Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews on Environmental Health

Editor-in-Chief: Carpenter, David O. / Sly, Peter

Editorial Board: Brugge, Doug / Edwards, John W. / Field, R.William / Garbisu, Carlos / Hales, Simon / Horowitz, Michal / Lawrence, Roderick / Maibach, H.I. / Shaw, Susan / Tao, Shu / Tchounwou, Paul B.


IMPACT FACTOR 2017: 1.284

CiteScore 2017: 1.29

SCImago Journal Rank (SJR) 2017: 0.438
Source Normalized Impact per Paper (SNIP) 2017: 0.603

Online
ISSN
2191-0308
See all formats and pricing
More options …
Volume 33, Issue 3

Issues

Progress on the amendment in biochars and its effects on the soil-plant-micro-organism-biochar system

Loissi Kalakodio
  • Corresponding author
  • University of Science and Technology, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Xueyuan 30, Beijing 100083, P.R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Moussa Bakayoko
  • University of Science and Technology, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Adiara Kalagodio / Bodjui Olivier Abo
  • University of Science and Technology, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jean Pierre Muhoza
  • University of Science and Technology, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ El Moctar Ismaila
Published Online: 2018-06-13 | DOI: https://doi.org/10.1515/reveh-2018-0007

Abstract

Biochar, coal produced by pyrolysis and used as an amendment, has several advantages and has proven to be a promising avenue for sustainable agriculture. However, the current manufacturing methods, the conditions of pyrolysis and the biomasses used produce biochars of very variable qualities which can differently affect the productivity of the ground and the outputs of plants. Currently, no study makes it possible to elucidate the influence of the physicochemical properties of the biochars on the structure and the microbial diversity of the soil. The aim of this review was to understand how the physicochemical properties of a biochar affect its capacity: to reduce the emissions of greenhouse gases; to improve the growth of hothouse plants; to improve the effectiveness of the use of manures and water; and to modify the structure and the diversity of the bacterial communities in a horticultural substrate and a mineral soil. These biochars were produced under various conditions. The analyses show that the addition of biochar can stimulate certain groups of bacteria involved in carbon and nitrogen cycles and possibly those involved in the development of plants. This review identifies the important physicochemical properties of the biochars, which will be able to better guide agricultural producers and industries manufacturing substrates containing peat, in the choice of a biochar favorable to the growth of plants and a more durable agriculture.

Keywords: amendment; biochar; biomass; microorganism; pyrolysis

References

  • 1.

    Barrow CJ. Biochar: potential for countering land degradation and for improving agriculture. Appl Geogr 2012;34:21–8.CrossrefGoogle Scholar

  • 2.

    Glaser B. Prehistorically modified soils of central Amazonia: a model for sustainable agriculture in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 2007;362(1478):187–96.CrossrefPubMedGoogle Scholar

  • 3.

    Liang B, Lehmann J, Solomon D, Sohi S, Thies JE, Skjemstad JO, et al. Stability of biomass-derived black carbon in soils. Geochim Cosmochim Acta 2008;72(24):6069–78.CrossrefGoogle Scholar

  • 4.

    Mao JD, Johnson RL, Lehmann J, Olk DC, Neves EG, Thompson ML, et al. Abundant and stable char residues in soils: implications for soil fertility and carbon sequestration. Functions of Natural Organic Matter in Changing Environment 2013:479–84.Google Scholar

  • 5.

    Lehmann J, Joseph S. Biochar for environmental management: an introduction. In: Biochar for environmental management: science and technology, 2009;45(1):404.Google Scholar

  • 6.

    Revell KT, Maguire RO, Agblevor FA. Influence of poultry litter biochar on soil properties and plant growth. Soil Sci 2012;177(6):402–8.CrossrefGoogle Scholar

  • 7.

    Schimmelpfennig S, Glaser B. One step forward toward characterization: some important material properties to distinguish biochars. J Environ Qual 2012;41(4):1001.PubMedCrossrefGoogle Scholar

  • 8.

    Schulz H, Glaser B. Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. J Plant Nutr Soil Sci 2012;175(3):410–22.CrossrefGoogle Scholar

  • 9.

    Anderson CR, Condron LM, Clough TJ, Fiers M, Stewart A, Hill RA, et al. Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia (Jena) 2011;54(5–6):309–20.CrossrefGoogle Scholar

  • 10.

    Ding Y, Liu Y, Liu S, Li Z, Tan X, Huang X, et al. Biochar to improve soil fertility. A review. Agron Sustain Dev 2016;36(2):36.CrossrefGoogle Scholar

  • 11.

    Gul S, Whalen JK, Thomas BW, Sachdeva V, Deng H. Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agric Ecosyst Environ 2015;206:46–59.CrossrefGoogle Scholar

  • 12.

    Liu S, Zhang Y, Zong Y, Hu Z, Wu S, Zhou J, et al. Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: a meta-analysis. GCB Bioenergy 2016;8(2):392–406.CrossrefGoogle Scholar

  • 13.

    Brewer CE, Unger R, Schmidt-Rohr K, Brown RC. Criteria to select biochars for field studies based on biochar chemical properties. Bioenergy Res 2011;4(4):312–23.CrossrefGoogle Scholar

  • 14.

    Brewer CE, Hu Y-Y, Schmidt-Rohr K, Loynachan TE, Laird DA, Brown RC. Extent of pyrolysis impacts on fast pyrolysis biochar properties. J Environ Qual 2012;41(4):1115.PubMedCrossrefGoogle Scholar

  • 15.

    Bruun EW, Ambus P, Egsgaard H, Hauggaard-Nielsen H. Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biol Biochem 2012;46:73–9.CrossrefGoogle Scholar

  • 16.

    Dutta B, Raghavan GSV, Ngadi M. Surface characterization and classification of slow and fast pyrolyzed biochar using novel methods of pycnometry and hyperspectral imaging. J Wood Chem Technol 2012;32(2):105–20.CrossrefGoogle Scholar

  • 17.

    Thies JE, Rillig MC. Characteristics of biochar: biological properties. In: Biochar for environmental management: science and technology, 2012;12:85–105.Google Scholar

  • 18.

    Tang J, Zhu W, Kookana R, Katayama A. Characteristics of biochar and its application in remediation of contaminated soil. J Biosci Bioeng 2013;116(6):653–9.PubMedCrossrefGoogle Scholar

  • 19.

    Manyà JJ. Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environ Sci Technol 2012;46(15):7939–54.CrossrefPubMedGoogle Scholar

  • 20.

    Al-Wabel MI, Al-Omran A, El-Naggar AH, Nadeem M, Usman ARA. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour Technol 2013;131:374–9.PubMedCrossrefGoogle Scholar

  • 21.

    Robertson and collar, Pesticides – Advances in Research and Application: 2012 Edition. 2012;37:182–184.Google Scholar

  • 22.

    Smith RE, Smettem KRJ, Broadbridge P, Woolhiser DA. Infiltration theory for hydrologic applications. Water Resour Monogr 2002;15:212.Google Scholar

  • 23.

    Nam J, Huang Y, Agarwal S, Lannutti J. Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue Eng 2007;13(9):2249–57.PubMedCrossrefGoogle Scholar

  • 24.

    Downie A, Crosky A, Munroe P. Physical properties of biochar. In: Biochar for environmental management: science and technology, 2012;54:13–32.Google Scholar

  • 25.

    LennTech. Heavy Metals – Lenntech. Heavy Metals, 2017.Google Scholar

  • 26.

    Li H, Shi A, Li M, Zhang X. Effect of pH, temperature, dissolved oxygen, and flow rate of overlying water on heavy metals release from storm sewer sediments. J Chem 2013;2013:104316.Google Scholar

  • 27.

    Hegazi HA. Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents. HBRC J 2013;9(3):276–82.CrossrefGoogle Scholar

  • 28.

    Shrimant Shridhar B. Review: nitrogen fixing microorganisms. Int J Microbiol Res 2012;3(1):46–52.Google Scholar

  • 29.

    Wardle DA, Yeates GW, Barker GM, Bonner KI. The influence of plant litter diversity on decomposer abundance and diversity. Soil Biol Biochem 2006;38(5):1052–62.CrossrefGoogle Scholar

  • 30.

    Cesarz S, Craven D, Dietrich C, Eisenhauer N. Effects of soil and leaf litter quality on the biomass of two endogeic earthworm species. Eur J Soil Biol 2016;77:9–16.CrossrefGoogle Scholar

  • 31.

    Qian K, Kumar A, Zhang H, Bellmer D, Huhnke R. Recent advances in utilization of biochar. Renew Sust Energ Rev 2015;42:1055–64.CrossrefGoogle Scholar

  • 32.

    Laird DA, Brown RC, Amonette JE, Lehmann J. Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuel Bioprod Bior 2009;3(5):547–62.CrossrefGoogle Scholar

  • 33.

    Bagreev A, Bandosz TJ, Locke DC. Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludge-derived fertilizer. Carbon 2001;39(13):1971–9.CrossrefGoogle Scholar

  • 34.

    Ameloot N, Graber ER, Verheijen FGA, De Neve S. Interactions between biochar stability and soil organisms: review and research needs. Eur J Soil Sci 2013;64(4):379–90.CrossrefGoogle Scholar

  • 35.

    Pituello C, Francioso O, Simonetti G, Pisi A, Torreggiani A, Berti A, et al. Characterization of chemical–physical, structural and morphological properties of biochars from biowastes produced at different temperatures. J Soils Sediments 2015;15(4):792–804.CrossrefGoogle Scholar

  • 36.

    Dume B, Berecha G, Tulu S. Characterization of biochar produced at different temperatures and its effect on acidic nitosol of jimma, southwest ethiopia. Int J Soil Sci 2015;10(2):63–73.CrossrefGoogle Scholar

  • 37.

    Yao Y, Gao B, Chen H, Jiang L, Inyang M, Zimmerman AR, et al. Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation. J Hazard Mater 2012;209–210:408–13.PubMedGoogle Scholar

  • 38.

    Oh TK, Choi B, Shinogi Y, Chikushi J. Characterization of biochar derived from three types of biomass. J Fac Agric Kyushu Univ 2012;57(1):61–6.Google Scholar

  • 39.

    Yao Y, Gao B, Inyang M, Zimmerman AR, Cao X, Pullammanappallil P, et al. Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential. Bioresour Technol 2011;102(10):6273–8.PubMedCrossrefGoogle Scholar

  • 40.

    Ahmad M, Lee SS, Dou X, Mohan D, Sung J-K, Yang JE, et al. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour Technol 2012;118:536–44.PubMedCrossrefGoogle Scholar

  • 41.

    Chen X, Chen G, Chen L, Chen Y, Lehmann J, McBride MB, et al. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour Technol 2011;102(19):8877–84.CrossrefPubMedGoogle Scholar

  • 42.

    Qian L, Chen B. Dual role of biochars as adsorbents for aluminum: the effects of oxygen-containing organic components and the scattering of silicate particles. Environ Sci Technol 2013;47(15):8759–68.PubMedGoogle Scholar

  • 43.

    Laird D, Fleming P, Wang B, Horton R, Karlen D. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 2010;158(3–4):436–42.CrossrefGoogle Scholar

  • 44.

    Khare P, Dilshad U, Rout PK, Yadav V, Jain S. Plant refuses driven biochar: application as metal adsorbent from acidic solutions. Arab J Chem 2017;10:S3054–63.CrossrefGoogle Scholar

  • 45.

    Kallel F, Chaari F, Bouaziz F, Bettaieb F, Ghorbel R, Chaabouni SE. Sorption and desorption characteristics for the removal of a toxic dye, methylene blue from aqueous solution by a low cost agricultural by-product. J Mol Liq 2016;219:279–88.CrossrefGoogle Scholar

  • 46.

    Jindo K, Mizumoto H, Sawada Y, Sanchez-Monedero MA, Sonoki T. Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 2014;11(23):6613–21.CrossrefGoogle Scholar

  • 47.

    Fan S, Wang Y, Wang Z, Tang J, Tang J, Li X. Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: adsorption kinetics, equilibrium, thermodynamics and mechanism. J Environ Chem Eng 2017;5(1):601–11.CrossrefGoogle Scholar

  • 48.

    Novak JM, Busscher WJ, Laird DL, Ahmedna M, Watts DW, Niandou MAS. Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci 2009;174(2):105–12.CrossrefGoogle Scholar

  • 49.

    Wang X, Sato T, Xing B. Competitive sorption of pyrene on wood chars. Environ Sci Technol 2006;40(10):3267–72.CrossrefPubMedGoogle Scholar

  • 50.

    Kinney TJ, Masiello CA, Dugan B, Hockaday WC, Dean MR, Zygourakis K, et al. Hydrologic properties of biochars produced at different temperatures. Biomass Bioenergy 2012;41:34–43.CrossrefGoogle Scholar

  • 51.

    Chan KY, Xu Z. Biochar: nutrient properties and their enhancement. In: Biochar for environmental management: science and technology, 2012;36:67–84.Google Scholar

  • 52.

    Lang T, Jensen AD, Jensen PA. Retention of organic elements during solid fuel pyrolysis with emphasis on the peculiar behavior of nitrogen. Energy Fuels 2005;19(4):1631–43.CrossrefGoogle Scholar

  • 53.

    Unger R, Killorn R, Brewer C. Effects of soil application of different biochars on selected soil chemical properties. Commun Soil Sci Plant Anal 2011;42(19):2310–21.CrossrefGoogle Scholar

  • 54.

    Rajkovich S, Enders A, Hanley K, Hyland C, Zimmerman AR, Lehmann J. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol Fertil Soils 2012;48(3):271–84.CrossrefGoogle Scholar

  • 55.

    Antal MJ, Grønli M. The art, science, and technology of charcoal production. Ind Eng Chem Res 2003;42(8):1619–40.CrossrefGoogle Scholar

  • 56.

    Brown RA, Kercher AK, Nguyen TH, Nagle DC, Ball WP. Production and characterization of synthetic wood chars for use as surrogates for natural sorbents. Org Geochem 2006;37(3):321–33.CrossrefGoogle Scholar

  • 57.

    McGuinness M, Dowling D. Plant-associated bacterial degradation of toxic organic compounds in soil. Int J Environ Res Public Health 2009;6(8):2226–47.CrossrefPubMedGoogle Scholar

  • 58.

    Stanmore BR. The formation of dioxins in combustion systems. Combust Flame 2004;136(3):398–427.CrossrefGoogle Scholar

  • 59.

    Lehmann J. Bio-energy in the black. Front Ecol Environ 2007;5(7):381–7.CrossrefGoogle Scholar

  • 60.

    Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill B, et al. Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 2006;70(5):1719.CrossrefGoogle Scholar

  • 61.

    Cheng CH, Lehmann J, Thies JE, Burton SD, Engelhard MH. Oxidation of black carbon by biotic and abiotic processes. Org Geochem 2006;37(11):1477–88.CrossrefGoogle Scholar

  • 62.

    Brennan JK, Bandosz TJ, Thomson KT, Gubbins KE. Water in porous carbons. Colloids Surf A: Physicochem Eng Asp 2001;187–188:539–68.Google Scholar

  • 63.

    Joseph S, Peacocke C, Lehmann J, Munroe P. Developing a biochar classification and test methods. In: Biochar for environmental management: science and technology, 2012;6:10–26.Google Scholar

  • 64.

    Novak JM, Lima I, Xing B, Gaskin JW, Steiner C, Das KC, et al. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann Environ Sci 2009;3(843):195–206.Google Scholar

  • 65.

    Xiao R, Yang W. Influence of temperature on organic structure of biomass pyrolysis products. Renew Energy 2013;50:136–41.CrossrefGoogle Scholar

  • 66.

    Singh R, Babu JN, Kumar R, Srivastava P, Singh P, Raghubanshi AS. Multifaceted application of crop residue biochar as a tool for sustainable agriculture: an ecological perspective. Ecol Eng 2015;77:324–47.CrossrefGoogle Scholar

  • 67.

    Rogovska N, Laird D, Cruse RM, Trabue S, Heaton E. Germination tests for assessing biochar quality. J Environ Qual 2012;41(4):1014.PubMedCrossrefGoogle Scholar

  • 68.

    Watts CW, Whalley WR, Brookes PC, Devonshire BJ, Whitmore AP. Biological and physical processes that mediate micro-aggregation of clays. Soil Sci 2005;170(8):573–83.CrossrefGoogle Scholar

  • 69.

    Warnock DD, Lehmann J, Kuyper TW, Rillig MC. Mycorrhizal responses to biochar in soil – concepts and mechanisms. Plant Soil 2007;300(1–2):9–20.CrossrefGoogle Scholar

  • 70.

    Biederman LA, Stanley Harpole W. Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. GCB Bioenergy 2013;5(2):202–14.CrossrefGoogle Scholar

  • 71.

    Mukherjee A, Zimmerman AR, Hamdan R, Cooper WT. Physicochemical changes in pyrogenic organic matter (biochar) after 15 months of field aging. Solid Earth 2014;5(2):693–704.CrossrefGoogle Scholar

  • 72.

    Chintala R, Schumacher TE, Kumar S, Malo DD, Rice JA, Bleakley B, et al. Molecular characterization of biochars and their influence on microbiological properties of soil. J Hazard Mater 2014;279:244–56.PubMedCrossrefGoogle Scholar

  • 73.

    Unger R, Killorn R. Effect of three different qualities of biochar on selected soil properties. Commun Soil Sci Plant Anal 2011;42(18):2274–83.CrossrefGoogle Scholar

  • 74.

    van Zwieten L, Kimber S, Morris S, Chan KY, Downie A, Rust J, et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 2010;327(1):235–46.CrossrefGoogle Scholar

  • 75.

    Hussain M, Farooq M, Nawaz A, Al-Sadi AM, Solaiman ZM, Alghamdi SS, et al. Biochar for crop production: potential benefits and risks. J Soils Sediments 2016:1–32.Google Scholar

  • 76.

    Fornes F, Belda RM, Lidón A. Analysis of two biochars and one hydrochar from different feedstock: focus set on environmental, nutritional and horticultural considerations. J Clean Prod 2015;86:40–8.CrossrefGoogle Scholar

  • 77.

    Jones DL, Murphy DV, Khalid M, Ahmad W, Edwards-Jones G, DeLuca TH. Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biol Biochem 2011;43(8):1723–31.CrossrefGoogle Scholar

  • 78.

    Li L, Liu F, Duan H, Wang X, Li J, Wang Y, et al. The preparation of novel adsorbent materials with efficient adsorption performance for both chromium and methylene blue. Colloids Surf B Biointerfaces 2016;141:253–9.PubMedCrossrefGoogle Scholar

  • 79.

    Maestrini B, Nannipieri P, Abiven S. A meta-analysis on pyrogenic organic matter induced priming effect. GCB Bioenergy 2015;7(4):577–90.CrossrefGoogle Scholar

  • 80.

    Yoo G, Kang H. Effects of biochar addition on greenhouse gas emissions and microbial responses in a short-term laboratory experiment. J Environ Qual 2012;41(4):1193.CrossrefGoogle Scholar

  • 81.

    Jagadeesh Babu Y, Nayak DR, Adhya TK. Potassium application reduces methane emission from a flooded field planted to rice. Biol Fertil Soils 2006;42(6):532–41.CrossrefGoogle Scholar

  • 82.

    Le Mer J, Roger P. Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol 2001;37(1):25–50.CrossrefGoogle Scholar

  • 83.

    Clough T, Condron L, Kammann C, Müller C. A review of biochar and soil nitrogen dynamics. Agronomy 2013;3(2):275–93.CrossrefGoogle Scholar

  • 84.

    Cayuela ML, van Zwieten L, Singh BP, Jeffery S, Roig A, Sánchez-Monedero MA. Biochar’s role in mitigating soil nitrous oxide emissions: a review and meta-analysis. Agric Ecosyst Environ 2014;191:5–16.CrossrefGoogle Scholar

  • 85.

    van Zwieten L, Kimber S, Morris S, Chan KY, Downie A, Rust J, et al. An incubation study investigating the mechanisms that impact N2O flux from soil following biochar application. Agric Ecosyst Environ 2014;191:53–62.CrossrefGoogle Scholar

  • 86.

    Cayuela ML, Sánchez-Monedero MA, Roig A, Hanley K, Enders A, Lehmann J. Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions? Sci Rep 2013;31:14–18.Google Scholar

  • 87.

    Graber ER, Harel YM, Kolton M, Cytryn E, Silber A, David DR, et al. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 2010;337(1):481–96.CrossrefGoogle Scholar

  • 88.

    Harel YM, Elad Y, Rav-David D, Borenstein M, Shulchani R, Lew B, et al. Biochar mediates systemic response of strawberry to foliar fungal pathogens. Plant Soil 2012;357(1):245–57.CrossrefGoogle Scholar

  • 89.

    Vaughn SF, Kenar JA, Thompson AR, Peterson SC. Comparison of biochars derived from wood pellets and pelletized wheat straw as replacements for peat in potting substrates. Ind Crops Prod 2013;51:437–43.CrossrefGoogle Scholar

  • 90.

    Akhtar SS, Li G, Andersen MN, Liu F. Biochar enhances yield and quality of tomato under reduced irrigation. Agric Water Manag 2014;138:37–44.CrossrefGoogle Scholar

  • 91.

    Vaccari FP, Maienza A, Miglietta F, Baronti S, Di Lonardo S, Giagnoni L, et al. Biochar stimulates plant growth but not fruit yield of processing tomato in a fertile soil. Agric Ecosyst Environ 2015;207:163–70.CrossrefGoogle Scholar

  • 92.

    Xu Q, Wang J, Chen S, Li W, Wang H. Synthesis and characterization of naphthalene diimide polymers based on donor-acceptor system for polymer solar cells. Express Polym Lett 2013;7(10):842–51.CrossrefGoogle Scholar

  • 93.

    Harter J, Weigold P, El-Hadidi M, Huson DH, Kappler A, Behrens S. Soil biochar amendment shapes the composition of N2O-reducing microbial communities. Sci Total Environ 2016;562:379–90.CrossrefPubMedGoogle Scholar

  • 94.

    Kolton M, Harel YM, Pasternak Z, Graber ER, Elad Y, Cytryn E. Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Appl Environ Microbiol 2011;77(14):4924–30.CrossrefPubMedGoogle Scholar

  • 95.

    Elad Y, David DR, Harel YM, Borenshtein M, Kalifa HB, Silber A, et al. Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phytopathology 2010;100(9):913–21.PubMedCrossrefGoogle Scholar

  • 96.

    Gravel V, Dorais M, Ménard C. Organic potted plants amended with biochar: its effect on growth and Pythium colonization. Can J Plant Sci 2013;93(6):1217–27.CrossrefGoogle Scholar

  • 97.

    Matsubara Y, Okada T, Liu J. Suppression of fusarium crown rot and increase in several free amino acids in mycorrhizal asparagus. Am J Plant Sci 2014;5:235–40.CrossrefGoogle Scholar

  • 98.

    I. B. I. IBI. Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil. International Biochar Initiative, 2015. [Online]. Available at: http://www.biochar-international.org/sites/default/files/Guidelines_for_Biochar_That_Is_Used_in_Soil_Final.pd.

  • 99.

    Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D. Biochar effects on soil biota – a review. Soil Biol Biochem 2011;43(9):1812–36.CrossrefGoogle Scholar

  • 100.

    Bardgett RD, Van Der Putten WH. Belowground biodiversity and ecosystem functioning. Nature 2014;515(7528):505–11.PubMedCrossrefGoogle Scholar

About the article

Received: 2018-02-05

Accepted: 2018-05-06

Published Online: 2018-06-13

Published in Print: 2018-09-25


Research funding: Authors state no funding involved.

Conflict of interest: Authors state no conflict of interest.

Informed consent: Informed consent is not applicable.

Ethical approval: The conducted research is not related to either human or animal use.


Citation Information: Reviews on Environmental Health, Volume 33, Issue 3, Pages 281–293, ISSN (Online) 2191-0308, ISSN (Print) 0048-7554, DOI: https://doi.org/10.1515/reveh-2018-0007.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in