Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews on Environmental Health

Editor-in-Chief: Carpenter, David O. / Sly, Peter

Editorial Board: Brugge, Doug / Edwards, John W. / Field, R.William / Garbisu, Carlos / Hales, Simon / Horowitz, Michal / Lawrence, Roderick / Maibach, H.I. / Shaw, Susan / Tao, Shu / Tchounwou, Paul B.


IMPACT FACTOR 2018: 1.616

CiteScore 2018: 1.69

SCImago Journal Rank (SJR) 2018: 0.508
Source Normalized Impact per Paper (SNIP) 2018: 0.664

Online
ISSN
2191-0308
See all formats and pricing
More options …
Volume 34, Issue 2

Issues

Early life exposure to lead (Pb) and changes in DNA methylation: relevance to Alzheimer’s disease

Syed Waseem Bihaqi
  • Corresponding author
  • George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Avedisian Hall, Lab: 390, 7 Greenhouse Road, Kingston, RI 02881, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-02-02 | DOI: https://doi.org/10.1515/reveh-2018-0076

Abstract

Recent advances in neuroepigenetics have revealed its essential role in governing body function and disease. Epigenetics regulates an array of mechanisms that are susceptible to undergoing alteration by intracellular or extracellular factors. DNA methylation, one of the most extensively studied epigenetic markers is involved in the regulation of gene expression and also plays a vital role in neuronal development. The epigenome is most vulnerable during early the embryonic stage and perturbation in DNA methylation during this period can result in a latent outcome which can persist during the entire lifespan. Accumulating evidence suggests that environmental insults during the developmental phase can impart changes in the DNA methylation landscape. Based on reports on human subjects and animal models this review will explore the evidence on how developmental exposure of the known environmental pollutant, lead (Pb), can induce changes in the DNA methylation of genes which later can induce development of neurodegenerative disorders like Alzheimer’s disease (AD).

Keywords: Alzheimer’s disease; developmental exposure; DNA methylation; epigenetics; lead (Pb)

References

  • 1.

    Needleman H. Low level lead exposure: history and discovery. Ann Epidemiol 2009;19(4):235–8.PubMedCrossrefGoogle Scholar

  • 2.

    Needleman HL, Riess JA, Tobin MJ, Biesecker GE, Greenhouse JB. Bone lead levels and delinquent behavior. J Am Med Assoc 1996;275(5):363–9.CrossrefGoogle Scholar

  • 3.

    Senut MC, Cingolani P, Sen A, Kruger A, Shaik A, Hirsch H, et al. Epigenetics of early-life lead exposure and effects on brain development. Epigenomics 2012;4(6):665–74.PubMedCrossrefGoogle Scholar

  • 4.

    Sanders T, Liu Y, Buchner V, Tchounwou PB. Neurotoxic effects and biomarkers of lead exposure: a review. Rev Environ Health 2009;24(1):15–45.PubMedGoogle Scholar

  • 5.

    White LD, Cory-Slechta DA, Gilbert ME, Tiffany-Castiglioni E, Zawia NH, Virgolini M, et al. New and evolving concepts in the neurotoxicology of lead. Toxicol Appl Pharmacol 2007;225(1):1–27.CrossrefPubMedGoogle Scholar

  • 6.

    Bellinger DC. The protean toxicities of lead: new chapters in a familiar story. Int J Environ Res Public Health 2011;8(7): 2593–628.CrossrefGoogle Scholar

  • 7.

    Grosse SD, Matte TD, Schwartz J, Jackson RJ. Economic gains resulting from the reduction in children’s exposure to lead in the United States. Environ Health Perspect 2002;110(6):563–9.CrossrefPubMedGoogle Scholar

  • 8.

    Kuehn BM. Panel advises tougher limits on lead exposure. J Am Med Assoc 2012;307(5):445.CrossrefGoogle Scholar

  • 9.

    van Wijngaarden E, Winters PC, Cory-Slechta DA. Blood lead levels in relation to cognitive function in older U.S. adults. Neurotoxicology 2011;32(1):110–5.PubMedCrossrefGoogle Scholar

  • 10.

    Santibanez M, Bolumar F, Garcia AM. Occupational risk factors in Alzheimer’s disease: a review assessing the quality of published epidemiological studies. Occup Environ Med 2007;64(11):723–32.PubMedCrossrefGoogle Scholar

  • 11.

    Schmidtke K, Hermeneit S. High rate of conversion to Alzheimer’s disease in a cohort of amnestic MCI patients. Int Psychogeriatr 2008;20(1):96–108.CrossrefGoogle Scholar

  • 12.

    Basha MR, Wei W, Bakheet SA, Benitez N, Siddiqi HK, Ge YW, et al. The fetal basis of amyloidogenesis: exposure to lead and latent overexpression of amyloid precursor protein and beta-amyloid in the aging brain. J Neurosci 2005;25(4):823–9.CrossrefPubMedGoogle Scholar

  • 13.

    Liu KS, Hao JH, Zeng Y, Dai FC, Gu PQ. Neurotoxicity and biomarkers of lead exposure: a review. Chin Med Sci J 2013;28(3):178–88.CrossrefPubMedGoogle Scholar

  • 14.

    Guidotti TL, Ragain L. Protecting children from toxic exposure: three strategies. Pediatr Clin North Am 2007;54(2):227–35, vii.PubMedCrossrefGoogle Scholar

  • 15.

    Lanphear BP, Byrd RS, Auinger P, Schaffer SJ. Community characteristics associated with elevated blood lead levels in children. Pediatrics 1998;101(2):264–71.CrossrefPubMedGoogle Scholar

  • 16.

    Rabito FA, Shorter C, White LE. Lead levels among children who live in public housing. Epidemiology 2003;14(3):263–8.CrossrefPubMedGoogle Scholar

  • 17.

    Patrick L. Lead toxicity, a review of the literature. Part 1: Exposure, evaluation, and treatment. Altern Med Rev 2006;11(1):2–22.PubMedGoogle Scholar

  • 18.

    Russell Jones R. The continuing hazard of lead in drinking water. Lancet 1989;2(8664):669–70.PubMedGoogle Scholar

  • 19.

    Hu H. Bone lead as a new biologic marker of lead dose: recent findings and implications for public health. Environ Health Perspect 1998;106(Suppl 4):961–7.PubMedGoogle Scholar

  • 20.

    Philip AT, Gerson B. Lead poisoning – Part I. Incidence, etiology, and toxicokinetics. Clin Lab Med 1994;14(2):423–44.CrossrefPubMedGoogle Scholar

  • 21.

    Hu H, Rabinowitz M, Smith D. Bone lead as a biological marker in epidemiologic studies of chronic toxicity: conceptual paradigms. Environ Health Perspect 1998;106(1):1–8.CrossrefPubMedGoogle Scholar

  • 22.

    Rabinowitz MB. Toxicokinetics of bone lead. Environ Health Perspect 1991;91:33–7.PubMedCrossrefGoogle Scholar

  • 23.

    Silbergeld EK, Schwartz J, Mahaffey K. Lead and osteoporosis: mobilization of lead from bone in postmenopausal women. Environ Res 1988;47(1):79–94.CrossrefPubMedGoogle Scholar

  • 24.

    Fewtrell LJ, Pruss-Ustun A, Landrigan P, Ayuso-Mateos JL. Estimating the global burden of disease of mild mental retardation and cardiovascular diseases from environmental lead exposure. Environ Res 2004;94(2):120–33.CrossrefPubMedGoogle Scholar

  • 25.

    Gorell JM, Rybicki BA, Cole Johnson C, Peterson EL. Occupational metal exposures and the risk of Parkinson’s disease. Neuroepidemiology 1999;18(6):303–8.CrossrefPubMedGoogle Scholar

  • 26.

    Stewart WF, Schwartz BS, Simon D, Kelsey K, Todd AC. ApoE genotype, past adult lead exposure, and neurobehavioral function. Environ Health Perspect 2002;110(5):501–5.PubMedCrossrefGoogle Scholar

  • 27.

    Payton M, Riggs KM, Spiro 3rd A, Weiss ST, Hu H. Relations of bone and blood lead to cognitive function: the VA Normative Aging Study. Neurotoxicol Teratol 1998;20(1):19–27.PubMedCrossrefGoogle Scholar

  • 28.

    Weisskopf MG, Wright RO, Schwartz J, Spiro 3rd A, Sparrow D, Aro A, et al. Cumulative lead exposure and prospective change in cognition among elderly men: the VA Normative Aging Study. Am J Epidemiol 2004;160(12):1184–93.PubMedCrossrefGoogle Scholar

  • 29.

    Weisskopf MG, Proctor SP, Wright RO, Schwartz J, Spiro 3rd A, Sparrow D, et al. Cumulative lead exposure and cognitive performance among elderly men. Epidemiology 2007;18(1): 59–66.CrossrefPubMedGoogle Scholar

  • 30.

    Selkoe DJ. Amyloid protein and Alzheimer’s disease. Sci Am 1991;265(5):68–71, 4–6, 78.PubMedCrossrefGoogle Scholar

  • 31.

    Tanzi RE, Bertram L. Alzheimer’s disease: the latest suspect. Nature 2008;454(7205):706–8.PubMedGoogle Scholar

  • 32.

    Zawia NH, Lahiri DK, Cardozo-Pelaez F. Epigenetics, oxidative stress, and Alzheimer disease. Free Radic Biol Med 2009;46(9):1241–9.PubMedCrossrefGoogle Scholar

  • 33.

    Barker DJ, Winter PD, Osmond C, Margetts B, Simmonds SJ. Weight in infancy and death from ischaemic heart disease. Lancet 1989;2(8663):577–80.PubMedGoogle Scholar

  • 34.

    Barker DJ. Fetal origins of cardiovascular disease. Ann Med 1999;31(Suppl 1):3–6.CrossrefGoogle Scholar

  • 35.

    Wu J, Basha MR, Brock B, Cox DP, Cardozo-Pelaez F, McPherson CA, et al. Alzheimer’s disease (AD)-like pathology in aged monkeys after infantile exposure to environmental metal lead (Pb): evidence for a developmental origin and environmental link for AD. J Neurosci 2008;28(1):3–9.CrossrefPubMedGoogle Scholar

  • 36.

    Bihaqi SW, Bahmani A, Subaiea GM, Zawia NH. Infantile exposure to lead and late-age cognitive decline: relevance to AD. Alzheimers Dement 2014;10(2):187–95.PubMedCrossrefGoogle Scholar

  • 37.

    Bihaqi SW, Bahmani A, Adem A, Zawia NH. Infantile postnatal exposure to lead (Pb) enhances tau expression in the cerebral cortex of aged mice: relevance to AD. Neurotoxicology 2014;44:114–20.PubMedCrossrefGoogle Scholar

  • 38.

    Bihaqi SW, Zawia NH. Enhanced taupathy and AD-like pathology in aged primate brains decades after infantile exposure to lead (Pb). Neurotoxicology 2013;39:95–101.CrossrefPubMedGoogle Scholar

  • 39.

    Kanherkar RR, Bhatia-Dey N, Makarev E, Csoka AB. Cellular reprogramming for understanding and treating human disease. Front Cell Dev Biol 2014;2:67.PubMedGoogle Scholar

  • 40.

    Bird AP. CpG-rich islands and the function of DNA methylation. Nature 1986;321(6067):209–13.CrossrefPubMedGoogle Scholar

  • 41.

    Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003;33(Suppl):245–54.PubMedCrossrefGoogle Scholar

  • 42.

    Robert L. Epigenetic post-transcriptional mechanisms for regulating physiological functions, and their decline during aging. J Soc Biol 2004;198(3):257–62.PubMedGoogle Scholar

  • 43.

    Wu G, Bazer FW, Cudd TA, Meininger CJ, Spencer TE. Maternal nutrition and fetal development. J Nutr 2004;134(9):2169–72.PubMedCrossrefGoogle Scholar

  • 44.

    Mastroeni D, McKee A, Grover A, Rogers J, Coleman PD. Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer’s disease. PLoS One 2009;4(8):e6617.CrossrefPubMedGoogle Scholar

  • 45.

    Martin GM. Epigenetic drift in aging identical twins. Proc Natl Acad Sci USA 2005;102(30):10413–4.CrossrefGoogle Scholar

  • 46.

    Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology 2013;38(1):23–38.PubMedCrossrefGoogle Scholar

  • 47.

    Niculescu MD, Craciunescu CN, Zeisel SH. Dietary choline deficiency alters global and gene-specific DNA methylation in the developing hippocampus of mouse fetal brains. FASEB J 2006;20(1):43–9.CrossrefPubMedGoogle Scholar

  • 48.

    Bottiglieri T, Godfrey P, Flynn T, Carney MW, Toone BK, Reynolds EH. Cerebrospinal fluid S-adenosylmethionine in depression and dementia: effects of treatment with parenteral and oral S-adenosylmethionine. J Neurol Neurosurg Psychiatry 1990;53(12):1096–8.CrossrefPubMedGoogle Scholar

  • 49.

    Morrison LD, Smith DD, Kish SJ. Brain S-adenosylmethionine levels are severely decreased in Alzheimer’s disease. J Neurochem 1996;67(3):1328–31.PubMedGoogle Scholar

  • 50.

    Vafai SB, Stock JB. Protein phosphatase 2A methylation: a link between elevated plasma homocysteine and Alzheimer’s disease. FEBS Lett 2002;518(1–3):1–4.CrossrefPubMedGoogle Scholar

  • 51.

    Obeid R, Kasoha M, Knapp JP, Kostopoulos P, Becker G, Fassbender K, et al. Folate and methylation status in relation to phosphorylated tau protein(181P) and beta-amyloid(1-42) in cerebrospinal fluid. Clin Chem 2007;53(6):1129–36.PubMedCrossrefGoogle Scholar

  • 52.

    Snowdon DA, Tully CL, Smith CD, Riley KP, Markesbery WR. Serum folate and the severity of atrophy of the neocortex in Alzheimer disease: findings from the Nun study. Am J Clin Nutr 2000;71(4):993–8.CrossrefPubMedGoogle Scholar

  • 53.

    Kruman II, Kumaravel TS, Lohani A, Pedersen WA, Cutler RG, Kruman Y, et al. Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid toxicity in experimental models of Alzheimer’s disease. J Neurosci 2002;22(5):1752–62.PubMedCrossrefGoogle Scholar

  • 54.

    Coppede F. One-carbon metabolism and Alzheimer’s disease: focus on epigenetics. Curr Genomics 2010;11(4):246–60.CrossrefPubMedGoogle Scholar

  • 55.

    Roth TL. Epigenetic mechanisms in the development of behavior: advances, challenges, and future promises of a new field. Dev Psychopathol 2013;25(4 Pt 2):1279–91.CrossrefPubMedGoogle Scholar

  • 56.

    Motta V, Bonzini M, Grevendonk L, Iodice S, Bollati V. Epigenetics applied to epidemiology: investigating environmental factors and lifestyle influence on human health. Med Lav 2017;108(1):10–23.PubMedGoogle Scholar

  • 57.

    Cheng TF, Choudhuri S, Muldoon-Jacobs K. Epigenetic targets of some toxicologically relevant metals: a review of the literature. J Appl Toxicol 2012;32(9):643–53.PubMedCrossrefGoogle Scholar

  • 58.

    Fragou D, Fragou A, Kouidou S, Njau S, Kovatsi L. Epigenetic mechanisms in metal toxicity. Toxicol Mech Methods 2011;21(4):343–52.PubMedCrossrefGoogle Scholar

  • 59.

    Martinez-Zamudio R, Ha HC. Environmental epigenetics in metal exposure. Epigenetics 2011;6(7):820–7.CrossrefPubMedGoogle Scholar

  • 60.

    Fuso A, Scarpa S. One-carbon metabolism and Alzheimer’s disease: is it all a methylation matter? Neurobiol Aging 2011;32(7):1192–5.CrossrefPubMedGoogle Scholar

  • 61.

    Cao XJ, Huang SH, Wang M, Chen JT, Ruan DY. S-adenosyl-L-methionine improves impaired hippocampal long-term potentiation and water maze performance induced by developmental lead exposure in rats. Eur J Pharmacol 2008;595(1–3):30–4.CrossrefPubMedGoogle Scholar

  • 62.

    Chen T, Li YY, Zhang JL, Xu B, Lin Y, Wang CX, et al. Protective effect of C(60)-methionine derivate on lead-exposed human SH-SY5Y neuroblastoma cells. J Appl Toxicol 2011;31(3):255–61.PubMedCrossrefGoogle Scholar

  • 63.

    Pilsner JR, Hu H, Ettinger A, Sanchez BN, Wright RO, Cantonwine D, et al. Influence of prenatal lead exposure on genomic methylation of cord blood DNA. Environ Health Perspect 2009;117(9):1466–71.CrossrefPubMedGoogle Scholar

  • 64.

    Bihaqi SW, Huang H, Wu J, Zawia NH. Infant exposure to lead (Pb) and epigenetic modifications in the aging primate brain: implications for Alzheimer’s disease. J Alzheimers Dis 2011;27(4):819–33.CrossrefPubMedGoogle Scholar

  • 65.

    Bihaqi SW, Zawia NH. Alzheimer’s disease biomarkers and epigenetic intermediates following exposure to Pb in vitro. Curr Alzheimer Res 2012;9(5):555–62.CrossrefGoogle Scholar

  • 66.

    Dosunmu R, Alashwal H, Zawia NH. Genome-wide expression and methylation profiling in the aged rodent brain due to early-life Pb exposure and its relevance to aging. Mech Ageing Dev 2012;133(6):435–43.PubMedCrossrefGoogle Scholar

  • 67.

    Alashwal H, Dosunmu R, Zawia NH. Integration of genome-wide expression and methylation data: relevance to aging and Alzheimer’s disease. Neurotoxicology 2012;33(6):1450–3.PubMedCrossrefGoogle Scholar

  • 68.

    Obeng-Gyasi E. Lead exposure and oxidative stress-a life course approach in U.S. adults. Toxics 2018;6(3):E42.CrossrefPubMedGoogle Scholar

  • 69.

    Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK, et al. Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 2001;60(8):759–67.PubMedCrossrefGoogle Scholar

  • 70.

    Kuchino Y, Mori F, Kasai H, Inoue H, Iwai S, Miura K, et al. Misreading of DNA templates containing 8-hydroxydeoxyguanosine at the modified base and at adjacent residues. Nature 1987;327(6117):77–9.PubMedCrossrefGoogle Scholar

  • 71.

    Xiao W, Samson L. In vivo evidence for endogenous DNA alkylation damage as a source of spontaneous mutation in eukaryotic cells. Proc Natl Acad Sci USA 1993;90(6):2117–21.CrossrefGoogle Scholar

  • 72.

    Bolin C, Stedeford T, Cardozo-Pelaez F. Single extraction protocol for the analysis of 8-hydroxy-2′-deoxyguanosine (oxo8dG) and the associated activity of 8-oxoguanine DNA glycosylase. J Neurosci Methods 2004;136(1):69–76.CrossrefPubMedGoogle Scholar

  • 73.

    Bihaqi SW, Schumacher A, Maloney B, Lahiri DK, Zawia NH. Do epigenetic pathways initiate late onset alzheimer disease (LOAD): towards a new paradigm. Curr Alzheimer Res 2012;9(5):574–88.PubMedCrossrefGoogle Scholar

  • 74.

    Weitzman SA, Turk PW, Milkowski DH, Kozlowski K. Free radical adducts induce alterations in DNA cytosine methylation. Proc Natl Acad Sci USA 1994;91(4):1261–4.CrossrefGoogle Scholar

  • 75.

    Castellani RJ, Lee HG, Perry G, Smith MA. Antioxidant protection and neurodegenerative disease: the role of amyloid-beta and tau. Am J Alzheimers Dis Other Demen 2006;21(2):126–30.CrossrefPubMedGoogle Scholar

  • 76.

    Bolin CM, Basha R, Cox D, Zawia NH, Maloney B, Lahiri DK, et al. Exposure to lead and the developmental origin of oxidative DNA damage in the aging brain. FASEB J 2006;20(6):788–90.CrossrefPubMedGoogle Scholar

  • 77.

    Chia N, Wang L, Lu X, Senut MC, Brenner C, Ruden DM. Hypothesis: environmental regulation of 5-hydroxymethylcytosine by oxidative stress. Epigenetics 2011;6(7):853–6.CrossrefPubMedGoogle Scholar

  • 78.

    Bakulski KM, Rozek LS, Dolinoy DC, Paulson HL, Hu H. Alzheimer’s disease and environmental exposure to lead: the epidemiologic evidence and potential role of epigenetics. Curr Alzheimer Res 2012;9(5):563–73.CrossrefPubMedGoogle Scholar

About the article

Corresponding author: Syed Waseem Bihaqi, PhD, George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Avedisian Hall, Lab: 390, 7 Greenhouse Road, Kingston, RI 02881, USA


Received: 2018-11-20

Accepted: 2019-01-09

Published Online: 2019-02-02

Published in Print: 2019-06-26


Research funding: Author states no funding involved.

Conflict of interest: Author states no conflict of interest.

Informed consent: Informed consent is not applicable.

Ethical approval: The conducted research is not related to either human or animal use.


Citation Information: Reviews on Environmental Health, Volume 34, Issue 2, Pages 187–195, ISSN (Online) 2191-0308, ISSN (Print) 0048-7554, DOI: https://doi.org/10.1515/reveh-2018-0076.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Xue-Lian Li, Run-Qing Zhan, Wei Zheng, Hong Jiang, Dong-Feng Zhang, and Xiao-Li Shen
Journal of Trace Elements in Medicine and Biology, 2020, Page 126452
[2]
Jorge Alejandro Alegría-Torres, Rebeca Yasmín Pérez-Rodríguez, Lizeth García-Torres, Rogelio Costilla-Salazar, and Diana Rocha-Amador
Environmental Science and Pollution Research, 2019
[3]
Miguel Chin-Chan, Luis Cobos-Puc, Isabel Alvarado-Cruz, Melike Bayar, and Maria Ermolaeva
JBIC Journal of Biological Inorganic Chemistry, 2019
[4]
Tatiana A. Chernova, Yury O. Chernoff, and Keith D. Wilkinson
Molecules, 2019, Volume 24, Number 18, Page 3388
[5]
Farzana Kastury, Silvia Placitu, John Boland, Ranju R. Karna, Kirk G. Scheckel, Euan Smith, and Albert L. Juhasz
Environment International, 2019, Volume 131, Page 104967
[6]
John F. Dou, Zishaan Farooqui, Christopher D. Faulk, Amanda K. Barks, Tamara Jones, Dana C. Dolinoy, and Kelly M. Bakulski
Genes, 2019, Volume 10, Number 4, Page 274

Comments (0)

Please log in or register to comment.
Log in