Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews on Environmental Health

Editor-in-Chief: Carpenter, David O. / Sly, Peter

Editorial Board: Brugge, Doug / Edwards, John W. / Field, R.William / Garbisu, Carlos / Hales, Simon / Horowitz, Michal / Lawrence, Roderick / Maibach, H.I. / Shaw, Susan / Tao, Shu / Tchounwou, Paul B.


IMPACT FACTOR 2018: 1.616

CiteScore 2018: 1.69

SCImago Journal Rank (SJR) 2018: 0.508
Source Normalized Impact per Paper (SNIP) 2018: 0.664

Online
ISSN
2191-0308
See all formats and pricing
More options …
Volume 34, Issue 1

Issues

Exposure to environmental toxicants and young children’s cognitive and social development

Alexandra N. Davis
  • Corresponding author
  • Individual, Family, and Community Education, University of New Mexico, Albuquerque, NM, USA, Phone: +816-294-6950
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gustavo Carlo / Zehra Gulseven / Francisco Palermo / Chung-Ho Lin / Susan C. Nagel / Danh C. Vu / Phuc H. Vo / Thi L. Ho / Jane A. McElroy
Published Online: 2019-03-07 | DOI: https://doi.org/10.1515/reveh-2018-0045

Abstract

Background

Understanding the role of environmental toxicant exposure on children’s development is an important area of inquiry in order to better understand contextual factors that shape development and ultimately school readiness among young children. There is evidence suggesting negative links between exposure to environmental toxicants and negative physical health outcomes (i.e. asthma, allergies) in children. However, research on children’s exposure to environmental toxicants and other developmental outcomes (cognitive, socioemotional) is limited.

Objectives

The goal of the current review was to assess the existing literature on the links between environmental toxicants (excluding heavy metals) and children’s cognitive, socioemotional, and behavioral development among young children.

Methods

This literature review highlights research on environmental toxicants (i.e. pesticide exposure, bisphenol A, polycyclic aromatic hydrocarbons, tobacco smoke, polychlorinated biphenyls, flame retardants, phthalates and gas pollutions) and children’s development across multiple domains.

Results

The results highlight the potential risk of exposure to multiple environmental toxicants for young children’s cognitive and socioemotional development.

Discussion

Discussion will focus on the role of environmental toxicants in the cognitive and socioemotional development of young children, while highlighting gaps in the existing literature.

Keywords: cognitive development; early childhood; environmental toxicants; socioemotional development

References

  • 1.

    Carlo G. The development and correlates of prosocial moral behaviors. In: Killen M, Smetana JG, editors. Handbook of moral development, 2nd ed. New York, NY: Psychology Press, 2014.Google Scholar

  • 2.

    Davis AN, Carlo G. Towards an integrative conceptual model on the relations between discrimination and prosocial behaviors in U.S. Latino/a youth. In: Fitzgerald H, Johnson D, Qin D, Villarruel F, Norder J, editors. Handbook of children and prejudice: integrating research, practice, and policy. New York, NY: Springer Press, in press.Google Scholar

  • 3.

    Sharkey P, Sampson R. Neighborhood violence and cognitive functioning. In: Schutt R, Keshavan MS, Seidman LJ, editors. Social neuroscience: brain, mind, and society. Cambridge, MA: Harvard University Press, in press.Google Scholar

  • 4.

    Shonkoff JP, Garner AS, Siegel BS, Dobbins MI, Earls MF, McGuinn L, et al. The lifelong effects of early childhood adversity and toxic stress. Pediatrics 2012;129(1):e232–46.PubMedCrossrefGoogle Scholar

  • 5.

    Rauh VA, Margolis AE. Research review: environmental exposures, neurodevelopment, and child mental health – new paradigms for the study of brain and behavioral effects. J Child Psychol Psychiatry 2016;57(7):775–93.CrossrefGoogle Scholar

  • 6.

    Trentacosta CJ, Davis-Kean P, Mitchell C, Hyde L, Dolinoy D. Environmental contaminants and child development. Child Dev Perspect 2016;10(4):228–33.CrossrefGoogle Scholar

  • 7.

    Bellinger DC. Very low lead exposures and children’s neurodevelopment. Curr Opin Pediatr 2008;20(2):172–7.PubMedCrossrefGoogle Scholar

  • 8.

    Canfield RL, Henderson Jr CR, Cory-Slechta DA, Cox C, Jusko TA, Lanphear BP. Intellectual impairment in children with blood lead concentrations below 10 μg per deciliter. N Engl J Med 2003;348(16):1517–26.CrossrefGoogle Scholar

  • 9.

    Saint-Amour D, Roy MS, Bastien C, Ayotte P, Dewailly E, Després C, et al. Alterations of visual evoked potentials in preschool Inuit children exposed to methylmercury and polychlorinated biphenyls from a marine diet. Neurotoxicology 2006;27(4):567–78.PubMedCrossrefGoogle Scholar

  • 10.

    Sanders AP, Henn BC, Wright RO. Perinatal and childhood exposure to cadmium, manganese, and metal mixtures and effects on cognition and behavior: a review of recent literature. Curr Environ Health Rep 2015;2(3):284–94.CrossrefPubMedGoogle Scholar

  • 11.

    Plusquellec P, Muckle G, Dewailly E, Ayotte P, Bégin G, Desrosiers C, et al. The relation of environmental contaminants exposure to behavioral indicators in Inuit preschoolers in Arctic Quebec. Neurotoxicology 2010;31(1):17–25.CrossrefPubMedGoogle Scholar

  • 12.

    EPA. Indoor air quality. Volatile organic compounds’ impact on air quality. 2016. https://www.epa.gov/indoor-air-quality-iaq/volatile-organic-compounds-impact-indoor-air-quality.

  • 13.

    Nurmatov UB, Tagiyeva N, Semple S, Devereux G, Sheikh A. Volatile organic compounds and risk of asthma and allergy: a systematic review. Eur Respir Rev 2015;24(135):92–101.CrossrefPubMedGoogle Scholar

  • 14.

    Jurewicz J, Polańska K, Hanke W. Exposure to widespread environmental toxicants and children’s cognitive development and behavioral problems. Int J Occup Med Environ Health 2013;26(2):185–204.PubMedGoogle Scholar

  • 15.

    Schwartz J. Air pollution and children’s health. Pediatrics 2004;113(Suppl. 3):1037–43.PubMedGoogle Scholar

  • 16.

    Andersen HR, Debes F, Wohlfahrt-Veje C, Murata K, Grandjean P. Occupational pesticide exposure in early pregnancy associated with sex-specific neurobehavioral deficits in the children at school age. Neurotoxicol Teratol 2015;47:1–9.CrossrefPubMedGoogle Scholar

  • 17.

    Bouchard MF, Chevrier J, Harley KG, Kogut K, Vedar M, Calderon N, et al. Prenatal exposure to organophosphate pesticides and IQ in 7-year-old children. Environ Health Perspect 2011;119(8):1189–95.PubMedCrossrefGoogle Scholar

  • 18.

    Coker E, Gunier R, Bradman A, Harley K, Kogut K, Molitor J, et al. Association between pesticide profiles used on agricultural fields near maternal residences during pregnancy and IQ at age 7 years. Int J Environ Res Public Health 2017;14(5):506–26.CrossrefGoogle Scholar

  • 19.

    de Joode BVW, Mora AM, Lindh CH, Hernández-Bonilla D, Córdoba L, Wesseling C, et al. (2016). Pesticide exposure and neurodevelopment in children aged 6–9 years from Talamanca, Costa Rica. Cortex 2016;85:137–50.CrossrefPubMedGoogle Scholar

  • 20.

    Donauer S, Altaye M, Xu Y, Sucharew H, Succop P, Calafat AM, et al. An observational study to evaluate associations between low-level gestational exposure to organophosphate pesticides and cognition during early childhood. Am J Epidemiol 2016;184(5):410–8.CrossrefPubMedGoogle Scholar

  • 21.

    Eskenazi B, Marks AR, Bradman A, Fenster L, Johnson C, Barr DB, et al. In utero exposure to dichlorodiphenyltrichloroethane (DDT) and dichlorodiphenyldichloroethylene (DDE) and neurodevelopment among young Mexican American children. Pediatrics 2006;118(1):233–41.CrossrefPubMedGoogle Scholar

  • 22.

    Eskenazi B, An S, Rauch SA, Coker ES, Maphula A, Obida M, et al. Prenatal exposure to DDT and pyrethroids for malaria control and child neurodevelopment: the VHEMBE Cohort, South Africa. Environ Health Perspect (Online) 2018;126(4):1–11.Google Scholar

  • 23.

    Gaspar FW, Harley KG, Kogut K, Chevrier J, Mora AM, Sjödin A, et al. Prenatal DDT and DDE exposure and child IQ in the CHAMACOS cohort. Environ Int 2015;85:206–12.PubMedCrossrefGoogle Scholar

  • 24.

    González-Alzaga B, Hernández AF, Rodríguez-Barranco M, Gómez I, Aguilar-Garduño C, López-Flores I, et al. Pre-and postnatal exposures to pesticides and neurodevelopmental effects in children living in agricultural communities from South-Eastern Spain. Environ Int 2015;85:229–37.CrossrefPubMedGoogle Scholar

  • 25.

    Gunier RB, Bradman A, Harley KG, Kogut K, Eskenazi B. Prenatal residential proximity to agricultural pesticide use and IQ in 7-year-old children. Environ Health Perspect 2017;125(5):057002.CrossrefPubMedGoogle Scholar

  • 26.

    Ribas-Fitó N, Torrent M, Carrizo D, Júlvez J, Grimait JO, Sunyer J. Exposure to hexachlorobenzene during pregnancy and children’s social behavior at 4 years of age. Environ Health Perspect 2007;115:447–50.PubMedCrossrefGoogle Scholar

  • 27.

    Ribas-Fito N, Torrent M, Carrizo D, Munoz-Ortiz L, Julvez J, Grimalt JO, et al. In utero exposure to background concentrations of DDT and cognitive functioning among preschoolers. Am J Epidemiol 2006;164(10):955–62.CrossrefPubMedGoogle Scholar

  • 28.

    Stein LJ, Gunier RB, Harley K, Kogut K, Bradman A, Eskenazi B. Early childhood adversity potentiates the adverse association between prenatal organophosphate pesticide exposure and child IQ: the CHAMACOS cohort. Neurotoxicology 2016;56:180–7.PubMedCrossrefGoogle Scholar

  • 29.

    Viel JF, Warembourg C, Le Maner-Idrissi G, Lacroix A, Limon G, Rouget F, et al. Pyrethroid insecticide exposure and cognitive developmental disabilities in children: the PELAGIE mother-child cohort. Environ Int 2015;82:69–75.CrossrefPubMedGoogle Scholar

  • 30.

    Braun JM, Kalkbrenner AE, Calafat AM, Yolton K, Ye X, Dietrich KN, et al. Impact of early-life bisphenol A exposure on behavior and executive function in children. Pediatrics 2011;128:873–82.PubMedCrossrefGoogle Scholar

  • 31.

    Braun JM, Muckle G, Arbuckle T, Bouchard MF, Fraser WD, Ouellet E, et al. Associations of prenatal urinary bisphenol A concentrations with child behaviors and cognitive abilities. Environ Health Perspect 2017;125(6):1–9.Google Scholar

  • 32.

    Casas M, Forns J, Martínez D, Avella-García C, Valvi D, Ballesteros-Gómez A, et al. Exposure to bisphenol A during pregnancy and child neuropsychological development in the INMA-Sabadell cohort. Environ Res 2015;142:671–9.CrossrefPubMedGoogle Scholar

  • 33.

    Perera F, Vishnevetsky J, Herbstman JB, Calafat AM, Xiong W, Rauh V, et al. Prenatal bisphenol A exposure and child behavior in an inner-city cohort. Environ Health Perspect 2012;120(8):1190–4.CrossrefGoogle Scholar

  • 34.

    Roen EL, Wang Y, Calafat AM, Wang S, Margolis A, Herbstman J, et al. Bisphenol A exposure and behavioral problems among inner city children at 7–9 years of age. Environ Res 2015;142:739–45.CrossrefPubMedGoogle Scholar

  • 35.

    Abid Z, Roy A, Herbstman JB, Ettinger AS. Urinary polycyclic aromatic hydrocarbon metabolites and attention/deficit hyperactivity disorder, learning disability, and special education in US children aged 6 to 15. Int J Environ Public Health 2014;2014:1–10.Google Scholar

  • 36.

    Cowell WJ, Bellinger DC, Coull BA, Gennings C, Wright RO, Wright RJ. Associations between prenatal exposure to black carbon and memory domains in urban children: modification by sex and prenatal stress. PLoS One 2015;10(11):e0142492.PubMedCrossrefGoogle Scholar

  • 37.

    Cowell WJ, Lederman SA, Sjödin A, Jones R, Wang S, Perera FP, et al. Prenatal exposure to polybrominated diphenyl ethers and child attention problems at 3–7 years. Neurotoxicol Teratol 2015;52:143–50.PubMedCrossrefGoogle Scholar

  • 38.

    Edwards SC, Jedrychowski W, Butscher M, Camann D, Kieltyka A, Mroz E, et al. Prenatal exposure to airborne polycyclic aromatic hydrocarbons and children’s intelligence at 5 years of age in a prospective cohort study in Poland. Children’s Health 2010;119(9):1326–31.Google Scholar

  • 39.

    Guxens M, Garcia-Esteban R, Giorgis-Allemand L, Forns J, Badaloni C, Ballester F, et al. Air pollution during pregnancy and childhood cognitive and psychomotor development: six European birth cohorts. Epidemiology 2014;25(5):636–47.CrossrefPubMedGoogle Scholar

  • 40.

    Jedrychowski WA, Perera FP, Camann D, Spengler J, Butscher M, Mroz E, et al. Prenatal exposure to polycyclic aromatic hydrocarbons and cognitive dysfunction in children. Environ Sci Pollut Res 2015;22(5):3631–9.CrossrefGoogle Scholar

  • 41.

    Lovasi GS, Eldred-Skemp N, Quinn JW, Chang HW, Rauh VA, Rundle A, et al. Neighborhood social context and individual polycyclic aromatic hydrocarbon exposures associated with child cognitive test scores. J Child Fam Stud 2014;23(5):785–99.PubMedCrossrefGoogle Scholar

  • 42.

    Perera FP, Chang HW, Tang D, Roen EL, Herbstman J, Margolis A, et al. Early-life exposure to polycyclic aromatic hydrocarbons and ADHD behavior problems. PLoS One 2014;9(11):e111670.CrossrefPubMedGoogle Scholar

  • 43.

    Perera FP, Rauh V, Whyatt RM, Tsai WY, Tang D, Diaz D, et al. Effect of prenatal exposure to airborne polycyclic aromatic hydrocarbons on neurodevelopment in the first 3 years of life among inner-city children. Environ Health Perspect 2006;114:1287–92.CrossrefPubMedGoogle Scholar

  • 44.

    Perera FP, Wang S, Vishnevetsky J, Zhang B, Cole KJ, Tang D, et al. Polycyclic aromatic hydrocarbons-aromatic DNA adducts in cord blood and behavior scores in New York city children. Environ Health Perspect 2011;119(8):1176–81.CrossrefPubMedGoogle Scholar

  • 45.

    Perera FP, Wheelock K, Wang Y, Tang D, Margolis AE, Badia G, et al. Combined effects of prenatal exposure to polycyclic aromatic hydrocarbons and material hardship on child ADHD behavior problems. Environ Res 2018;160:506–13.PubMedCrossrefGoogle Scholar

  • 46.

    Porta D, Narduzzi S, Badaloni C, Bucci S, Cesaroni G, Colelli V, et al. Air pollution and cognitive development at age seven in a prospective Italian birth cohort. Epidemiology 2015;27(2): 228–36.Google Scholar

  • 47.

    Sunyer J, Esnaola M, Alvarez-Pedrerol M, Forns J, Rivas I, López-Vicente M, et al. Association between traffic-related air pollution in schools and cognitive development in primary school children: a prospective cohort study. PLoS Med 2015;12(3):1–24.Google Scholar

  • 48.

    Chastang J, Baïz N, Cadwalladder JS, Robert S, Dywer J, Charpin DA, et al. Postnatal environmental tobacco smoke exposure related to behavioral problems in children. PLoS One 2015;10(8):e0133604.PubMedCrossrefGoogle Scholar

  • 49.

    Davis CL, Tingen MS, Jia J, Sherman F, Williams CF, Bhavsar K, et al. Passive smoke exposure and its effects on cognition, sleep, and health outcomes in overweight and obese children. Child Obes 2016;12(2):119–25.CrossrefPubMedGoogle Scholar

  • 50.

    Hopson MB, Margolis A, Rauh V, Herbstman J. Impact of the home environment on the relationship between prenatal exposure to environmental tobacco smoke and child behavior. Int J Child Health Human Dev 2016;9(4):453–64.Google Scholar

  • 51.

    Melchior M, Hersi R, Van Der Waerden J, Larroque B, Saurel-Cubizolles MJ, Chollet A, et al. Maternal tobacco smoking in pregnancy and children’s socio-emotional development at age 5: the EDEN mother-child birth cohort study. Eur Psychiatry 2015;30(5):562–8.CrossrefPubMedGoogle Scholar

  • 52.

    Leung CY, Leung GM, Schooling CM. Early second-hand smoke exposure and child and adolescent mental health: evidence from Hong Kong’s ‘Children of 1997’ birth cohort. Addiction 2015;110(11):1811–24.PubMedCrossrefGoogle Scholar

  • 53.

    Polanska K, Krol A, Merecz-Kot D, Ligocka D, Mikolajewska K, Mirabella F, et al. Environmental tobacco smoke exposure during pregnancy and child neurodevelopment. Int J Environ Res Public Health 2017;14(7):796–807.CrossrefGoogle Scholar

  • 54.

    Caspersen IH, Haugen M, Schjølberg S, Vejrup K, Knutsen HK, Brantsaeter AL, et al. Maternal dietary exposure to dioxins and polychlorinated biphenyls (PCBs) is associated with language delay in 3 year old Norwegian children. Environ Int 2016;91:180–7.CrossrefGoogle Scholar

  • 55.

    Stewart PW, Reihman J, Lonky EI, Darvill TJ, Pagano J. Cognitive development in preschool children prenatally exposed to PCBs and MeHg. Neurotoxicol Teratol 2003;25(1):11–22.CrossrefPubMedGoogle Scholar

  • 56.

    Tatsuta N, Nakai K, Murata K, Suzuki K, Iwai-ShimadaM, Kurokawa N, et al. Impacts of prenatal exposures to polychlorinated biphenyls, methylmercury, and lead on intellectual ability of 42-month-old children in Japan. Environ Res 2014;133:321–6.PubMedCrossrefGoogle Scholar

  • 57.

    Adgent MA, Hoffman K, Goldman BD, Sjödin A, Daniels JL. Brominated flame retardants in breast milk and behavioural and cognitive development at 36 months. Paediatr Perinat Epidemiol 2014;28(1):48–57.CrossrefPubMedGoogle Scholar

  • 58.

    Castorina R, Bradman A, Stapleton HM, Butt C, Avery D, Harley KG, et al. Current-use flame retardants: maternal exposure and neurodevelopment in children of the CHAMACOS cohort. Chemosphere 2017;189:574–80.CrossrefPubMedGoogle Scholar

  • 59.

    Herbstman JB, Sjödin A, Kurzon M, Lederman SA, Jones RS, Rauh V, et al. Prenatal exposure to PBDEs and neurodevelopment. Environ Health Perspect 2015;223–44. Google Scholar

  • 60.

    Lipscomb ST, McClelland MM, MacDonald M, Cardenas A, Anderson KA, Kile ML. Cross-sectional study of social behaviors in preschool children and exposure to flame retardants. Environ Health 2017;16(1):23.PubMedCrossrefGoogle Scholar

  • 61.

    Roze E, Meijer L, Bakker A, Van Braeckel KN, Sauer PJ, Bos AF. Prenatal exposure to organohalogens, including brominated flame retardants, influences motor, cognitive, and behavioral performance at school age. Environ Health Perspect 2009;117:1953–8.CrossrefPubMedGoogle Scholar

  • 62.

    Vuong AM, Yolton K, Poston KL, Xie C, Webster GM, Sjödin A, et al. Prenatal and postnatal polybrominated diphenyl ether (PBDE) exposure and measures of inattention and impulsivity in children. Neurotoxicol Teratol 2017;64:20–8.PubMedCrossrefGoogle Scholar

  • 63.

    Doherty BT, Engel SM, Buckley JP, Silva MJ, Calafat AM, Wolff MS. Prenatal phthalate biomarker concentrations and performance on the Bayley Scales of Infant Development-II in a population of young urban children. Environ Res 2017;152:51–8.CrossrefGoogle Scholar

  • 64.

    Engel SM, Miodovnik A, Canfield RL, Zhu C, Silva MJ, Calafat AM, et al. Prenatal phthalate exposure is associated with childhood behavior and executive functioning. Environ Health Perspect 2010;118(4):565–71.CrossrefPubMedGoogle Scholar

  • 65.

    Engel SM, Zhu C, Berkowitz GS, Calafat AM, Silva MJ, Miodovnik A, et al. Prenatal phthalate exposure and performance on the Neonatal Behavioral Assessment Scale in a multiethnic birth cohort. Neurotoxicology 2009;30(4):522–8.CrossrefGoogle Scholar

  • 66.

    Factor-Litvak P, Insel B, Calafat AM, Liu X, Perera F, Rauh VA, et al. Persistent associations between maternal prenatal exposure to phthalates on child IQ at age 7 years. PLoS One 2014;9(12):e114003.CrossrefPubMedGoogle Scholar

  • 67.

    Gascon M, Valvi D, Forns J, Casas M, Martínez D, Júlvez J, et al. Prenatal exposure to phthalates and neuropsychological development during childhood. Int J Hyg Environ Health 2015;218(6):550–8.PubMedCrossrefGoogle Scholar

  • 68.

    Huang HB, Chen HY, Su PH, Huang PC, Sun CW, Wang CJ, et al. Fetal and childhood exposure to phthalate diesters and cognitive function in children up to 12 years of age: Taiwanese Maternal and Infant Cohort Study. PLoS One 2015;10(6):e0131910.PubMedCrossrefGoogle Scholar

  • 69.

    Kim Y, Ha EH, Kim EJ, Park H, Ha M, Kim JH, et al. Prenatal exposure to phthalates and infant development at 6 months: prospective Mothers and Children’s Environmental Health (MOCEH) study. Environ Health Perspect 2011;119(10):1495–500.CrossrefPubMedGoogle Scholar

  • 70.

    Polanska K, Ligocka D, Sobala W, Hanke W. Phthalate exposure and child development: the Polish Mother and Child Cohort Study. Early Human Dev 2014;90(9):477–85.CrossrefGoogle Scholar

  • 71.

    Swan SH, Liu F, Hines M, Kruse RL, Wang C, Redmon JB, et al. Prenatal phthalate exposure and reduced masculine play in boys. Int J Androl 2010;33(2):259–69.CrossrefPubMedGoogle Scholar

  • 72.

    Whyatt RM, Liu X, Rauh VA, Calafat AM, Just AC, Hoepner L, et al. Maternal prenatal urinary phthalate metabolite concentrations and child mental, psychomotor, and behavioral development at 3 years of age. Environ Health Perspect 2012;120(2):290–5.PubMedCrossrefGoogle Scholar

  • 73.

    Morales E, Julvez J, Torrent M, de Cid R, Guxens M, Bustamante M, et al. Association of early-life exposure to household gas appliances and indoor nitrogen dioxide with cognition and attention behavior in preschoolers. Am J Epidemiol 2009;169(11):1327–36.PubMedCrossrefGoogle Scholar

  • 74.

    Socorro J, Durand A, Temime-Roussel B, Gligorovski S, Wortham H, Quivet E. The persistence of pesticides in atmospheric particulate phase: an emerging air quality issue. Sci Rep 2016;6:1–7.Google Scholar

  • 75.

    Rauh V, Arunajadai S, Horton M, Perera F, Hoepner L, Barr DB, et al. Seven-year neurodevelopmental scores and prenatal exposure to chlorpyrifos, a common agricultural pesticide. Environ Health Perspect 2015;119(8):201–8.Google Scholar

  • 76.

    Gladen BC, Rogan WJ. Effects of perinatal polychlorinated biphenyls and dichlorodiphenyl dichloroethene on later development. J Pediatr 1991;119(1):58–63.PubMedCrossrefGoogle Scholar

  • 77.

    National Institute of Environmental Health Sciences. 2016. Bisphenol A (BPA). https://www.niehs.nih.gov/health/topics/agents/sya-bpa/.

  • 78.

    Matsumoto H, Adachi S, Suzuki Y. Bisphenol A in ambient air particulates responsible for the proliferation of MCF-7 human breast cancer cells and its concentration changes over 6 months. Arch Environ Contam Toxicol 2005; 48(4):459–66.PubMedCrossrefGoogle Scholar

  • 79.

    Nielsen T. Traffic contribution of polycyclic aromatic hydrocarbons in the center of a large city. Atmos Environ 1996;30(20):3481–90.CrossrefGoogle Scholar

  • 80.

    MyHealth. Second-hand and third-hand tobacco smoke. 2017. https://myhealth.alberta.ca/Alberta/Pages/Second-Hand-and-Third-Hand-Tobacco-Smoke.aspx.

  • 81.

    Ciaccio CE, DiDonna A, Kennedy K, Barnes CS, Portnoy JM, Rosenwasser LJ. Secondhand tobacco smoke exposure in low-income children and its association with asthma. Allergy Asthma Proc 2014;35(6):462–6.CrossrefPubMedGoogle Scholar

  • 82.

    Hitchman SC, Fong GT, Zanna MP, Thrasher JF, Chung-Hall J, Siahpush M. Socioeconomic status and smokers’ number of smoking friends: findings from the International Tobacco Control (ITC) four country survey. Drug Alcohol Depend 2014;143:158–66.PubMedCrossrefGoogle Scholar

  • 83.

    Shavers VL, Fagan P, Alexander LAJ, Clayton R, Doucet J, Baezconde-Garbanati L. Workplace and home smoking restrictions and racial/ethnic variation in the prevalence and intensity of current cigarette smoking among women by poverty status, TUS-CPS 1998–1999 and 2001–2002. J Epidemiol Community Health 2006;60(Suppl. 2):ii34–43.Google Scholar

  • 84.

    Dachille KH, Cahallan K. Secondhand smoke and the family courts: the role of smoke exposure in custody and visitation decisions. A law synopsis by the tobacco control legal consortium. 2005. http://www.publichealthlawcenter.org/sites/default/files/resources/tclc-syn-family-2005.pdf.

  • 85.

    EPA. Polychlorinated biphenyls. Learn about polychlorinated biphenyls. 2018. https://www.epa.gov/pcbs/learn-about-polychlorinated-biphenyls-pcbs#commercial.

  • 86.

    Hens B, Hens L. Persistent threats by persistent pollutants: chemical nature, concerns and future policy regarding PCBs – what are we heading for? Toxics 2017;6(1):pii: E1.CrossrefGoogle Scholar

  • 87.

    Jacobson JL, Jacobson SW, Humphrey HE. Effects of in utero exposure to polychlorinated biphenyls and related contaminants on cognitive functioning in young children. J Pediatr 1990;116(1):38–45.CrossrefPubMedGoogle Scholar

  • 88.

    Jacobson JL, Jacobson SW, Padgett RJ, Brumitt GA, Billings RL. Effects of prenatal PCB exposure on cognitive processing efficiency and sustained attention. Dev Psychol 1992;28(2):297–306.CrossrefGoogle Scholar

  • 89.

    Andrade-Junior J. US state legislation updates flame retardants in consumer products. LinkedIn. 2017. https://www.linkedin.com/pulse/us-state-legislation-updates-flame-retardants-jairo-andrade-junior.

  • 90.

    Centers for Disease Control and Prevention. Phthalates Factsheet. 2017. https://www.cdc.gov/biomonitoring/Phthalates_FactSheet.html.

  • 91.

    Buonanno G, Morawska L, Stabile L. Particle emission factors during cooking activities. Atmos Environ 2009;43(20):3235–42.CrossrefGoogle Scholar

  • 92.

    EPA. Formaldehyde: hazard summary. 2013. http://www.epa.gov/ttnatw01/hlthef/formalde.html.

  • 93.

    Wendee N. Cooking up indoor air pollution: emissions from natural gas stoves. Environ Health Perspect 2014;122(1):A27.PubMedGoogle Scholar

  • 94.

    Bale AS, Meacham CA, Benignus VA, Bushnell PJ, Shafer TJ. Volatile organic compounds inhibit human and rat neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes. Toxicol Appl Pharmacol 2005;205(1):77–88.PubMedCrossrefGoogle Scholar

  • 95.

    Bönisch U, Böhme A, Kohajda T, Mögel I, Schütze N, von Bergen M, et al. Volatile organic compounds enhance allergic airway inflammation in an experimental mouse model. PLoS One 2012;7(7):e39817.CrossrefGoogle Scholar

  • 96.

    Choi H, Schmidbauer N, Sundell J, Hasselgren M, Spengler J, Bornehag CG. Common household chemicals and the allergy risks in pre-school age children. PLoS One 2010;5(10):e13423.PubMedCrossrefGoogle Scholar

  • 97.

    Rumchev K, Spickett J, Bulsara M, Phillips M, Stick S. Association of domestic exposure to volatile organic compounds with asthma in young children. Thorax 2004;59(9):746–51.PubMedCrossrefGoogle Scholar

  • 98.

    Gibbs JL, Yost MG, Negrete M, Fenske RA. Passive sampling for indoor and outdoor exposures to chlorpyrifos, azinphos-methyl, and oxygen analogs in a rural agricultural community. Environ Health Perspect 2017;125(3):333–41.CrossrefGoogle Scholar

  • 99.

    Leon Hsu HH, Mathilda Chiu YH, Coull BA, Kloog I, Schwartz J, Lee A, et al. Prenatal particulate air pollution and asthma onset in urban children. Identifying sensitive windows and sex differences. Am J Respir Crit Care Med 2015;192(9):1052–9.CrossrefPubMedGoogle Scholar

  • 100.

    Meltzer L, Ed. Executive function in education: from theory to practice. Guilford Publications, 2018.Google Scholar

  • 101.

    Vandenbroucke L, Verschueren K, Baeyens D. The development of executive functioning across the transition to first grade and its predictive value for academic achievement. Learn Instr 2017;49:103–12.CrossrefGoogle Scholar

About the article

Received: 2018-07-29

Accepted: 2018-12-19

Published Online: 2019-03-07

Published in Print: 2019-03-26


Research funding: Funding support for this project was provided by an award from Mizzou Advantage from MU, and a Margaret Mangel Catalyst Award and a Seeding Interdisciplinary Research Collaboration from the MU College of Human Environmental Sciences.

Conflict of interest: The authors declare they have no actual or potential competing financial interests.

Informed consent: Informed consent is not applicable.

Ethical approval: The conducted research is not related to either human or animal use.


Citation Information: Reviews on Environmental Health, Volume 34, Issue 1, Pages 35–56, ISSN (Online) 2191-0308, ISSN (Print) 0048-7554, DOI: https://doi.org/10.1515/reveh-2018-0045.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in