Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in Inorganic Chemistry

Editor-in-Chief: Schulz, Axel

Editorial Board: Aldridge, Simon / Burford, Neil / Cronin, Leroy / Dunbar, Kim / Holthausen, Max / Huppertz, Hubert / Liu, Xiaoming / Rosenthal, Uwe / Schiller, Alexander / Schulz, Stephan / Senker, Jürgen / Hänisch, Carsten / Yoon, Kyung / Zhang, Xian-Ming

IMPACT FACTOR 2018: 2.824

CiteScore 2018: 2.66

SCImago Journal Rank (SJR) 2018: 0.539
Source Normalized Impact per Paper (SNIP) 2018: 1.081

See all formats and pricing
More options …
Volume 33, Issue 4


Structural aspects of [NiFe]-hydrogenases

Yasuhito Shomura
  • Corresponding author
  • Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
  • RIKEN SPring-8 Center, 1-1-1 Koto, Sayo-gun, Sayo-cho, Hyogo 679-5148, Japan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yoshiki Higuchi
  • Corresponding author
  • Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
  • RIKEN SPring-8 Center, 1-1-1 Koto, Sayo-gun, Sayo-cho, Hyogo 679-5148, Japan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-09-07 | DOI: https://doi.org/10.1515/revic-2013-0005


Enzymes that naturally contain an organometallic complex are highly rare. Hydrogenases commonly include iron carbonyl(s) at the active site and play central roles in the hydrogen metabolism of microorganisms. [NiFe]-hydrogenases that harbor an Ni-Fe(CN)2CO complex at the active site most widely exist among organisms, compared with the other two types, [FeFe]- and [Fe]-hydrogenases. Since the first crystal structure report in 1995, structural information of the Ni-Fe cluster with various redox/substrate-bound states has been obtained, although details of the reaction mechanisms are poorly understood. While the subunit composition, physiological function, and spectroscopic/biochemical properties of [NiFe]-hydrogenases are diverse, structural information of only a limited group of the enzymes is available so far. In this paper, structural aspects of [NiFe]-hydrogenases are reviewed and recent progresses in understanding the mechanism of an O2-tolerant property of limited members and active site assembling of [NiFe]-hydrogenases are described.

Keywords: crystal structure; enzyme; hydrogen; iron; nickel


  • Albracht, S. P. Intimate relationships of the large and the small subunits of all nickel hydrogenases with two nuclear-encoded subunits of mitochondrial NADH: ubiquinone oxidoreductase. Biochim. Biophys. Acta. 1993, 1144, 221–224.Google Scholar

  • Albracht, S. P. Nickel hydrogenases: in search of the active site. Biochim. Biophys. Acta. 1994, 1188, 167–204.Google Scholar

  • Baltazar, C. S. A.; Marques, M.; Soares, C. M.; De Lacey, A. M.; Pereira, I. A.; Matias, P. M. Nickel-iron-selenium hydrogenases-an overview. Eur. J. Inorg. Chem. 2011, 2011, 948–962.Google Scholar

  • Baltazar, C. S.; Teixeira, V. H.; Soares, C. M. Structural features of [NiFeSe] and [NiFe] hydrogenases determining their different properties: a computational approach. J. Biol. Inorg. Chem. 2012, 17, 543–555.Google Scholar

  • Barton, B. E.; Whaley, C. M.; Rauchfuss, T. B.; Gray, D. L. Nickel-iron dithiolato hydrides relevant to the [NiFe]-hydrogenase active site. J. Am. Chem. Soc. 2009, 131, 6942–6943.Google Scholar

  • Berks, B. C.; Palmer, T.; Sargent, F. The Tat protein translocation pathway and its role in microbial physiology. Adv. Microb. Physiol. 2003, 47, 187–254.PubMedGoogle Scholar

  • Bertini, I.; Gray, H. B.; Stiefel, E. I.; Valentine, J. S. Biological Inorganic Chemistry, University Science Books: Sausalito, CA, 2007.Google Scholar

  • Blokesch, M.; Bock, A. Maturation of [NiFe]-hydrogenases in Escherichia coli: the HypC cycle. J. Mol. Biol. 2002, 324, 287–296.Google Scholar

  • Blokesch, M.; Bock, A. Properties of the [NiFe]-hydrogenase maturation protein HypD. FEBS Lett. 2006, 580, 4065–4068.Google Scholar

  • Blokesch, M.; Paschos, A.; Bauer, A.; Reissmann, S.; Drapal, N.; Bock, A. Analysis of the transcarbamoylation-dehydration reaction catalyzed by the hydrogenase maturation proteins HypF and HypE. Eur. J. Biochem. 2004a, 271, 3428–3436.Google Scholar

  • Blokesch, M.; Albracht, S. P.; Matzanke, B. F.; Drapal, N. M.; Jacobi, A.; Bock, A. The complex between hydrogenase-maturation proteins HypC and HypD is an intermediate in the supply of cyanide to the active site iron of [NiFe]-hydrogenases. J. Mol. Biol. 2004b, 344, 155–167.Google Scholar

  • Bock, A.; King, P. W.; Blokesch, M.; Posewitz, M. C. Maturation of hydrogenases. Adv. Microb. Physiol. 2006, 51, 1–71.PubMedGoogle Scholar

  • Bohm, R.; Sauter, M.; Bock, A. Nucleotide sequence and expression of an operon in Escherichia coli coding for formate hydrogenlyase components. Mol. Microbiol. 1990, 4, 231–243.CrossrefGoogle Scholar

  • Buhrke, T.; Lenz, O.; Krauss, N.; Friedrich, B. Oxygen tolerance of the H2-sensing [NiFe] hydrogenase from Ralstonia eutropha H16 is based on limited access of oxygen to the active site. J. Biol. Chem. 2005, 280, 23791–23796.Google Scholar

  • Burgdorf, T.; Loscher, S.; Liebisch, P.; Van der Linden, E.; Galander, M.; Lendzian, F.; Meyer-Klaucke, W.; Albracht, S. P.; Friedrich, B.; Dau, H.; Haumann, M. Structural and oxidation-state changes at its nonstandard Ni-Fe site during activation of the NAD-reducing hydrogenase from Ralstonia eutropha detected by X-ray absorption, EPR, and FTIR spectroscopy. J. Am. Chem. Soc. 2005, 127, 576–592.Google Scholar

  • Burstel, I.; Hummel, P.; Siebert, E.; Wisitruangsakul, N.; Zebger, I.; Friedrich, B.; Lenz, O. Probing the origin of the metabolic precursor of the CO ligand in the catalytic center of [NiFe] hydrogenase. J. Biol. Chem. 2011, 286, 44937–44944.Google Scholar

  • Burstel, I.; Siebert, E.; Winter, G.; Hummel, P.; Zebger, I.; Friedrich, B.; Lenz, O. A universal scaffold for synthesis of the Fe(CN)2(CO) moiety of [NiFe] hydrogenase. J. Biol. Chem. 2012, 287, 38845–38853.Google Scholar

  • Canaguier, S.; Artero, V.; Fontecave, M. Modelling NiFe hydrogenases: nickel-based electrocatalysts for hydrogen production. Dalton Trans. 2008, 37, 315–325.CrossrefGoogle Scholar

  • Canaguier, S.; Field, M.; Oudart, Y.; Pecaut, J.; Fontecave, M.; Artero, V. A structural and functional mimic of the active site of NiFe hydrogenases. Chem. Commun. (Camb). 2010, 46, 5876–5878.CrossrefGoogle Scholar

  • Canaguier, S.; Fourmond, V.; Perotto, C. U.; Fize, J.; Pecaut, J.; Fontecave, M.; Field, M. J.; Artero, V. Catalytic hydrogen production by a Ni-Ru mimic of NiFe hydrogenases involves a proton-coupled electron transfer step. Chem. Commun. (Camb). 2013, 49, 5004–5006.CrossrefGoogle Scholar

  • Casalot, L.; Rousset, M. Maturation of the [NiFe] hydrogenases. Trends Microbiol. 2001, 9, 228–237.CrossrefPubMedGoogle Scholar

  • Chan Chung, K. C.; Zamble, D. B. Protein interactions and localization of the Escherichia coli accessory protein HypA during nickel insertion to [NiFe] hydrogenase. J. Biol. Chem. 2011, 286, 43081–43090.Google Scholar

  • Constant, P.; Chowdhury, S. P.; Hesse, L.; Pratscher, J.; Conrad, R. Genome data mining and soil survey for the novel group 5 [NiFe]-hydrogenase to explore the diversity and ecological importance of presumptive high-affinity H2-oxidizing bacteria. Appl. Environ. Microbiol. 2011, 77, 6027–6035.PubMedCrossrefGoogle Scholar

  • Cracknell, J. A.; Wait, A. F.; Lenz, O.; Friedrich, B.; Armstrong, F. A. A kinetic and thermodynamic understanding of O2 tolerance in [NiFe]-hydrogenases. Proc. Natl. Acad. Sci. USA 2009, 106, 20681–20686.CrossrefGoogle Scholar

  • De Lacey, A. L.; Hatchikian, E. C.; Volbeda, A.; Frey, M.; Fontecilla-Camps, J. C.; Fernandez, V. M. Infrared-spectroelectrochemical characterization of the [NiFe] hydrogenase of Desulfovibrio gigas. J. Am. Chem. Soc. 1997, 119, 7181–7189.Google Scholar

  • De Lacey, A. L.; Fernandez, V. M.; Rousset, M.; Cammack, R. Activation and inactivation of hydrogenase function and the catalytic cycle: spectroelectrochemical studies. Chem. Rev. 2007, 107, 4304–4330.CrossrefPubMedGoogle Scholar

  • De Lacey, A. L.; Gutierrez-Sanchez, C.; Fernandez, V. M.; Pacheco, I.; Pereira, I. A. FTIR spectroelectrochemical characterization of the Ni-Fe-Se hydrogenase from Desulfovibrio vulgaris Hildenborough. J. Biol. Inorg. Chem. 2008, 13, 1315–1320.CrossrefGoogle Scholar

  • Dementin, S.; Leroux, F.; Cournac, L.; de Lacey, A. L.; Volbeda, A.; Leger, C.; Burlat, B.; Martinez, N.; Champ, S.; Martin, L.; Sanganas, O.; Haumann, M.; Fernandez, V. M.; Guigliarelli, B.; Fontecilla-Camps, J. C.; Rousset, M. Introduction of methionines in the gas channel makes [NiFe] hydrogenase aero-tolerant. J. Am. Chem. Soc. 2009, 131, 10156–10164.Google Scholar

  • Dernedde, J.; Eitinger, T.; Patenge, N.; Friedrich, B. hyp gene products in Alcaligenes eutrophus are part of a hydrogenase-maturation system. Eur. J. Biochem. 1996, 235, 351–358.Google Scholar

  • Drapal, N.; Bock, A. Interaction of the hydrogenase accessory protein HypC with HycE, the large subunit of Escherichia coli hydrogenase 3 during enzyme maturation. Biochemistry. 1998, 37, 2941–2948.CrossrefGoogle Scholar

  • Driesener, R. C.; Challand, M. R.; McGlynn, S. E.; Shepard, E. M.; Boyd, E. S.; Broderick, J. B.; Peters, J. W.; Roach, P. L. [FeFe]-hydrogenase cyanide ligands derived from S-adenosylmethionine-dependent cleavage of tyrosine. Angew. Chem. Int. Ed. Engl. 2010, 49, 1687–1690.CrossrefGoogle Scholar

  • Dubini, A.; Sargent, F. Assembly of Tat-dependent [NiFe] hydrogenases: identification of precursor-binding accessory proteins. FEBS Lett. 2003, 549, 141–146.Google Scholar

  • Duche, O.; Elsen, S.; Cournac, L.; Colbeau, A. Enlarging the gas access channel to the active site renders the regulatory hydrogenase HupUV of Rhodobacter capsulatus O2 sensitive without affecting its transductory activity. Febs J. 2005, 272, 3899–3908.Google Scholar

  • Fauque, G.; Peck, H. D., Jr.; Moura, J. J.; Huynh, B. H.; Berlier, Y.; DerVartanian, D. V.; Teixeira, M.; Przybyla, A. E.; Lespinat, P. A.; Moura, I.; LeGall, J. The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio. FEMS Microbiol. Rev. 1988, 4, 299–344.PubMedGoogle Scholar

  • Fernandez, V. M.; Rao, K. K.; Fernandez, M. A.; Cammack, R. Activation and deactivation of the membrane-bound hydrogenase from Desulfovibrio desulfuricans, Norway strain. Biochimie. 1986, 68, 43–48.PubMedCrossrefGoogle Scholar

  • Fichtner, C.; Laurich, C.; Bothe, E.; Lubitz, W. Spectroelectrochemical characterization of the [NiFe] hydrogenase of Desulfovibrio vulgaris Miyazaki F. Biochemistry. 2006, 45, 9706–9716.CrossrefGoogle Scholar

  • Foerster, S.; van Gastel, M.; Brecht, M.; Lubitz, W. An orientation-selected ENDOR and HYSCORE study of the Ni-C active state of Desulfovibrio vulgaris Miyazaki F hydrogenase. J. Biol. Inorg. Chem. 2005, 10, 51–62.CrossrefGoogle Scholar

  • Fontecilla-Camps, J. C.; Volbeda, A.; Cavazza, C.; Nicolet, Y. Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem. Rev. 2007, 107, 4273–4303.CrossrefGoogle Scholar

  • Forzi, L.; Hellwig, P.; Thauer, R. K.; Sawers, R. G. The CO and CN- ligands to the active site Fe in [NiFe]-hydrogenase of Escherichia coli have different metabolic origins. FEBS Lett. 2007, 581, 3317–3321.Google Scholar

  • Friedrich, T.; Scheide, D. The respiratory complex I of bacteria, archaea and eukarya and its module common with membrane-bound multisubunit hydrogenases. FEBS Lett. 2000, 479, 1–5.Google Scholar

  • Friedrich, B.; Fritsch, J.; Lenz, O. Oxygen-tolerant hydrogenases in hydrogen-based technologies. Curr. Opin. Biotechnol. 2011, 22, 358–364.PubMedCrossrefGoogle Scholar

  • Frielingsdorf, S.; Schubert, T.; Pohlmann, A.; Lenz, O.; Friedrich, B. A trimeric supercomplex of the oxygen-tolerant membrane-bound [NiFe]-hydrogenase from Ralstonia eutropha H16. Biochemistry. 2011, 50, 10836–10843.CrossrefGoogle Scholar

  • Fritsch, J.; Scheerer, P.; Frielingsdorf, S.; Kroschinsky, S.; Friedrich, B.; Lenz, O.; Spahn, C. M. The crystal structure of an oxygen-tolerant hydrogenase uncovers a novel iron-sulphur centre. Nature. 2011, 479, 249–252.Google Scholar

  • Garcin, E.; Vernede, X.; Hatchikian, E. C.; Volbeda, A.; Frey, M.; Fontecilla-Camps, J. C. The crystal structure of a reduced [NiFeSe] hydrogenase provides an image of the activated catalytic center. Structure. 1999, 7, 557–566.PubMedCrossrefGoogle Scholar

  • Gloaguen, F.; Rauchfuss, T. B. Small molecule mimics of hydrogenases: hydrides and redox. Chem. Soc. Rev. 2009, 38, 100–108.PubMedCrossrefGoogle Scholar

  • Goldet, G.; Wait, A. F.; Cracknell, J. A.; Vincent, K. A.; Ludwig, M.; Lenz, O.; Friedrich, B.; Armstrong, F. A. Hydrogen production under aerobic conditions by membrane-bound hydrogenases from Ralstonia species. J. Am. Chem. Soc. 2008, 130, 11106–11113.Google Scholar

  • Goldet, G.; Brandmayr, C.; Stripp, S. T.; Happe, T.; Cavazza, C.; Fontecilla-Camps, J. C.; Armstrong, F. A. Electrochemical kinetic investigations of the reactions of [FeFe]-hydrogenases with carbon monoxide and oxygen: comparing the importance of gas tunnels and active-site electronic/redox effects. J. Am. Chem. Soc. 2009, 131, 14979–14989.CrossrefGoogle Scholar

  • Goris, T.; Wait, A. F.; Saggu, M.; Fritsch, J.; Heidary, N.; Stein, M.; Zebger, I.; Lendzian, F.; Armstrong, F. A.; Friedrich, B.; Lenz, O. A unique iron-sulfur cluster is crucial for oxygen tolerance of a [NiFe]-hydrogenase. Nat. Chem. Biol. 2011, 7, 310–318.CrossrefPubMedGoogle Scholar

  • Gutierrez-Sanchez, C.; Olea, D.; Marques, M.; Fernandez, V. M.; Pereira, I. A.; Velez, M.; De Lacey, A. L. Oriented immobilization of a membrane-bound hydrogenase onto an electrode for direct electron transfer. Langmuir. 2011, 27, 6449–6457.CrossrefGoogle Scholar

  • Happe, R. P.; Roseboom, W.; Pierik, A. J.; Albracht, S. P.; Bagley, K. A. Biological activation of hydrogen. Nature. 1997, 385, 126.Google Scholar

  • Hartmann, G. C.; Santamaria, E.; Fernandez, V. M.; Thauer, R. K. Studies on the catalytic mechanism of H2-forming methylenetetrahydromethanopterin dehydrogenase: para-ortho H2 conversion rates in H2O and D2O. J. Biol. Inorg. Chem. 1996, 1, 446–450.Google Scholar

  • Hatchikian, E. C.; Forget, N.; Fernandez, V. M.; Williams, R.; Cammack, R. Further characterization of the [Fe]-hydrogenase from Desulfovibrio desulfuricans ATCC 7757. Eur. J. Biochem. 1992, 209, 357–365.Google Scholar

  • Higuchi, Y.; Yagi, T.; Yasuoka, N. Unusual ligand structure in Ni-Fe active center and an additional Mg site in hydrogenase revealed by high resolution X-ray structure analysis. Structure. 1997, 5, 1671–1680.PubMedCrossrefGoogle Scholar

  • Higuchi, Y.; Ogata, H.; Miki, K.; Yasuoka, N.; Yagi, T. Removal of the bridging ligand atom at the Ni-Fe active site of [NiFe] hydrogenase upon reduction with H2, as revealed by X-ray structure analysis at 1.4 Å resolution. Structure. 1999, 7, 549–556.Google Scholar

  • Higuchi, Y.; Toujou, F.; Tsukamoto, K.; Yagi, T. The presence of a SO molecule in [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki as detected by mass spectrometry. J. Inorg. Biochem. 2000, 80, 205–211.CrossrefGoogle Scholar

  • Horch, M.; Lauterbach, L.; Saggu, M.; Hildebrandt, P.; Lendzian, F.; Bittl, R.; Lenz, O.; Zebger, I. Probing the active site of an O2-tolerant NAD+-reducing [NiFe]-hydrogenase from Ralstonia eutropha H16 by in situ EPR and FTIR spectroscopy. Angew. Chem. Int. Ed. Engl. 2010, 49, 8026–8029.CrossrefGoogle Scholar

  • Hube, M.; Blokesch, M.; Bock, A. Network of hydrogenase maturation in Escherichia coli: role of accessory proteins HypA and HybF. J Bacteriol. 2002, 184, 3879–3885.Google Scholar

  • Jacobi, A.; Rossmann, R.; Bock, A. The hyp operon gene products are required for the maturation of catalytically active hydrogenase isoenzymes in Escherichia coli. Arch. Microbiol. 1992, 158, 444–451.Google Scholar

  • Kampa, M.; Lubitz, W.; van Gastel, M.; Neese, F. Computational study of the electronic structure and magnetic properties of the Ni-C state in [NiFe] hydrogenases including the second coordination sphere. J. Biol. Inorg. Chem. 2012, 17, 1269–1281.CrossrefGoogle Scholar

  • Keller, R.; de Keyzer, J.; Driessen, A. J.; Palmer, T. Co-operation between different targeting pathways during integration of a membrane protein. J. Cell Biol. 2012, 199, 303–315.Google Scholar

  • Krasna, A. I.; Rittenberg, D. The mechanism of action of the enzymes hydrogenase. J. Am. Chem. Soc. 1954, 76, 3015–3020.CrossrefGoogle Scholar

  • Lee, J. H.; Patel, P.; Sankar, P.; Shanmugam, K. T. Isolation and characterization of mutant strains of Escherichia coli altered in H2 metabolism. J. Bacteriol. 1985, 162, 344–352.Google Scholar

  • Lee, P. A.; Tullman-Ercek, D.; Georgiou, G. The bacterial twin-arginine translocation pathway. Annu. Rev. Microbiol. 2006, 60, 373–395.PubMedCrossrefGoogle Scholar

  • Lenz, O.; Zebger, I.; Hamann, J.; Hildebrandt, P.; Friedrich, B. Carbamoylphosphate serves as the source of CN-, but not of the intrinsic CO in the active site of the regulatory [NiFe]-hydrogenase from Ralstonia eutropha. FEBS Lett. 2007, 581, 3322–3326.Google Scholar

  • Leroux, F.; Dementin, S.; Burlat, B.; Cournac, L.; Volbeda, A.; Champ, S.; Martin, L.; Guigliarelli, B.; Bertrand, P.; Fontecilla-Camps, J.; Rousset, M.; Leger, C. Experimental approaches to kinetics of gas diffusion in hydrogenase. Proc. Natl. Acad. Sci. USA 2008, 105, 11188–11193.CrossrefGoogle Scholar

  • Liesegang, H.; Kaster, A. K.; Wiezer, A.; Goenrich, M.; Wollherr, A.; Seedorf, H.; Gottschalk, G.; Thauer, R. K. Complete genome sequence of Methanothermobacter marburgensis, a methanoarchaeon model organism. J. Bacteriol. 2010, 192, 5850–5851.Google Scholar

  • Lill, S. O.; Siegbahn, P. E. An autocatalytic mechanism for NiFe-hydrogenase: reduction to Ni(I) followed by oxidative addition. Biochemistry. 2009, 48, 1056–1066.PubMedCrossrefGoogle Scholar

  • Liu, T.; Dubois, D. L.; Bullock, R. M. An iron complex with pendent amines as a molecular electrocatalyst for oxidation of hydrogen. Nat. Chem. 2013, 5, 228–233.PubMedCrossrefGoogle Scholar

  • Lubitz, W.; Reijerse, E.; van Gastel, M. [NiFe] and [FeFe] hydrogenases studied by advanced magnetic resonance techniques. Chem. Rev. 2007, 107, 4331–4365.PubMedCrossrefGoogle Scholar

  • Lukey, M. J.; Parkin, A.; Roessler, M. M.; Murphy, B. J.; Harmer, J.; Palmer, T.; Sargent, F.; Armstrong, F. A. How Escherichia coli is equipped to oxidize hydrogen under different redox conditions. J. Biol. Chem. 2010, 285, 3928–3938.Google Scholar

  • Lukey, M. J.; Roessler, M. M.; Parkin, A.; Evans, R. M.; Davies, R. A.; Lenz, O.; Friedrich, B.; Sargent, F.; Armstrong, F. A. Oxygen-tolerant [NiFe]-hydrogenases: the individual and collective importance of supernumerary cysteines at the proximal Fe-S cluster. J. Am. Chem. Soc. 2011, 133, 16881–16892.Google Scholar

  • Luo, X.; Brugna, M.; Tron-Infossi, P.; Giudici-Orticoni, M. T.; Lojou, E. Immobilization of the hyperthermophilic hydrogenase from Aquifex aeolicus bacterium onto gold and carbon nanotube electrodes for efficient H2 oxidation. J. Biol. Inorg. Chem. 2009, 14, 1275–1288.CrossrefGoogle Scholar

  • Lyon, E. J.; Shima, S.; Buurman, G.; Chowdhuri, S.; Batschauer, A.; Steinbach, K.; Thauer, R. K. UV-A/blue-light inactivation of the’metal-free’ hydrogenase (Hmd) from methanogenic archaea. Eur. J. Biochem. 2004, 271, 195–204.Google Scholar

  • Magnani, P.; Doussiere, J.; Lissolo, T. Diphenylene iodonium as an inhibitor for the hydrogenase complex of Rhodobacter capsulatus. Evidence for two distinct electron donor sites. Biochim. Biophys. Acta. 2000, 1459, 169–178.Google Scholar

  • Maier, T.; Bock, A. Generation of active [NiFe] hydrogenase in vitro from a nickel-free precursor form. Biochemistry. 1996, 35, 10089–10093.CrossrefGoogle Scholar

  • Marques, M. C.; Coelho, R.; De Lacey, A. L.; Pereira, I. A.; Matias, P. M. The three-dimensional structure of [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough: a hydrogenase without a bridging ligand in the active site in its oxidised, "as-isolated" state. J. Mol. Biol. 2010, 396, 893–907.Google Scholar

  • Matias, P. M.; Soares, C. M.; Saraiva, L. M.; Coelho, R.; Morais, J.; Le Gall, J.; Carrondo, M. A. [NiFe] hydrogenase from Desulfovibrio desulfuricans ATCC 27774: gene sequencing, three-dimensional structure determination and refinement at 1.8 Å and modelling studies of its interaction with the tetrahaem cytochrome c3. J. Biol. Inorg. Chem. 2001, 6, 63–81.Google Scholar

  • Menon, A. L.; Robson, R. L. In vivo and in vitro nickel-dependent processing of the [NiFe] hydrogenase in Azotobacter vinelandii. J. Bacteriol. 1994, 176, 291–295.Google Scholar

  • Montet, Y.; Amara, P.; Volbeda, A.; Vernede, X.; Hatchikian, E. C.; Field, M. J.; Frey, M.; Fontecilla-Camps, J. C. Gas access to the active site of Ni-Fe hydrogenases probed by X-ray crystallography and molecular dynamics. Nat. Struct. Biol. 1997, 4, 523–526.CrossrefPubMedGoogle Scholar

  • Mouesca, J. M.; Fontecilla-Camps, J. C.; Amara, P. The structural plasticity of the proximal [4Fe3S] cluster is responsible for the O2 tolerance of membrane-bound [NiFe] hydrogenases. Angew. Chem. Int. Ed. Engl. 2013, 52, 2002–2006.Google Scholar

  • Mulder, D. W.; Shepard, E. M.; Meuser, J. E.; Joshi, N.; King, P. W.; Posewitz, M. C.; Broderick, J. B.; Peters, J. W. Insights into [FeFe]-hydrogenase structure, mechanism, and maturation. Structure. 2011, 19, 1038–1052.PubMedCrossrefGoogle Scholar

  • Nicolet, Y.; Fontecilla-Camps, J. C. Structure-function relationships in [FeFe]-hydrogenase active site maturation. J. Biol. Chem. 2012, 287, 13532–13540.Google Scholar

  • Ogata, H.; Mizoguchi, Y.; Mizuno, N.; Miki, K.; Adachi, S.; Yasuoka, N.; Yagi, T.; Yamauchi, O.; Hirota, S.; Higuchi, Y. Structural studies of the carbon monoxide complex of [NiFe]hydrogenase from Desulfovibrio vulgaris Miyazaki F: suggestion for the initial activation site for dihydrogen. J. Am. Chem. Soc. 2002, 124, 11628–11635.Google Scholar

  • Ogata, H.; Hirota, S.; Nakahara, A.; Komori, H.; Shibata, N.; Kato, T.; Kano, K.; Higuchi, Y. Activation process of [NiFe] hydrogenase elucidated by high-resolution X-ray analyses: conversion of the ready to the unready state. Structure. 2005, 13, 1635–1642.PubMedCrossrefGoogle Scholar

  • Ogata, H.; Lubitz, W.; Higuchi, Y. [NiFe] hydrogenases: structural and spectroscopic studies of the reaction mechanism. Dalton Trans. 2009, 38, 7577–7587.CrossrefGoogle Scholar

  • Ogata, H.; Kellers, P.; Lubitz, W. The crystal structure of the [NiFe] hydrogenase from the photosynthetic bacterium Allochromatium vinosum: characterization of the oxidized enzyme (Ni-A state). J. Mol. Biol. 2010, 402, 428–444.Google Scholar

  • Ogo, S.; Kabe, R.; Uehara, K.; Kure, B.; Nishimura, T.; Menon, S. C.; Harada, R.; Fukuzumi, S.; Higuchi, Y.; Ohhara, T.; Tamada, T.; Kuroki, R. A dinuclear Ni(m-H)Ru complex derived from H2. Science. 2007, 316, 585–587.Google Scholar

  • Ogo, S.; Ichikawa, K.; Kishima, T.; Matsumoto, T.; Nakai, H.; Kusaka, K.; Ohhara, T. A functional [NiFe]hydrogenase mimic that catalyzes electron and hydride transfer from H2. Science. 2013, 339, 682–684.Google Scholar

  • Olson, J. W.; Mehta, N. S.; Maier, R. J. Requirement of nickel metabolism proteins HypA and HypB for full activity of both hydrogenase and urease in Helicobacter pylori. Mol. Microbiol. 2001, 39, 176–182.PubMedCrossrefGoogle Scholar

  • Page, C. C.; Moser, C. C.; Chen, X.; Dutton, P. L. Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature. 1999, 402, 47–52.Google Scholar

  • Palmer, T.; Berks, B. C. The twin-arginine translocation (Tat) protein export pathway. Nat. Rev. Microbiol. 2012, 10, 483–496.PubMedGoogle Scholar

  • Pandelia, M. E.; Fourmond, V.; Tron-Infossi, P.; Lojou, E.; Bertrand, P.; Leger, C.; Giudici-Orticoni, M. T.; Lubitz, W. Membrane-bound hydrogenase I from the hyperthermophilic bacterium Aquifex aeolicus: enzyme activation, redox intermediates and oxygen tolerance. J. Am. Chem. Soc. 2010, 132, 6991–7004.Google Scholar

  • Pandelia, M. E.; Nitschke, W.; Infossi, P.; Giudici-Orticoni, M. T.; Bill, E.; Lubitz, W. Characterization of a unique [FeS] cluster in the electron transfer chain of the oxygen tolerant [NiFe] hydrogenase from Aquifex aeolicus. Proc. Natl. Acad. Sci. USA 2011, 108, 6097–6102.CrossrefGoogle Scholar

  • Pandelia, M. E.; Lubitz, W.; Nitschke, W. Evolution and diversification of Group 1 [NiFe] hydrogenases. Is there a phylogenetic marker for O2-tolerance? Biochim. Biophys. Acta. 2012, 1817, 1565–1575.Google Scholar

  • Pandelia, M. E.; Bykov, D.; Izsak, R.; Infossi, P.; Giudici-Orticoni, M. T.; Bill, E.; Neese, F.; Lubitz, W. Electronic structure of the unique [4Fe-3S] cluster in O2-tolerant hydrogenases characterized by 57Fe Mossbauer and EPR spectroscopy. Proc. Natl. Acad. Sci. USA 2013, 110, 483–488.Google Scholar

  • Parkin, A.; Goldet, G.; Cavazza, C.; Fontecilla-Camps, J. C.; Armstrong, F. A. The difference a Se makes? Oxygen-tolerant hydrogen production by the [NiFeSe]-hydrogenase from Desulfomicrobium baculatum. J. Am. Chem. Soc. 2008, 130, 13410–13416.Google Scholar

  • Paschos, A.; Glass, R. S.; Bock, A. Carbamoylphosphate requirement for synthesis of the active center of [NiFe]-hydrogenases. FEBS Lett. 2001, 488, 9–12.Google Scholar

  • Paschos, A.; Bauer, A.; Zimmermann, A.; Zehelein, E.; Bock, A. HypF, a carbamoyl phosphate-converting enzyme involved in [NiFe] hydrogenase maturation. J. Biol. Chem. 2002, 277, 49945–49951.Google Scholar

  • Pereira, A. S.; Franco, R.; Feio, M. J.; Pinto, C.; Lampreia, J.; Reis, M. A.; Calvete, J.; Moura, I.; Beech, I.; Lino, A. R.; Moura, J. J. Characterization of representative enzymes from a sulfate reducing bacterium implicated in the corrosion of steel. Biochem. Biophys. Res. Commun. 1996, 221, 414–421.Google Scholar

  • Pinske, C.; Sawers, R. G. Delivery of iron-sulfur clusters to the hydrogen-oxidizing [NiFe]-hydrogenases in Escherichia coli requires the A-type carrier proteins ErpA and IscA. PLoS One. 2012, 7, e31755.Google Scholar

  • Rangarajan, E. S.; Asinas, A.; Proteau, A.; Munger, C.; Baardsnes, J.; Iannuzzi, P.; Matte, A.; Cygler, M. Structure of [NiFe] hydrogenase maturation protein HypE from Escherichia coli and its interaction with HypF. J Bacteriol. 2008, 190, 1447–1458.Google Scholar

  • Reisner, E.; Fontecilla-Camps, J. C.; Armstrong, F. A. Catalytic electrochemistry of a [NiFeSe]-hydrogenase on TiO2 and demonstration of its suitability for visible-light driven H2 production. Chem. Commun. (Camb). 2009a, 45, 550–552.CrossrefGoogle Scholar

  • Reisner, E.; Powell, D. J.; Cavazza, C.; Fontecilla-Camps, J. C.; Armstrong, F. A. Visible light-driven H2 production by hydrogenases attached to dye-sensitized TiO2 nanoparticles. J. Am. Chem. Soc. 2009b, 131, 18457–18466.Google Scholar

  • Reissmann, S.; Hochleitner, E.; Wang, H.; Paschos, A.; Lottspeich, F.; Glass, R. S.; Bock, A. Taming of a poison: biosynthesis of the NiFe-hydrogenase cyanide ligands. Science. 2003, 299, 1067–1070.Google Scholar

  • Rippers, Y.; Horch, M.; Hildebrandt, P.; Zebger, I.; Mroginski, M. A. Revealing the absolute configuration of the CO and CN- ligands at the active site of a [NiFe] hydrogenase. Chemphyschem. 2012, 13, 3852–3856.CrossrefPubMedGoogle Scholar

  • Rittenberg, D.; Krasna, A. I. Interaction of hydrogenase with hydrogen. Discussions Faraday Soc. 1955, 20, 185–189.Google Scholar

  • Roessler, M. M.; Evans, R. M.; Davies, R. A.; Harmer, J.; Armstrong, F.A. EPR spectroscopic studies of the Fe-S clusters in the O2-tolerant [NiFe]-hydrogenase Hyd-1 from Escherichia coli and characterization of the unique [4Fe-3S] cluster by HYSCORE. J. Am. Chem. Soc. 2013, 134, 15581–15594.Google Scholar

  • Roseboom, W.; Blokesch, M.; Bock, A.; Albracht, S. P. The biosynthetic routes for carbon monoxide and cyanide in the Ni-Fe active site of hydrogenases are different. FEBS Lett. 2005, 579, 469–472.Google Scholar

  • Rossmann, R.; Sauter, M.; Lottspeich, F.; Bock, A. Maturation of the large subunit (HYCE) of Escherichia coli hydrogenase 3 requires nickel incorporation followed by C-terminal processing at Arg537. Eur. J. Biochem. 1994, 220, 377–384.Google Scholar

  • Rousset, M.; Montet, Y.; Guigliarelli, B.; Forget, N.; Asso, M.; Bertrand, P.; Fontecilla-Camps, J. C.; Hatchikian, E. C. [3Fe-4S] to [4Fe-4S] cluster conversion in Desulfovibrio fructosovorans [NiFe] hydrogenase by site-directed mutagenesis. Proc. Natl. Acad. Sci. USA 1998, 95, 11625–11630.CrossrefGoogle Scholar

  • Saggu, M.; Zebger, I.; Ludwig, M.; Lenz, O.; Friedrich, B.; Hildebrandt, P.; Lendzian, F. Spectroscopic insights into the oxygen-tolerant membrane-associated [NiFe] hydrogenase of Ralstonia eutropha H16. J. Biol. Chem. 2009, 284, 16264–16276.Google Scholar

  • Sankar, P.; Lee, J. H.; Shanmugam, K. T. Cloning of hydrogenase genes and fine structure analysis of an operon essential for H2 metabolism in Escherichia coli. J. Bacteriol. 1985, 162, 353–360.Google Scholar

  • Sargent, F.; Bogsch, E. G.; Stanley, N. R.; Wexler, M.; Robinson, C.; Berks, B. C.; Palmer, T. Overlapping functions of components of a bacterial Sec-independent protein export pathway. Embo. J. 1998, 17, 3640–3650.PubMedCrossrefGoogle Scholar

  • Sasaki, D.; Watanabe, S.; Kanai, T.; Atomi, H.; Imanaka, T.; Miki, K. Characterization and in vitro interaction study of a [NiFe] hydrogenase large subunit from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1. Biochem. Biophys. Res. Commun. 2011, 417, 192–196.Google Scholar

  • Schworer, B.; Fernandez, V. M.; Zirngibl, C.; Thauer, R. K. H2-forming N5,N10-methylenetetrahydromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum. Studies of the catalytic mechanism of H2 formation using hydrogen isotopes. Eur. J. Biochem. 1993, 212, 255–261.Google Scholar

  • Shepard, E. M.; Duffus, B. R.; George, S. J.; McGlynn, S. E.; Challand, M. R.; Swanson, K. D.; Roach, P. L.; Cramer, S. P.; Peters, J. W.; Broderick, J. B. [FeFe]-hydrogenase maturation: HydG-catalyzed synthesis of carbon monoxide. J. Am. Chem. Soc. 2010, 132, 9247–9249.Google Scholar

  • Shima, S.; Thauer, R. K. A third type of hydrogenase catalyzing H2 activation. Chem. Rec. 2007, 7, 37–46.CrossrefPubMedGoogle Scholar

  • Shomura, Y.; Higuchi, Y. Structural basis for the reaction mechanism of S-carbamoylation of HypE by HypF in the maturation of [NiFe]-hydrogenases. J. Biol. Chem. 2012, 287, 28409–28419.Google Scholar

  • Shomura, Y.; Komori, H.; Miyabe, N.; Tomiyama, M.; Shibata, N.; Higuchi, Y. Crystal structures of hydrogenase maturation protein HypE in the Apo and ATP-bound forms. J. Mol. Biol. 2007, 372, 1045–1054.Google Scholar

  • Shomura, Y.; Yoon, K. S.; Nishihara, H.; Higuchi, Y. Structural basis for a [4Fe-3S] cluster in the oxygen-tolerant membrane-bound [NiFe]-hydrogenase. Nature. 2011, 479, 253–256.Google Scholar

  • Siegbahn, P. E.; Tye, J. W.; Hall, M. B. Computational studies of [NiFe] and [FeFe] hydrogenases. Chem. Rev. 2007, 107, 4414–4435.PubMedCrossrefGoogle Scholar

  • Simmons, T. R.; Artero, V. Catalytic hydrogen oxidation: dawn of a new iron age. Angew. Chem. Int. Ed. Engl. 2013, 52, 6143–6145.CrossrefPubMedGoogle Scholar

  • Smith, S. E.; Yang, J. Y.; DuBois, D. L.; Bullock, R. M. Reversible electrocatalytic production and oxidation of hydrogen at low overpotentials by a functional hydrogenase mimic. Angew. Chem. Int. Ed. Engl. 2012, 51, 3152–3155.PubMedCrossrefGoogle Scholar

  • Soboh, B.; Stripp, S. T.; Muhr, E.; Granich, C.; Braussemann, M.; Herzberg, M.; Heberle, J.; Gary Sawers, R. [NiFe]-hydrogenase maturation: isolation of a HypC-HypD complex carrying diatomic CO and CN- ligands. FEBS Lett. 2012, 586, 3882–3887.Google Scholar

  • Stephenson, M.; Stickland, L. H. Hydrogenase: a bacterial enzyme activating molecular hydrogen: The properties of the enzyme. Biochem. J. 1931, 25, 205–214.PubMedGoogle Scholar

  • Stripp, S. T.; Goldet, G.; Brandmayr, C.; Sanganas, O.; Vincent, K. A.; Haumann, M.; Armstrong, F. A.; Happe, T. How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms. Proc. Natl. Acad. Sci. USA 2009, 106, 17331–17336.CrossrefGoogle Scholar

  • Tamiya, N.; Miller, S. L. Kinetic studies on hydrogenase. J. Biol. Chem. 1963, 238, 2194–2198.Google Scholar

  • Tanino, S.; Li, Z.; Ohki, Y.; Tatsumi, K. A dithiolate-bridged (CN)2(CO)Fe-Ni complex reproducing the IR bands of [NiFe] hydrogenase. Inorg. Chem. 2009, 48, 2358–2360.CrossrefGoogle Scholar

  • Tard, C.; Pickett, C. J. Structural and functional analogues of the active sites of the [Fe]-, [NiFe]-, and [FeFe]-hydrogenases. Chem. Rev. 2009, 109, 2245–2274.CrossrefPubMedGoogle Scholar

  • Teixeira, M.; Moura, I.; Fauque, G.; Czechowski, M.; Berlier, Y.; Lespinat, P. A.; Le Gall, J.; Xavier, A. V.; Moura, J. J. Redox properties and activity studies on a nickel-containing hydrogenase isolated from a halophilic sulfate reducer Desulfovibrio salexigens. Biochimie. 1986, 68, 75–84.Google Scholar

  • Teixeira, M.; Fauque, G.; Moura, I.; Lespinat, P. A.; Berlier, Y.; Prickril, B.; Peck, H. D., Jr.; Xavier, A. V.; Le Gall, J.; Moura, J. J. Nickel-[iron-sulfur]-selenium-containing hydrogenases from Desulfovibrio baculatus (DSM 1743). Redox centers and catalytic properties. Eur. J. Biochem. 1987, 167, 47–58.Google Scholar

  • Thauer, R. K.; Kaster, A. K.; Goenrich, M.; Schick, M.; Hiromoto, T.; Shima, S. Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. Annu. Rev. Biochem. 2010, 79, 507–536.PubMedCrossrefGoogle Scholar

  • Valente, F. M.; Oliveira, A. S.; Gnadt, N.; Pacheco, I.; Coelho, A. V.; Xavier, A. V.; Teixeira, M.; Soares, C. M.; Pereira, I. A. Hydrogenases in Desulfovibrio vulgaris Hildenborough: structural and physiologic characterisation of the membrane-bound [NiFeSe] hydrogenase. J. Biol. Inorg. Chem. 2005, 10, 667–682.CrossrefGoogle Scholar

  • Valente, F. M.; Pereira, P. M.; Venceslau, S. S.; Regalla, M.; Coelho, A. V.; Pereira, I. A. The [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough is a bacterial lipoprotein lacking a typical lipoprotein signal peptide. FEBS Lett. 2007, 581, 3341–3344.Google Scholar

  • Van der Linden, E.; Burgdorf, T.; Bernhard, M.; Bleijlevens, B.; Friedrich, B.; Albracht, S. P. The soluble [NiFe]-hydrogenase from Ralstonia eutropha contains four cyanides in its active site, one of which is responsible for the insensitivity towards oxygen. J. Biol. Inorg. Chem. 2004, 9, 616–626.Google Scholar

  • Vignais, P. M.; Billoud, B. Occurrence, classification, and biological function of hydrogenases: an overview. Chem. Rev. 2007, 107, 4206–4272.PubMedCrossrefGoogle Scholar

  • Vignais, P. M.; Billoud, B.; Meyer, J. Classification and phylogeny of hydrogenases. FEMS Microbiol. Rev. 2001, 25, 455–501.PubMedGoogle Scholar

  • Vincent, K. A.; Cracknell, J. A.; Lenz, O.; Zebger, I.; Friedrich, B.; Armstrong, F. A. Electrocatalytic hydrogen oxidation by an enzyme at high carbon monoxide or oxygen levels. Proc. Natl. Acad. Sci. USA 2005, 102, 16951–16954.CrossrefGoogle Scholar

  • Vincent, K. A.; Parkin, A.; Armstrong, F. A. Investigating and exploiting the electrocatalytic properties of hydrogenases. Chem. Rev. 2007, 107, 4366–4413.PubMedCrossrefGoogle Scholar

  • Volbeda, A.; Charon, M. H.; Piras, C.; Hatchikian, E. C.; Frey, M.; Fontecilla-Camps, J. C. Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature. 1995, 373, 580–587.Google Scholar

  • Volbeda, A.; Garcin, E.; Piras, C.; De Lacey, A. L.; Fernandez, V. M.; Hatchikian, E. C.; Frey, M.; Fontecilla-Camps, J. C. Structure of the [NiFe] hydrogenase active site: evidence for biologically uncommon Fe ligands. J. Am. Chem. Soc. 1996, 118, 12989–12996.CrossrefGoogle Scholar

  • Volbeda, A.; Martin, L.; Cavazza, C.; Matho, M.; Faber, B. W.; Roseboom, W.; Albracht, S. P.; Garcin, E.; Rousset, M.; Fontecilla-Camps, J. C. Structural differences between the ready and unready oxidized states of [NiFe] hydrogenases. J. Biol. Inorg. Chem. 2005, 10, 239–249.CrossrefGoogle Scholar

  • Volbeda, A.; Amara, P.; Darnault, C.; Mouesca, J. M.; Parkin, A.; Roessler, M. M.; Armstrong, F. A.; Fontecilla-Camps, J. C. X-ray crystallographic and computational studies of the O2-tolerant [NiFe]-hydrogenase 1 from Escherichia coli. Proc. Natl. Acad. Sci. USA 2012.Google Scholar

  • Volbeda, A.; Darnault, C.; Parkin, A.; Sargent, F.; Armstrong, F. A.; Fontecilla-Camps, J. C. Crystal structure of the O2-tolerant membrane-bound hydrogenase 1 from Escherichia coli in complex with its cognate cytochrome b. Structure. 2013, 21, 184–190.CrossrefGoogle Scholar

  • Watanabe, S.; Matsumi, R.; Arai, T.; Atomi, H.; Imanaka, T.; Miki, K. Crystal structures of [NiFe] hydrogenase maturation proteins HypC, HypD, and HypE: insights into cyanation reaction by thiol redox signaling. Mol. Cell. 2007, 27, 29–40.CrossrefPubMedGoogle Scholar

  • Watanabe, S.; Sasaki, D.; Tominaga, T.; Miki, K. Structural basis of [NiFe] hydrogenase maturation by Hyp proteins. Biol Chem. 2012a, 393, 1089–1100.Google Scholar

  • Watanabe, S.; Matsumi, R.; Atomi, H.; Imanaka, T.; Miki, K. Crystal structures of the HypCD complex and the HypCDE ternary complex: transient intermediate complexes during [NiFe] hydrogenase maturation. Structure. 2012b, 20, 2124–2137.PubMedCrossrefGoogle Scholar

  • Waugh, R.; Boxer, D. H. Pleiotropic hydrogenase mutants of Escherichia coli K12: growth in the presence of nickel can restore hydrogenase activity. Biochimie. 1986, 68, 157–166.CrossrefGoogle Scholar

  • Weber, K.; Kramer, T.; Shafaat, H. S.; Weyhermuller, T.; Bill, E.; van Gastel, M.; Neese, F.; Lubitz, W. A functional [NiFe]-hydrogenase model compound that undergoes biologically relevant reversible thiolate protonation. J. Am. Chem. Soc. 2012, 134, 20745–20755.Google Scholar

  • Wu, L. F.; Mandrand-Berthelot, M. A. Genetic and physiological characterization of new Escherichia coli mutants impaired in hydrogenase activity. Biochimie. 1986, 68, 167–179.CrossrefPubMedGoogle Scholar

  • Wu, H.; Hall, M. B. Density functional theory on the larger active site models for [NiFe] hydrogenases: Two-state reactivity. C R Chim. 2008, 11, 790–804.CrossrefGoogle Scholar

  • Yagi, T.; Higuchi, Y. Studies on hydrogenase. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2013, 89, 16–33.CrossrefGoogle Scholar

  • Yagi, T.; Matsuno-Yagi, A. The proton-translocating NADH-quinone oxidoreductase in the respiratory chain: the secret unlocked. Biochemistry. 2003, 42, 2266–2274.PubMedCrossrefGoogle Scholar

  • Zirngibl, R.; Hedderich, R.; Thauer, R. K. N5,N10-Methylenetetrahydromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum has hydrogenase activity. FEBS Lett. 1990, 261, 112–116.Google Scholar

About the article

Yasuhito Shomura

Yasuhito Shomura graduated from Shizuoka University, Japan (1998), and obtained his PhD from Kyoto University, Japan (2003) under the supervision of Prof. Kunio Miki. After a postdoctoral stay at Prof. F. Ulrich Hartl’s laboratory of Max-Planck-Institute für Biochemie (2003–2005), he has joined Prof. Yoshiki Higuchi’s laboratory as an assistant professor. In 2013, he was awarded a Minister of Education, Culture, Sports Science and Technology of Japan for young scientist award. His research activities include the structure and reaction/assembling mechanism of hydrogenases and other various proteins.

Yoshiki Higuchi

Yoshiki Higuchi studied chemistry from 1975 to 1979 at Osaka University, Japan, and did his PhD thesis in 1984 under the supervision of Prof. Masao Kakudo at Institute for Protein Research, Osaka University. He was appointed as an Assistant Professor of Himeji Institute of Technology in 1985, moved to Kyoto University in 1995 as an Associate Professor of Graduate School of Science. He moved to Himeji Institute of Technology, as a Professor of the Graduate School of Science in 2002, and is currently a Professor of the Graduate School of Life Science, University of Hyogo. He received the Award of the Crystallographic Society of Japan in 1999. At present, he is involved in structural chemistry on hydrogenases including those from other sources, as well as on protein-protein interactions in the cells of higher organisms.

Corresponding authors: Yasuhito Shomura and Yoshiki Higuchi, Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan; and RIKEN SPring-8 Center, 1-1-1 Koto, Sayo-gun, Sayo-cho, Hyogo 679-5148, Japan, e-mail: ,

Received: 2013-03-29

Accepted: 2013-08-05

Published Online: 2013-09-07

Published in Print: 2013-12-01

Citation Information: Reviews in Inorganic Chemistry, Volume 33, Issue 4, Pages 173–192, ISSN (Online) 2191-0227, ISSN (Print) 0193-4929, DOI: https://doi.org/10.1515/revic-2013-0005.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Yulia Ilina, Christian Lorent, Sagie Katz, Jae‐Hun Jeoung, Seigo Shima, Marius Horch, Ingo Zebger, and Holger Dobbek
Angewandte Chemie, 2019
Yulia Ilina, Christian Lorent, Sagie Katz, Jae-Hun Jeoung, Seigo Shima, Marius Horch, Ingo Zebger, and Holger Dobbek
Angewandte Chemie International Edition, 2019
Yasuhito SHOMURA and Yoshiki HIGUCHI
Seibutsu Butsuri, 2018, Volume 58, Number 6, Page 297
Y. Shomura, M. Taketa, H. Nakashima, H. Tai, H. Nakagawa, Y. Ikeda, M. Ishii, Y. Igarashi, H. Nishihara, K.-S. Yoon, S. Ogo, S. Hirota, and Y. Higuchi
Science, 2017, Volume 357, Number 6354, Page 928
Hideaki Ogata, Wolfgang Lubitz, and Yoshiki Higuchi
Journal of Biochemistry, 2016, Volume 160, Number 5, Page 251
Moritz Hansen and Mirjam Perner
Frontiers in Microbiology, 2016, Volume 7
Midori Taketa, Hanae Nakagawa, Mao Habukawa, Hisao Osuka, Kiyohito Kihira, Hirofumi Komori, Naoki Shibata, Masaharu Ishii, Yasuo Igarashi, Hirofumi Nishihara, Ki-Seok Yoon, Seiji Ogo, Yasuhito Shomura, and Yoshiki Higuchi
Acta Crystallographica Section F Structural Biology Communications, 2015, Volume 71, Number 1, Page 96
Wolfgang Lubitz, Hideaki Ogata, Olaf Rüdiger, and Edward Reijerse
Chemical Reviews, 2014, Volume 114, Number 8, Page 4081

Comments (0)

Please log in or register to comment.
Log in