoogle Scholar

  • 53.

    Wang A, Thurmond S, Islas L, Hui K, Hai R. Zika virus genome biology and molecular pathogenesis. Emerg Microbes Infect 2017;6(3):e13.PubMedCrossrefGoogle Scholar

  • 54.

    Fajardo A, Cristina J, Moreno P. Emergence and spreading potential of Zika virus. Front Microbiol 2016;7:1667.PubMedGoogle Scholar

  • 55.

    Liu H, Shen L, Zhang X, Li X, Liang G, et al. From discovery to outbreak: the genetic evolution of the emerging Zika virus. Emerg Microbes Infect 2016;5(10):e111.CrossrefPubMedGoogle Scholar

  • 56.

    Jia P, Chen X, Chen J, Lu L, Liu Q, et al. How does the dengue vector mosquito Aedes albopictus respond to global warming. Parasit Vectors 2017;10:140.CrossrefPubMedGoogle Scholar

  • 57.

    Diem JE, Stauber CE, Rothenberg R. Heat in the southeastern United States: characteristics, trends, and potential health impact. PLoS One 2017;12(5):e0177937.PubMedCrossrefGoogle Scholar

  • 58.

    Vonesch N, D’Ovidio MC, Melis P, Remoli ME, Ciufolini MG, et al. Climate change, vector-borne diseases and working population. Annali 2016;52(3):397–405.Google Scholar

  • 59.

    Caminade C, Turner J, Metelmann S, Hesson JC, Blagrove MS, et al. Global risk model for vector-borne transmission of Zika virus reveals the role of El Niño 2015. Proc Natl Acad Sci USA 2017;114(1):119–24.CrossrefGoogle Scholar

  • 60.

    CBC news world. Sri Lanka Dengue outbreak leaves 225 dead. Available at: http://www.cbc.ca/news/world/sri-lanka-dengue-outbreak-leaves-225-dead-1.4189115.

  • 61.

    Dawn news. KP declares public health emergency. Available at: https://www.dawn.com/news/1355309.

  • 62.

    Independent news. Doctors warn of Dengue fever outbreak in Indian state of Kerala as 86 killed in last month. Available at http://www.independent.co.uk/news/world/kerala-india-dengue-fever-outbreak-virus-86- killed-doctors-warning-tourists-public-health-a7860896. html.

About the article

Corresponding author: David O. Carpenter, MD, Institute for Health and the Environment, University at Albany, Rensselaer, NY 12144, USA, Phone: +518-525-2660, Fax: +518-525-2665

Received: 2017-10-30

Accepted: 2017-11-09

Published Online: 2018-03-03

Published in Print: 2018-03-28

Author Statement

Research funding: Authors state no funding was involved. Conflict of interest: Authors state no conflict of interest. Informed consent: Informed consent is not applicable. Ethical approval: The conducted research is not related to either human or animal use.

Citation Information: Reviews on Environmental Health, Volume 33, Issue 1, Pages 31–42, ISSN (Online) 2191-0308, ISSN (Print) 0048-7554, DOI: https://doi.org/10.1515/reveh-2017-0042.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Joanna A. Ruszkiewicz, Alexey A. Tinkov, Anatoly V. Skalny, Vasileios Siokas, Efthimios Dardiotis, Aristidis Tsatsakis, Aaron B. Bowman, João B.T. da Rocha, and Michael Aschner
Environmental Research, 2019, Volume 177, Page 108637
Vincent Leung, Jonathan Mapletoft, Ali Zhang, Amanda Lee, Fatemeh Vahedi, Marianne Chew, Alexandra Szewczyk, Sana Jahanshahi-Anbuhi, Jann Ang, Braeden Cowbrough, Matthew S. Miller, Ali Ashkar, and Carlos D. M. Filipe
Scientific Reports, 2019, Volume 9, Number 1
Lucia Kafui Hussey and Godwin Arku
Social Science & Medicine, 2019, Volume 223, Page 40

Comments (0)

Please log in or register to comment.
Log in