Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in Inorganic Chemistry

Editor-in-Chief: Schulz, Axel

Editorial Board: Aldridge, Simon / Burford, Neil / Cronin, Leroy / Dunbar, Kim / Holthausen, Max / Huppertz, Hubert / Liu, Xiaoming / Rosenthal, Uwe / Schiller, Alexander / Schulz, Stephan / Senker, Jürgen / Hänisch, Carsten / Yoon, Kyung / Zhang, Xian-Ming

4 Issues per year


IMPACT FACTOR 2017: 2.421
5-year IMPACT FACTOR: 2.595

CiteScore 2017: 2.10

SCImago Journal Rank (SJR) 2017: 0.644
Source Normalized Impact per Paper (SNIP) 2017: 0.964

Online
ISSN
2191-0227
See all formats and pricing
More options …
Volume 34, Issue 2

Issues

Metalloid Sn clusters: properties and the novel synthesis via a disproportionation reaction of a monohalide

Claudio Schrenk
  • Institut für Anorganische Chemie, Universität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andreas Schnepf
  • Corresponding author
  • Institut für Anorganische Chemie, Universität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-10-22 | DOI: https://doi.org/10.1515/revic-2013-0016

Abstract

Metalloid cluster compounds of tin of the general formulae SnnRm with n>m (R=organic ligand), where beside ligand-bound tin atoms also “naked” tin atoms, that only bind to other tin atoms, are present, represent a novel class of cluster compounds in tin chemistry. As the “naked” tin atoms inside these clusters exhibit an oxidation state of 0, the average oxidation state of the tin atoms within such metalloid tin clusters is in between 0 and 1. Thus, these cluster compounds may be seen as intermediates on the way to the elemental state. Therefore, interesting properties are expected for these compounds, which might complement results from nanotechnology. During the last years, different syntheses of such novel cluster compounds have been introduced, leading to several metalloid tin cluster compounds, which exhibit new and partly unusual structure and bonding properties. In this review, recent results in this novel field of group 14 chemistry are discussed, whereby special attention is focused on the novel synthetic route applying a disproportionation reaction of metastable Sn(I) halides.

Keywords: cryochemistry; metalloid clusters; subvalent halide; tin

References

  • Balasubramanian, K. Spectroscopic properties and potential energy curves of tin chloride (SnCl): comparison with lead chloride (PbCl). J. Molecular Spectr. 1988, 132, 280–283.Google Scholar

  • Barnett, J. D.; Bean, V. E.; Hall, H. T. X-ray diffraction studies on tin to 100 kilobars. J. Appl. Phys. 1966, 37, 875.CrossrefGoogle Scholar

  • Barr, D.; Clegg, W.; Mulvey, R. E.; Snaith, R. Crystal structures of (Ph2C:NLi·NC5H5)4 and [ClLi·O:P(NMe2)3]4: discrete tetrameric pseudocubane clusters with bridging of trilithium triangles by nitrogen and by chlorine atoms. Chem. Commun. 1984, 20, 79–80.CrossrefGoogle Scholar

  • Breher, F. Stretching bonds in main group element compounds – borderlines between biradicals and closed-shell species. Coord. Chem. Rev. 2007, 251, 1007–1043.Google Scholar

  • Brynda, M; Herber, R.; Hitchcock, P. B.; Lappert, M. F.; Nowik, I.; Power, P. P.; Protchenko, A. V.; Ruzicka, A.; Steiner, J. Higher nuclearity group 14 metalloid clusters: [Sn9{Sn(NRR′)}6]. Angew. Chem. 2006, 118, 4439–4443; Angew. Chem. Int. Ed. 2006 45, 4333–4337.Google Scholar

  • Chapman, D. J.; Sevov, S. C. Tin-based organo-Zintl ions: alkylation and alkenylation of Sn94-. Inorg. Chem. 2008, 47, 6009–6013.CrossrefGoogle Scholar

  • Corrigan, J. F.; Fuhr, O.; Fenske, D. Metal chalcogenide clusters on the border between molecules and materials. Adv. Mater. 2009, 21, 1867–1871.CrossrefGoogle Scholar

  • Debrov, N.; Oger, E.; Rapps, T.; Kelting, R.; Schooss, D.; Weis, P.; Kappes, M. M.; Ahlrichs, R. Structures of tin cluster cations Sn3+ to Sn15+. J. Chem. Phys. 2010, 133, 224302.Google Scholar

  • Desgreniers, S.; Vohra, Y. K.; Ruoff, A. L. Tin at high pressure: an energy-dispersive x-ray-diffraction study to 120 GPa. Phys. Rev. B 1989, 39, 10359–10361.CrossrefGoogle Scholar

  • Ecker, A.; Weckert, E.; Schnöckel, H. Synthesis and structural characterization of an Al77 cluster. Nature 1997, 387, 379–381.Google Scholar

  • Eichler, B. E.; Power, P. P. Synthesis and characterization of [Sn8(2,6-Mes2C6H3)4] (Mes=2,4,6-Me3C6H2): a main group metal cluster with a unique structure. Angew. Chem. 2001, 113, 818–819; Angew. Chem. Int. Ed. 2001, 40, 796–797.Google Scholar

  • Fässler, T. F. The renaissance of homoatomic nine-atom polyhedra of the heavier carbon-group elements Si-Pb. Coord. Chem. Rev. 2001, 215, 347–377.Google Scholar

  • Fukawa, T.; Lee, V. Y.; Nakamoto, M.; Sekiguchi, A. Tetrakis(di-tert- butylmethylsilyl)distannene and its anion radical. J. Am. Chem. Soc. 2004, 126, 11758–11759.CrossrefGoogle Scholar

  • Gilman, H.; Smith, C. L. Tetrakis(trimethylsilyl)silane. J. Organomet. Chem. 1967, 8, 245–253.CrossrefGoogle Scholar

  • Grimme, S.; Huenerbein, R.; Ehrlich, S. On the importance of the dispersion energy for the thermodynamic stability of molecules. Chem. Phys. Chem. 2011, 12, 1258–1261.CrossrefGoogle Scholar

  • Henke, F.; Schenk, C.; Schnepf, A. [Si(SiMe3)3]6Ge18M(M=Zn, Cd, Hg): neutral metalloid cluster compounds of germanium as highly soluble building blocks for a supramolecular chemistry. Dalton Trans. 2009, 42, 9141–9145.Google Scholar

  • Holleman, A. F.; Wiberg, E. Lehrbuch der Anorganischen Chemie; 102nd Edition. Wiberg, N., Wiberg, E., Holleman, A, Eds. De Gruyter & Co.: Berlin, 2007; pp. 1002–1041.Google Scholar

  • Hull, M. W.; Sevov, S. C. Addition of alkenes to deltahedral Zintl clusters by reaction with alkynes: synthesis and structure of [Fc-CH=CH-Ge9-CH=CH-Fc]2-, an organo-Zintl-organometallic anion. Angew. Chem. 2007, 119, 6815–6818; Angew. Chem. Int. Ed. 2007, 46, 6695–6698.CrossrefGoogle Scholar

  • Hull, M. W.; Sevov, S. C. Functionalization of nine-atom deltahedral Zintl ions with organic substituents: detailed studies of the reactions. J. Am. Chem. Soc. 2009, 131, 9026–9037.Google Scholar

  • Ito, Y.; Lee, V. Y.; Gornitzka, H.; Goedecke, C.; Frenking, G.; Sekiguchi, A. Spirobis(pentagerma[1.1.1]propellane): a stable tetraradicaloid. J. Am. Chem. Soc. 2013, 135, 6770–6773.Google Scholar

  • Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 2007, 318, 430–433.Google Scholar

  • Klinkhammer, K. W.; Schwarz, W. Bis(hypersilyl)tin and bis(hypersilyl)lead, two electron- rich carbene homologs. Angew. Chem. 1995, 107, 1448–1451; Angew. Chem. Int. Ed. 1995, 34, 1334–1336.CrossrefGoogle Scholar

  • Klinkhammer, K. W.; Fässler, T. F.; Grützmacher, H. The formation of heteroleptic carbene homologs by ligand exchange. Synthesis of the first plumbanediyl dimer. Angew. Chem. 1998, 110, 114–116; Angew. Chem. Int. Ed. 1998, 37, 124–126.CrossrefGoogle Scholar

  • Kocak, F. S.; Zavalij, P. Y.; Lam, Y.-F.; Eichhorn, B. W. Substituent-dependent exchange mechanisms in highly fluxional RSn93- anions. Chem. Commun. 2009, 45, 4197–4199.CrossrefGoogle Scholar

  • Kocak, F. S.; Downing, D. O.; Zavalij, P.; Lam, Y.-F.; Vedernikov, N.; Eichhorn, B. Surprising acid/base and ion-sequestration chemistry of Sn94-: HSn93-, Ni@HSn93-, and the Sn93- ion revisited. J. Am. Chem. Soc. 2012, 134, 9733–9740.CrossrefGoogle Scholar

  • Koch, K.; Schnepf, A.; Schnöckel, H. The stepwise fragmentation and modification of a structurally well-defined metalloid cluster in the gas-phase – from Ge9R3 (R=Si(SiMe3)3) to Ge9 and Ge9Si. Z. Anorg. Allg. Chem. 2006, 632, 1710–1716.Google Scholar

  • Köppe, R.; Schnepf, A. Synthese von germanium(I)bromid. Ein erster schritt zu neuen clusterverbindungen des germaniums? Z. Anorg. All. Chem. 2002, 628, 2914–2918.Google Scholar

  • Lechtken, A.; Debrov, N.; Ahlrichs, R.; Kappes, M. M.; Schooss, D. Tin cluster anions (Snn-, n=18, 20, 23, and 25) comprise dimers of stable subunits. J. Chem. Phys. 2010, 132, 211102.Google Scholar

  • Linti, G.; Köstler, W.; Piotrowski, H.; Rodig, A. A silatetragallane – classical heterobicyclopentane or closo-polyhedron? Angew. Chem. 1998, 110, 2331–2333; Angew. Chem. Int. Ed. 1998, 37, 2209–2211.CrossrefGoogle Scholar

  • Long, D.-L.; Tsunashima, R.; Cronin, L. Polyoxometalates: building blocks for functional nanoscale systems. Angew. Chem. 2010, 122, 1780–1803; Angew. Chem. Int. Ed. 2010, 49, 1736–1758.CrossrefGoogle Scholar

  • Mitzel, N. W.; Lustig, C. Crystal structure of a lithium chloride cubane cluster solvated by diethyl ether. Z. Naturforsch. B, 2001, 56, 443–445.Google Scholar

  • Nied, D.; Klopper, W.; Breher, F. Pentagerma[1.1.1]propellane: a combined experimental and quantum chemical study on the nature of the interactions between the bridgehead atoms. Angew. Chem. 2009, 121, 1439–1444; Angew. Chem. Int. Ed. 2009, 48, 1411–1416.CrossrefGoogle Scholar

  • Oger, E.; Kelting, R.; Weis, P.; Lechtken, A.; Schooss, D.; Crawford, N. R. M.; Ahlrichs, R.; Kappes, M. M. Small tin cluster anions: transition from quasispherical to prolate structures. J. Chem. Phys. 2009, 130, 124305.CrossrefGoogle Scholar

  • Ozin, G. A.; Arsenault, A. C.; Cademartiri, L. Nanochemistry; 2nd Edition; RSC Publishing: Cambridge, 2009.Google Scholar

  • Pacher, A.; Schrenk, C.; Schnepf, A. Sn(I) halides: novel binary compounds of tin and their application in synthetic chemistry. J. Organomet. Chem. 2010, 695, 941–944.Google Scholar

  • Power, P. P. Bonding and reactivity of heavier group 14 element alkyne analogues. Organometallics, 2007, 26, 4362–4372.Google Scholar

  • Power, P. P. Main-group elements as transition metals. Nature 2010, 463, 171–177.Google Scholar

  • Prabusankar, G.; Kempter, A.; Gemel, C.; Schröter, M.-K.; Fischer, R. A. [Sn17{GaCl(ddp)}4]: a high-nuclearity metalloid tin cluster trapped by electrophilic gallium ligands. Angew. Chem. 2008, 120, 7344–7347; Angew. Chem. Int. Ed. 2008 47, 7234–7237.CrossrefGoogle Scholar

  • Purath, A.; Köppe, R.; Schnöckel, H. [Al7{N(SiMe3)2}6]-: a first step towards aluminum metal formation by disproportionation. Angew. Chem. 1999, 111, 3114-3116; Angew. Chem. Int. Ed. 1999, 38, 2926–2928.CrossrefGoogle Scholar

  • Qian, H.; Zhu, Y.; Jin, R. Atomically precise gold nanocrystal molecules with surface plasmon resonance. Proc. Nat. Acad. Sci. 2012, 109, 696–700.CrossrefGoogle Scholar

  • Renner, G.; Kircher, P.; Huttner, G.; Rutsch, P.; Heinze, K. Efficient syntheses of the complete set of compounds [{(OC)5M}6E6]2- (M=Cr, Mo, W; E=Ge, Sn) – structure and redox behaviour of the octahedral clusters [Ge6]2- and [Sn6]2- Eur. J. Inorg. Chem. 2001, 2001, 973–980.Google Scholar

  • Richards, A. F.; Brynda, M.; Olmstead, M. M.; Power, P. P. Characterization of Ge5R4 (R=CH(SiMe3)2, C6H3-2,6-Mes2): germanium clusters of a new structural type with singlet biradical character. Organometallics 2004, 23, 2841–2844.CrossrefGoogle Scholar

  • Richards, A. F.; Eichler, B. E.; Brynda, M.; Olmstead, M. M.; Power, P. P. Metal-rich, neutral and cationic organotin clusters. Angew. Chem. 2005, 117, 2602–2605; Angew. Chem. Int. Ed. 2005, 44, 2546–2549.CrossrefGoogle Scholar

  • Rivard, E.; Steiner, J.; Fettinger, J. C.; Giuliani, J. R.; Augustine, M. P.; Power, P. P. Convergent syntheses of [Sn7{C6H3-2,6-(C6H3-2,6-iPr2)2}2]: a cluster with a rare pentagonal bipyramidal motif. Chem. Commun. 2007, 4919–4921.CrossrefGoogle Scholar

  • Schiemenez, B.; Huttner, G. The first octahedral Zintl ion: Sn62- as a ligand in [Sn6{Cr(CO)5}6]2-. Angew. Chem. 1993, 105, 295–296; Angew. Chem., Int. Ed. 1993, 32, 297–298.Google Scholar

  • Schenk, C.; Schnepf, A. [AuGe18{Si(SiMe3)3}6]-: a soluble Au-Ge cluster on the way to a molecular cable? Angew. Chem. 2007, 119, 5408–5410; Angew. Chem. Int. Ed. 2007 46, 5314–5316.CrossrefGoogle Scholar

  • Schenk, C.; Schnepf, A. Ge14[Ge(SiMe3)3]5Li3(THF)6: the largest metalloid cluster compound of Germanium: on the way to fullerene-like compounds? Chem. Commun. 2008, 44, 4643–4645.CrossrefGoogle Scholar

  • Schenk, C.; Henke, F.; Santigo, G.; Krossing, I.; Schnepf, A. [Si(SiMe3)3]6Ge18M (M=Cu, Ag, Au): metalloid cluster compounds as unusual building blocks for a supramolecular chemistry. Dalton Trans. 2008, 33, 4436–4441.Google Scholar

  • Schenk, C.; Henke, F.; Neumaier, M.; Olzmann, M.; Schnöckel H.; Schnepf, A. Reaktionen des metalloiden clusteranions {Ge9[Si(SiMe3)3]3}- in der gas phase. Oxidations- und reduktionsschritte geben einblicke in den bereich zwischen metalloiden clustern und Zintl-ionen. Z. Anorg. allg. Chem. 2010, 636, 1173–1182.Google Scholar

  • Schenk, C.; Kracke, A.; Fink, K.; Kubas, A.; Klopper, W.; Neumaier, M.; Schnöckel, H.; Schnepf, A. The formal combination of three singlet biradicaloid entities to a singlet hexaradicaloid metalloid Ge14[Si(SiMe3)3]5Li3(THF)6 cluster. J. Am. Chem. Soc. 2011, 133, 2518–2524.CrossrefGoogle Scholar

  • Schenk, C.; Henke, F.; Schnepf, A. Ge12[FeCp(CO)2]8[FeCpCO]2 – a Ge12 core resembles the arrangement of the high pressure modification germanium(II). Angew. Chem. 2013, 125, 1883–1887; Angew. Chem. Int. Ed. 2013, 52, 1834–1838.CrossrefGoogle Scholar

  • Schnepf, A. Ge(I) Bromide: a new source for germanium cluster compounds. Phosphorus Sulfur Silicon Relat. Elem. 2004, 179, 695–698.Google Scholar

  • Schnepf, A. On the redox chemistry of Ge(I) bromide. Eur. J. Inorg. Chem. 2005, 11, 2120–2123.CrossrefGoogle Scholar

  • Schnepf, A. {Ge10Si[Si(SiMe3)3]4(SiMe3)2Me}-: A Ge10Si framework reveals a structural transition onto elemental germanium. Chem. Commun. 2007a, 43, 192–194.CrossrefGoogle Scholar

  • Schnepf, A. Metalloid group 14 cluster compounds: an introduction and perspectives to this novel group of cluster compounds. Chem. Soc. Rev. 2007b, 36, 745–758.PubMedGoogle Scholar

  • Schnepf, A.; Schnöckel, H. Synthesis and structure of a Ga84R204- Cluster – a link between metalloid clusters and fullerenes? Angew. Chem. 2001, 113, 734–737; Angew. Chem. Int. Ed. 2001, 40, 712–715.Google Scholar

  • Schnepf, A.; Schnöckel, H. Metalloid aluminum and gallium clusters: element modifications on the molecular scale? Angew. Chem. 2002a, 114, 3682–3704; Angew. Chem. Int. Ed. 2002a, 41, 3532–3554.CrossrefGoogle Scholar

  • Schnepf, A.; Schnöckel, H. Nanostructural element modifications: synthesis and structure of elementoid gallium clusters. In Group 13 Chemistry – From Fundamentals to Application, ACS Symposium Series Nr. 822. Shapiro, P. Y.; Atwood, D. A., Eds. American Chemical Society, Washington DC, 2002b; pp. 154–167.Google Scholar

  • Schnepf, A.; Schenk, C. Na6[Ge10{Fe(CO)4}8]·18 THF: a centaur polyhedron of germanium atoms. Angew. Chem. 2006, 118, 5499–5502; Angew. Chem. Int. Ed. 2006, 45, 5373–5376.CrossrefGoogle Scholar

  • Schnepf, A.; Stößer, G.; Schnöckel, H. Synthesis, structure and bonding of a molecular metalloid Ga19-cluster anion. J. Am. Chem. Soc. 2000, 122, 9178–9181.CrossrefGoogle Scholar

  • Schnepf, A.; Jee, B.; Schnöckel, H.; Weckert, E.; Meents, A.; Lübbert, D.; Herrling, E.; Pilawa B. Preparation and precise structural determination of a second Ga84 cluster compound. A first hint for cluster doping and its fundamental consequences in the field of chemistry and physics of nanoscaled metalloid cluster material. Inorg. Chem. 2003, 42, 7731–7733.CrossrefGoogle Scholar

  • Schnöckel, H. Metalloid Al- and Ga-clusters: a novel dimension in organometallic chemistry linking the molecular and the solid-state areas? Dalton Trans. 2005, 20, 3131–3136.Google Scholar

  • Schnöckel, H. Structures and properties of metalloid Al and Ga clusters open our eyes to the diversity and complexity of fundamental chemical and physical processes during formation and dissolution of metals. Chem. Rev. 2010, 110, 4125–4163.PubMedCrossrefGoogle Scholar

  • Schrenk, C.; Schnepf, A. Sn3[Si(SiMe3)3)]4: first insight into the mechanism of the disproportion of a tin monohalide gives access to the shortest double bond in tin. Chem. Commun. 2010, 46, 6756–6758.CrossrefGoogle Scholar

  • Schrenk, C.; Schnepf, A. {Sn10Si(SiMe3)2[Si(SiMe3)3]4}2-: cluster enlargement via degradation of labile ligands. Main Group Metal Chem. accepted.Google Scholar

  • Schrenk, C.; Köppe, R.; Schellenberg, I.; Pöttgen, R.; Schnepf, A. Synthesis of tin(I)bromide. A novel binary halide for synthetic chemistry. Z. Anorg. Allg. Chem. 2009, 635, 1541–1548.Google Scholar

  • Schrenk, C.; Schellenberg, I.; Pöttgen, R.; Schnepf, A. The formation of a metalloid Sn10[Si(SiMe3)3]6 cluster compound and its relation to the α↔β tin phase transition. Dalton Trans. 2010, 39, 1872–1876.Google Scholar

  • Schrenk, C.; Kubas, A.; Fink, K.; Schnepf, A. Sn4Si[Si(SiMe3)3]4 [SiMe3]2: a model compound for the unexpected first-order transition from a singlet biradicaloid to a classical bonded molecule. Angew. Chem. 2011, 123, 7411–7415; Angew. Chem. Int. Ed. 2011 50, 7237–7277.CrossrefGoogle Scholar

  • Schrenk, C.; Helmlinger, J.; Schnepf, A. {Sn10[Si(SiMe3)3]5}-: an anionic metalloid tin cluster from an isolable Sn(I) halide solution. Z. Anorg. allg. Chem. 2012a, 638, 589–593.Google Scholar

  • Schrenk, C.; Winter, F.; Pöttgen, R.; Schnepf, A. {Sn9[Si(SiMe3)3]2}2-: a metalloid tin cluster compound with a Sn9 core of oxidation state zero. Inorg. Chem. 2012b, 51, 8583–8588.CrossrefGoogle Scholar

  • Sita, L. R.; Kinoshita, I. Octakis(2,6-diethylphenyl)octastannacubane. Organometallics 1990, 9, 286–2867.Google Scholar

  • Sita, L. R.; Kinoshita, I. Decakis(2,6-diethylphenyl)decastanna[5]prismane: characterization and molecular structure. J. Am. Chem. Soc. 1991, 113, 1856–1857.CrossrefGoogle Scholar

  • Takeuchi, K.; Ichinohe, M.; Sekiguchi, A. Access to a stable Si2N2 four-membered ring with non-Kekulé singlet biradical character from a disilyne. J. Am. Chem. Soc. 2011, 133, 12478–12481.CrossrefGoogle Scholar

  • Ugrinov, A.; Sevov, S. C. [Ph2Bi-(Ge9)-BiPh2]2-: a deltahedral Zintl ion functionalized by exo-bonded ligands. J. Am. Chem. Soc. 2002, 124, 2442–2443.CrossrefGoogle Scholar

  • Ugrinov, A.; Sevov, S. C. Derivatization of deltahedral Zintl ions by nucleophilic addition: [Ph-Ge9-SbPh2]2- and [Ph2Sb-Ge9-Ge9-SbPh2]4-. J. Am. Chem. Soc. 2003, 125, 14059–14064.CrossrefGoogle Scholar

  • Ugrinov, A.; Sevov, S. C. Rationally functionalized deltahedral Zintl ions: synthesis and characterization of [Ge9-ER3]3-, [R3E-Ge9-ER3]2-, and [R3E-Ge9-Ge9-ER3]4- (E=Ge, Sn; R=Me, Ph). Chem. Eur. J. 2004, 10, 3727–3733.CrossrefGoogle Scholar

  • Vollet, J.; Hartig, J. R.; Schnöckel, H. Al50C120H180: a pseudofullerene shell of 60 carbon atoms and 60 methyl groups protecting a cluster core of 50 aluminum atoms. Angew. Chem. 2004, 116, 3248–3252; Angew. Chem. Int. Ed. 2004, 43, 3186–3189.CrossrefGoogle Scholar

  • Vollet, J.; Stösser, G.; Schnöckel, H. New structures of low valent Al hypersilanides: a negatively charged isomer with a closo-Al4Si-structure potentially indicates a new entry in polyhedral AlmSin-frameworks. Inorg. Chim. Acta, 2007, 360, 1298–1304.Google Scholar

  • Wade, K. Structural and bonding patterns in cluster chemistry. Adv. Inorg. Chem. Radiochem. 1976, 18, 1–66.Google Scholar

  • Wang, X.; Peng, Y.; Olmstead, M. M.; Fettinger, J. C.; Power, P. P. An unsymmetric oxo/imido-bridged germanium-centered singlet diradicaloid. J. Am. Chem. Soc. 2009, 131, 14164–14165.Google Scholar

  • Wang, X.; Peng, Y.; Zhu, Z.; Fettinger, J. C.; Power, P. P.; Guo, J.; Nagase, S. Synthesis and characterization of two of the three isomers of a germanium-substituted bicyclo[2.2.0]hexane diradicaloid: stretching the Ge-Ge bond. Angew. Chem. 2010, 122, 4697–4701; Angew. Chem. Int. Ed. 2010, 49, 4593–4597.CrossrefGoogle Scholar

  • Wiberg, N.; Lerner, H.-W.; Vasisht, S.-K.; Wagner, S.; Karaghiosoff, K.; Nöth, H.; Ponikwar, W. Tetrasupersilyl-tristannaallene and -tristannacyclopropene (tBu3Si)4Sn3. Isomers with the shortest Sn=Sn double bonds to date. Eur. J. Inorg. Chem. 1999a, 1211–1218.CrossrefGoogle Scholar

  • Wiberg, N.; Lerner, H.-W.; Wagner, S.; Nöth, H.; Seifert, T. On an octastannanediide R*6Sn8[Na(THF)2]2 and the possible existence of an octastannane R*6Sn8. Z. Naturforsch. B 1999b, 54, 877–880.Google Scholar

  • Yang, P. Chemistry and physics of silicon nanowire. Dalton Trans. 2008, 33, 4387–4391.Google Scholar

About the article

Claudio Schrenk

Claudio Schrenk studied chemistry from 2003 to 2008 at the University of Karlsruhe. He finished his diploma thesis in 2008 in the group of Prof. A. Schnepf. He started his PhD studies on subvalent tin halides in Karlsruhe in 2008 and moved together with Prof. Schnepf to the University Duisburg-Essen in 2010, where he finished his PhD thesis in 2012. He stayed at the group of Prof. Schnepf, which moved to the University Tübingen in 2012, where he is now a postdoctoral coworker.

Andreas Schnepf

Andreas Schnepf studied Chemistry at the University of Karlsruhe where he finished his Diploma thesis in organic chemistry in the group of Prof. H.-J. Knölker in 1996. Afterwards, he went to the Inorganic Chemistry Department and finished his PhD thesis in the group of Prof. H. Schnöckel in 2000, where he also stayed for a postdoc since 2002 – research stays at the research facilities in Hamburg (DESY Deutsches Elektronen Synchrotron) and Villingen (PSI: Paul Scherrer Institute). In 2002, he started his independent scientific career at the University of Karlsruhe on the chemistry of Ge(I) halides and their application in synthetic chemistry (Habilitation 2006), first as a DFG-Fellow and later as a DFG-Heisenberg-Fellow. In 2010, he was appointed as W2 Professor in Inorganic Chemistry at the University Duisburg-Essen, and in 2012, he moved to the University Tübingen as a W3 Professor for Nanostructured Functional Materials.


Corresponding author: Andreas Schnepf, Institut für Anorganische Chemie, Universität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany, e-mail:


Received: 2013-08-19

Accepted: 2013-09-12

Published Online: 2013-10-22

Published in Print: 2014-06-01


Citation Information: Reviews in Inorganic Chemistry, Volume 34, Issue 2, Pages 93–118, ISSN (Online) 2191-0227, ISSN (Print) 0193-4929, DOI: https://doi.org/10.1515/revic-2013-0016.

Export Citation

©2014 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Mareike Binder, Claudio Schrenk, Theresa Block, Rainer Pöttgen, and Andreas Schnepf
Molecules, 2018, Volume 23, Number 5, Page 1022
[3]
Andrew P. Purdy, Raymond J. Butcher, James P. Yesinowski, Sean A. Fischer, Daniel Gunlycke, and Brian L. Chaloux
Inorganic Chemistry, 2018
[4]
Mareike Binder, Claudio Schrenk, Theresa Block, Rainer Pöttgen, and Andreas Schnepf
Chem. Commun., 2017
[5]
Jakob-Jonathan Maudrich, Christian Patrick Sindlinger, Frederik Sebastian William Aicher, Klaus Eichele, Hartmut Schubert, and Lars Wesemann
Chemistry - A European Journal, 2017, Volume 23, Number 9, Page 2192
[6]
Luis G. Perla and Slavi C. Sevov
Angewandte Chemie, 2016, Volume 128, Number 23, Page 6833
[7]
Luis G. Perla and Slavi C. Sevov
Angewandte Chemie International Edition, 2016, Volume 55, Number 23, Page 6721
[8]
Andreas Schnepf
Phosphorus, Sulfur, and Silicon and the Related Elements, 2016, Volume 191, Number 4, Page 662
[9]
Johan Lindgren, Andre Clayborne, and Lauri Lehtovaara
The Journal of Physical Chemistry C, 2015, Volume 119, Number 33, Page 19539
[10]
Oleksandr Kysliak, Claudio Schrenk, and Andreas Schnepf
Inorganic Chemistry, 2015, Volume 54, Number 14, Page 7083
[11]
Claudio Schrenk, Birgit Gerke, Rainer Pöttgen, Andre Clayborne, and Andreas Schnepf
Chemistry - A European Journal, 2015, Volume 21, Number 22, Page 8222
[12]
R. Klink, C. Schrenk, and A. Schnepf
Dalton Trans., 2014, Volume 43, Number 42, Page 16097

Comments (0)

Please log in or register to comment.
Log in